首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Neuron》2022,110(12):2024-2040.e10
  1. Download : Download high-res image (328KB)
  2. Download : Download full-size image
  相似文献   

2.
In cats anesthetized with chloralose and pentobarbital and immobilized with D-tubocurarine activity of 423 pericruciate cortical neurons was recorded (342 extra- and 81 intracellularly); 78 neurons had spontaneous activity. Stimulation of the pyramidal tract evoked antidromic action potentials in the pyramidal neurons with a latent period of 0.5–16.0 msec. Recurrent and lateral PSPs also developed both in pyramidal and in unidentified neurons in all layers of the cortex; IPSPs were recorded in 46.7% of neurons, EPSPs in 21.0%, mixed reponses in 26.0%, and no visible changes were found in 6.3%. The latent period of the IPSPs was 1.5–14.0 msec, their amplitude 1.3–17.0 mV, their rise time from 4 to 18 msec, and their duration 18–120 msec (sometimes up to 250–500 msec). In 30% of cases in which IPSPs appeared, their course was divided into two phases: fast (duration 10–20 msec) and slow. EPSPs developed after a latent period of 2.6–29.0 msec; their amplitude was 1.0–7.8 mV and their duration from 10.0 to 50.0 msec. In 51.2% of spontaneously active neurons the antidromic volley inhibited their activity in the course of 200–400 msec, in 19.5% it stimulated their activity, in 7.4% it had a mixed effect, and in 21.9% no visible change took place in their activity. The role and participation of axon collaterals of pyramidal neurons and of the interneuronal system in the formation of these processes are discussed.  相似文献   

3.
Synaptic information efficacy (SIE) is a statistical measure to quantify the efficacy of a synapse. It measures how much information is gained, on the average, about the output spike train of a postsynaptic neuron if the input spike train is known. It is a particularly appropriate measure for assessing the input–output relationship of neurons receiving dynamic stimuli. Here, we compare the SIE of simulated synaptic inputs measured experimentally in layer 5 cortical pyramidal neurons in vitro with the SIE computed from a minimal model constructed to fit the recorded data. We show that even with a simple model that is far from perfect in predicting the precise timing of the output spikes of the real neuron, the SIE can still be accurately predicted. This arises from the ability of the model to predict output spikes influenced by the input more accurately than those driven by the background current. This indicates that in this context, some spikes may be more important than others. Lastly we demonstrate another aspect where using mutual information could be beneficial in evaluating the quality of a model, by measuring the mutual information between the model’s output and the neuron’s output. The SIE, thus, could be a useful tool for assessing the quality of models of single neurons in preserving input–output relationship, a property that becomes crucial when we start connecting these reduced models to construct complex realistic neuronal networks.  相似文献   

4.
Shah MM  Anderson AE  Leung V  Lin X  Johnston D 《Neuron》2004,44(3):495-508
The entorhinal cortex (EC) provides the predominant excitatory drive to the hippocampal CA1 and subicular neurons in chronic epilepsy. Discerning the mechanisms underlying signal integration within EC neurons is essential for understanding network excitability alterations involving the hippocampus during epilepsy. Twenty-four hours following a single seizure episode when there were no behavioral or electrographic seizures, we found enhanced spontaneous activity still present in the rat EC in vivo and in vitro. The increased excitability was accompanied by a profound reduction in I(h) in EC layer III neurons and a significant decline in HCN1 and HCN2 subunits that encode for h channels. Consequently, dendritic excitability was enhanced, resulting in increased neuronal firing despite hyperpolarized membrane potentials. The loss of I(h) and the increased neuronal excitability persisted for 1 week following seizures. Our results suggest that dendritic I(h) plays an important role in determining the excitability of EC layer III neurons and their associated neural networks.  相似文献   

