首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
影响动物细胞同源重组发生与基因打靶效率的分子机制   总被引:1,自引:0,他引:1  
真核细胞的基因打靶是基因结构与功能研究的一种非常有价值的技术,也是可应用于基因治疗的具有潜力的工具。有2个限制因素束缚真核细胞基因打靶的发展,即同源重组(HR)率非常低而随机整合率非常高。通过特定基因的过表达或表达干涉,使一些参与DNA重组的蛋白表达水平瞬间改变,可能会增加HR率,降低随机整合率。本文列举了一些与HR相关的候选基因,详细介绍了其中的Rad52上位簇基因,还讨论了打靶载体的设计与修饰、DNA转染方法的有效性等。  相似文献   

2.
Gene amplification is one of the major mechanisms of acquisition of drug resistance and activation of oncogenes in tumors. In mammalian cells, amplified chromosomal regions are manifested cytogenetically as extrachromosomal double minutes (DMs) and chromosomal homogeneously staining regions (HSRs). We recently demonstrated using yeast model system that hairpin-capped double strand breaks (DSBs) generated at the location of human Alu-quasipalindromes can trigger both types of gene amplification. Specifically, the dicentric chromosomes arising from replication of hairpin-capped molecules can be precursors for intrachromosomal amplicons. The formation of HSRs can be accounted for either by breakage-fusion-bridge (BFB) cycle which necessitates nonhomologous end-joining pathway (NHEJ) or by the repair event involving homologous recombination (HR). In this study, we report that intrachromosomal gene amplification mediated by hairpin-capped DSBs is independent of NHEJ machinery, however requires the functions of Rad52 and Rad51 proteins. Based on our observations, we propose a HR-dependent mechanism to explain how the breakage of dicentric chromosomes can lead to the formation of HSRs.  相似文献   

3.

Background

Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) events in the fish medaka (Oryzias latipes).

Methodology and Principal Findings

Here we report HR-mediated GT in this organism. We designed a GT vector to disrupt the tumor suppressor gene p53 (also known as tp53). We show that all the three medaka ES cell lines, MES1∼MES3, are highly proficient for HR, as they produced detectable HR without drug selection. Furthermore, the positive-negative selection (PNS) procedure enhanced HR by ∼12 folds. Out of 39 PNS-resistant colonies analyzed, 19 (48.7%) were positive for GT by PCR genotyping. When 11 of the PCR-positive colonies were further analyzed, 6 (54.5%) were found to be bona fide homologous recombinants by Southern blot analysis, sequencing and fluorescent in situ hybridization. This produces a high efficiency of up to 26.6% for p53 GT under PNS conditions. We show that p53 disruption and long-term propagation under drug selection conditions do not compromise the pluripotency, as p53-targeted ES cells retained stable growth, undifferentiated phenotype, pluripotency gene expression profile and differentiation potential in vitro and in vivo.

Conclusions

Our results demonstrate that medaka ES cells are proficient for HR-mediated GT, offering a first model organism of lower vertebrates towards the development of full ES cell-based GT technology.  相似文献   

4.
在小鼠胚胎干细胞进行基因打靶的策略   总被引:8,自引:0,他引:8  
基因打靶技术是一种通过同源重组按预期方式改变生物活体的遗传信息的实验手段,与小鼠胚胎干细胞培养系统相结合,使得人们可以方便地将各种突变引入小鼠体内,得以从生物整体水平上研究高等真核生物基因的表达、调控及其生理功能.扼要介绍了近年来在小鼠胚胎干细胞进行基因打靶的研究进展.  相似文献   

5.
Ataxia telangiectasia mutated (ATM) is activated upon DNA double strand breaks (DSBs) and phosphorylates numerous DSB response proteins, including histone H2AX on serine 139 (Ser-139) to form γ-H2AX. Through interaction with MDC1, γ-H2AX promotes DSB repair by homologous recombination (HR). H2AX Ser-139 can also be phosphorylated by DNA-dependent protein kinase catalytic subunit and ataxia telangiectasia- and Rad3-related kinase. Thus, we tested whether ATM functions in HR, particularly that controlled by γ-H2AX, by comparing HR occurring at the euchromatic ROSA26 locus between mouse embryonic stem cells lacking either ATM, H2AX, or both. We show here that loss of ATM does not impair HR, including H2AX-dependent HR, but confers sensitivity to inhibition of poly(ADP-ribose) polymerases. Loss of ATM or H2AX has independent contributions to cellular sensitivity to ionizing radiation. The ATM-independent HR function of H2AX requires both Ser-139 phosphorylation and γ-H2AX/MDC1 interaction. Our data suggest that ATM is dispensable for HR, including that controlled by H2AX, in the context of euchromatin, excluding the implication of such an HR function in genomic instability, hypersensitivity to DNA damage, and poly(ADP-ribose) polymerase inhibition associated with ATM deficiency.  相似文献   

6.
One major limitation with current human embryonic stem cell (ESC) differentiation protocols is the generation of heterogeneous cell populations. These cultures contain the cells of interest, but are also contaminated with undifferentiated ESCs, non-neural derivatives and other neuronal subtypes.  This limits their use in in vitro and in vivo applications, such as in vitro modeling for drug discovery or cell replacement therapy. To help overcome this, reporter cell lines, which offer a means to visualize, track and isolate cells of interest, can be engineered. However, to achieve this in human embryonic stem cells via conventional homologous recombination is extremely inefficient. This protocol describes targeting of the Pituitary homeobox 3 (PITX3) locus in human embryonic stem cells using custom designed zinc-finger nucleases, which introduce site-specific double-strand DNA breaks, together with a PITX3-EGFP-specific DNA donor vector. Following the generation of the PITX3 reporter cell line, it can then be differentiated using published protocols for use in studies such as in vitro Parkinson’s disease modeling or cell replacement therapy.  相似文献   