5.
Branco T  Häusser M 《Neuron》2011,69(5):885-892
Cortical pyramidal neurons receive thousands of synaptic inputs arriving at different dendritic locations with varying degrees of temporal synchrony. It is not known if different locations along single cortical dendrites integrate excitatory inputs in different ways. Here we have used two-photon glutamate uncaging and compartmental modeling to reveal a gradient of nonlinear synaptic integration in basal and apical oblique dendrites of cortical pyramidal neurons. Excitatory inputs to the proximal dendrite sum linearly and require precise temporal coincidence for effective summation, whereas distal inputs are amplified with high gain and integrated over broader time windows. This allows distal inputs to overcome their electrotonic disadvantage, and become surprisingly more effective than proximal inputs at influencing action potential output. Thus, single dendritic branches can already exhibit nonuniform synaptic integration, with the computational strategy shifting from temporal coding to rate coding along the dendrite.  相似文献   

6.
《Cell reports》2023,42(2):112122
  1. Download : Download high-res image (211KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
There is a considerable gap between investigating the dynamics of single neurons and the computational aspects of neural networks. A growing number of studies have attempted to overcome this gap using the excitation in brain slices elicited by various chemical manipulations of the bath solution. However, there has been no quantitative study on the effects of these manipulations on the cellular and network factors controlling excitability. Using the whole-cell configuration of the patch-clamp technique we recorded the membrane potential from the soma of layer 5 pyramidal neurons in acute brain slices from the somatosensory cortex of young rats at 22 degrees C and 35 degrees C. Using blockers of synaptic transmission, we show distinct changes in cellular properties following modification of the ionic composition of the artificial cerebrospinal fluid (ACSF). Thus both cellular and network changes may contribute to the observed effects of slice excitation solutions on the physiology of single neurons. Furthermore, our data suggest that the difference in the ionic composition of current standard ACSF from that of CSF measured in vivo cause ACSF to depress network activity in acute brain slices. This may affect outcomes of experiments investigating biophysical and physiological properties of neurons in such preparations. Our results strongly advocate the necessity of redesigning experiments routinely carried out in the quiescent acute brain slice preparation.  相似文献   

9.
The properties of specific cortical cell types enable greater understanding of how cortical microcircuits process and transmit sensory, motor, and cognitive information. Previous reports have characterized the intrinsic properties of the inverted pyramidal cell (IPC) where the most prominent dendrite is orientated towards the cortical white matter. Using whole cell patch clamp recordings from rat and mouse somatosensory cortex in conjunction with electric microstimulation of the white matter we characterized the synaptic inputs onto IPCs and the more common upright pyramidal cell (UPC) in the infragranular layers. Both classes of pyramidal cells received monosynaptic glutamatergic input following white matter stimulation, but varied on a number of parameters. Most prominently, UPCs displayed higher amplitude responses and showed greater rates of depression compared to IPCs. These data reinforce the view that IPCs are a separate functional class of cortical neuron.  相似文献   

10.
《Neuron》2021,109(18):2914-2927.e5
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

11.
Chizhenkova  R. A. 《Biophysics》2010,55(6):1085-1093
The pulse flows of populations of sensomotor cortical neurons are studied in unanesthetized non-immobilized rabbits before, during, and after 1-min exposure to microwave electromagnetic irradiation (wavelength 37.5 cm, power density 0.2–0.3, 0.4, 0.5, and 40 mW/cm2) by analyzing the burst activity detected at time thresholds of 5, 10, and 20 ms. These exposures change the number of spike bursts. The changes in pulse flows are recorded both during irradiation and during the first minute after its cessation. The directions of shifts and their dynamics are determined by both the irradiation intensity and the types of bursts themselves.  相似文献   

12.
Although the excitatory effects of noradrenaline have been thoroughly studied in the central nervous system, there is relatively little known about the adrenergic effects on Ca2+ dynamics of dendrites. In the present study, we imaged basal dendrites of layer 5 pyramidal neurons in the prefrontal cortex using two-photon microscopy. In our experiments noradrenaline, applied in the bath, enhanced excitability of layer 5 pyramidal neurons. The number of evoked action potentials following current injection to the soma increased by 44.7% on average. In the basal dendrites and spines the evoked Ca2+ responses were also markedly enhanced. Noradrenaline-induced effects could be blocked by the beta-adrenergic blocker propranolol. Our data, that activation of the noradrenergic system increases excitability of layer 5 pyramidal neurons via beta-adrenergic receptors and enhances Ca2+ signaling in basal dendrites, suggest a cellular site of action for noradrenaline to improve the integrative capabilities of dendrites.  相似文献   

13.
Temporal precision of spiking response in cortical neurons has been a subject of intense debate. Using a canonical model of spike generation, we explore the conditions for precise and reliable spike timing in the presence of Gaussian white noise. In agreement with previous results we find that constant stimuli lead to imprecise timing, while aperiodic stimuli yield precise spike timing. Under constant stimulus the neuron is a noise perturbed oscillator, the spike times follow renewal statistics and are imprecise. Under an aperiodic stimulus sequence, the neuron acts as a threshold element; the firing times are precisely determined by the dynamics of the stimulus. We further study the dependence of spike-time precision on the input stimulus frequency and find a non-linear tuning whose width can be related to the locking modes of the neuron. We conclude that viewing the neuron as a non-linear oscillator is the key for understanding spike-time precision.  相似文献   

14.
In order to examine the effects of activity on spine production and/or maintenance in the cerebral cortex, we have compared the number of dendritic spines on pyramidal neurons in slices of PO mouse somatosensory cortex maintained in organotypic slice cultures under conditions that altered basal levels of spontaneous electrical activity. Cultures chronically exposed to 100 μM picrotoxin (PTX) for 14 days exhibited significantly elevated levels of electrical activity when compared to neurons in control cultures. Pyramidal neurons raised in the presence of PTX showed significantly densities of dendritic spines on primary apical, secondary apical, and secondary basal dendrites when compared to control cultures. The PTX-induced increase in spine density was dose dependent and appeared to saturate at 100 μM. Cultures exhibiting little or no spontaneous activity, as a result of growth in a combination of PTX and tetrodotoxin (TTx), showed significantly fewer dendritic spines compared to cultures maintained in PTX alone. These results demonstrate that the density of spines on layers V and VI pyramidal neurons can be modulated by growth conditions that alter the levels of spontaneous electrical activity. 1994 John Wiley & Sons, Inc.  相似文献   

15.
The apical tuft of layer 5 pyramidal neurons is innervated by a large number of inhibitory inputs with unknown functions. Here, we studied the functional consequences and underlying molecular mechanisms of apical inhibition on dendritic spike activity. Extracellular stimulation of layer 1, during blockade of glutamatergic transmission, inhibited the dendritic Ca2+ spike for up to 400 ms. Activation of metabotropic GABAB receptors was responsible for a gradual and long-lasting inhibitory effect, whereas GABAA receptors mediated a short-lasting (approximately 150 ms) inhibition. Our results suggest that the mechanism underlying the GABAB inhibition of Ca2+ spikes involves direct blockade of dendritic Ca2+ channels. By using knockout mice for the two predominant GABAB1 isoforms, GABAB1a and GABAB1b, we showed that postsynaptic inhibition of Ca2+ spikes is mediated by GABAB1b, whereas presynaptic inhibition of GABA release is mediated by GABAB1a. We conclude that the molecular subtypes of GABAB receptors play strategically different physiological roles in neocortical neurons.  相似文献   

16.
We studied expression of the 5-HT1A receptor in cortical and limbic areas of the brain of the tree shrew. In situ hybridization with a receptor-specific probe and immunocytochemistry with various antibodies was used to identify distinct neurons expressing the receptor. In vitro receptor autoradiography with 3H-8-OH-DPAT (3H-8-hydroxy-2-[di-n-propylamino]tetralin) was performed to visualize receptor-binding sites. In the prefrontal, insular, and occipital cortex, 5-HT1A receptor mRNA was expressed in pyramidal neurons of layer 2, whereas 3H-8-OH-DPAT labeled layers 1 and 2 generating a columnar-like pattern in the prefrontal and occipital cortex. In the striate and ventral occipital cortex, receptor mRNA was present within layers 5 and 6 in pyramidal neurons and Meynert cells. Pyramid-like neurons in the claustrum and anterior olfactory nucleus also expressed the receptor. Principal neurons in hippocampal region CA1 expressed 5-HT1A receptor mRNA, and 3H-8-OH-DPAT labeled both the stratum oriens and stratum radiatum. CA3 pyramidal neurons displayed low 5-HT1A receptor expression, whereas granule neurons in the dentate gyrus revealed moderate expression of this receptor. In the amygdala, large pyramid-like neurons in the basal magnocellular nucleus strongly expressed the receptor. Immunocytochemistry with antibodies against parvalbumin, calbindin, and gamma aminobutyric acid (GABA) provided no evidence for 5-HT1A receptor expression in GABAergic neurons in cortical and limbic brain areas. Our data agree with previous findings showing that the 5-HT1A receptor mediates the modulation of glutamatergic neurons. Expression in the limbic and cortical areas suggested an involvement of 5-HT1A receptors in emotional and cognitive processes.This work was supported by the German Science Foundation (SFB 406; C4 to G.F.).  相似文献   

17.
Cyclic AMP-responsive element binding protein (CREB) activity is known to contribute to important neuronal functions, such as synaptic plasticity, learning and memory. Using a microelectroporation technique to overexpress dominant negative mutant CREB (mCREB) in the adult mouse brain, we found that overexpression of mCREB in the forebrain cortex induced neuronal degeneration. Our findings suggest that constitutively active CREB phosphorylation is important for the survival of mammalian cells in the brain.  相似文献   

18.
We have studied the regulation of AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor channels by serotonin signaling in pyramidal neurons of prefrontal cortex (PFC). Application of serotonin reduced the amplitude of AMPA-evoked currents, an effect mimicked by 5-HT(1A) receptor agonists and blocked by 5-HT(1A) antagonists, indicating the mediation by 5-HT(1A) receptors. The serotonergic modulation of AMPA receptor currents was blocked by protein kinase A (PKA) activators and occluded by PKA inhibitors. Inhibiting the catalytic activity of protein phosphatase 1 (PP1) also eliminated the effect of serotonin on AMPA currents. Furthermore, the serotonergic modulation of AMPA currents was occluded by application of the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitors and blocked by intracellular injection of calmodulin or recombinant CaMKII. Application of serotonin or 5-HT(1A) agonists to PFC slices reduced CaMKII activity and the phosphorylation of AMPA receptor subunit GluR1 at the CaMKII site in a PP1-dependent manner. We concluded that serotonin, by activating 5-HT(1A) receptors, suppress glutamatergic signaling through the inhibition of CaMKII, which is achieved by the inhibition of PKA and ensuing activation of PP1. This modulation demonstrates the critical role of CaMKII in serotonergic regulation of PFC neuronal activity, which may explain the neuropsychiatric behavioral phenotypes seen in CaMKII knockout mice.  相似文献   

19.
In computer-experiments using the interactive program, CRONA, and using data from natural experiments that measured the reversal potential of slow (long-term) inhibitory postsynaptic potentials (slow IPSPs), we determined the probable location of the region of potassium-conducting synapses that are responsible for their generation. Parameters such as the geometric dimensions of neuronal dendritic branches and the intracellular concentration of K+ were studied for their effect on the determination of this region. It is concluded that these synaptic inputs are non-somatic, and that allowing for the variability of the initial parameters they probably lie on the apical dendrites at a distance between 110 and 460 µm from the soma.Dnepropetrovsk State University. A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 738–745, November–December, 1991.  相似文献   

20.
Electron microscope studies were made of retrogradely horseradish peroxidase-labeled pyramidal neurons forming transcallosal projections in layer III of the cat primary auditory cortex (Al). These showed a significant proportion of the somatic membrane to be covered with processes of astroglia, while synapses occupy 20% of the synaptic surface on average. Between 4 and 10 axosomatic synapses were identified on the profiles of callosal cell somata. All these were formed by axonal terminals containing small, flattened synaptic vesicles and had symmetrical contacts. Average length of these synaptic contacts equaled 1.6 µm. Numerous anterogradely horseradish peroxidase-labeled axonal terminals of callosal fibers were found in cortical area Al in amongst retrogradely HP-labeled neurons. The ultrastructural pattern of these is described.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 520–526, July–August, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号