7.
A strategy employing gene trap mutagenesis and site-specific recombination (Cre/loxP) has been used to identify genes that are transiently expressed during early mouse development. Embryonic stem cells expressing a reporter plasmid that codes for neomycin phosphotransferase and Escherichia coli LacZ were infected with a retroviral gene trap vector (U3Cre) carrying coding sequences for Cre recombinase (Cre) in the U3 region. Activation of Cre expression from integrations into active genes resulted in a permanent switching between the two selectable marker genes and consequently the expression of β-galactosidase (β-Gal). As a result, clones in which U3Cre had disrupted genes that were only transiently expressed could be selected. Moreover, U3Cre-activating cells acquired a cell autonomous marker that could be traced to cells and tissues of the developing embryo. Thus, when two of the clones with inducible U3Cre integrations were passaged in the germ line, they generated spatial patterns of β-Gal expression.  相似文献   

8.
9.
Highlights? Enzymatic mapping of 5-hydroxymethylcytosine in DNA at near-base resolution ? Accurately identifies low level 5hmC in CG and non-CG contexts ? A low amount of input DNA can be used for whole-genome 5hmC mapping ? Independent of bisulphite or other chemical conversion  相似文献   

10.
R. J. Bollag  R. M. Liskay 《Genetics》1988,119(1):161-169
Recombination in mammalian cells is thought to involve both reciprocal and nonreciprocal modes of exchange, although rigorous proof is lacking due to the inability to recover all products of an exchange. To investigate further the relationship between these modes of exchange, we have analyzed intrachromosomal recombination between duplicated herpes simplex virus thymidine kinase (HSV tk) mutant alleles arranged as inverted repeats in cultured mouse L cells. In crosses between inverted repeats, a single intrachromatid reciprocal exchange leads to inversion of the sequence between the crossover sites and recovery of both genes involved in the event. The majority of recombinant products do not display such inversion and are thus consistent with a nonreciprocal mode of recombination (gene conversion). The remaining products display the sequence inversion predicted for intrachromatid reciprocal exchange. In light of the fact that intrachromatid exchanges occur, the rarity of intrachromatid double reciprocal exchanges strengthens the interpretation that the majority of events in this and previous investigations involve gene conversion. Furthermore, in accord with prediction, one-third of the reciprocal recombinants (inversions) display associated gene conversion. This association suggests that reciprocal and nonreciprocal modes of exchange are mechanistically related in mammalian cells. Finally, the occurrence of inversion recombinants suggests that intrachromosomal recombination can be a conservative (nondestructive) process.  相似文献   

11.
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.  相似文献   

12.
小鼠胚胎干细胞的培养   总被引:1,自引:0,他引:1  
目的:建立小鼠胚胎干细胞(embryonic stem cells,ES)的培养方法。方法:制备G418抗性的原代小鼠胚胎成纤维细胞,经丝裂霉素C处理后成滋养层细胞,将小鼠胚胎干细胞复苏后,应用含白血病抑制因子的ES细胞培养液,培养小鼠ES细胞,观察集落的生长情况,并在光镜下观察细胞形态。结果:小鼠胚胎成纤维细胞生长良好,ES细胞呈克隆状生长,且保持未分化状态。结论:建立了小鼠胚胎干细胞培养的有效方法,为下一步基因打靶奠定基础。  相似文献   

13.
Homologous recombination plays a key role in the repair of double-strand breaks (DSBs), and thereby significantly contributes to cellular tolerance to radiotherapy and some chemotherapy. DSB repair by homologous recombination is initiated by 5’ to 3’ strand resection (DSB resection), with nucleases generating the 3’ single-strand DNA (3’ssDNA) at DSB sites. Genetic studies of Saccharomyces cerevisiae demonstrate a two-step DSB resection, wherein CtIP and Mre11 nucleases carry out short-range DSB resection followed by long-range DSB resection done by Dna2 and Exo1 nucleases. Recent studies indicate that CtIP contributes to DSB resection through its non-catalytic role but not as a nuclease. However, it remains elusive how CtIP contributes to DSB resection. To explore the non-catalytic role, we examined the dynamics of Dna2 by developing an immuno-cytochemical method to detect ionizing-radiation (IR)-induced Dna2-subnuclear-focus formation at DSB sites in chicken DT40 and human cell lines. Ionizing-radiation induced Dna2 foci only in wild-type cells, but not in Dna2 depleted cells, with the number of foci reaching its maximum at 30 minutes and being hardly detectable at 120 minutes after IR. Induced foci were detectable in cells in the G2 phase but not in the G1 phase. These observations suggest that Dna2 foci represent the recruitment of Dna2 to DSB sites for DSB resection. Importantly, the depletion of CtIP inhibited the recruitment of Dna2 to DSB sites in both human cells and chicken DT40 cells. Likewise, a defect in breast cancer 1 (BRCA1), which physically interacts with CtIP and contributes to DSB resection, also inhibited the recruitment of Dna2. Moreover, CtIP physically associates with Dna2, and the association is enhanced by IR. We conclude that BRCA1 and CtIP contribute to DSB resection by recruiting Dna2 to damage sites, thus ensuring the robust DSB resection necessary for efficient homologous recombination.  相似文献   

14.
D. Yang  A. S. Waldman 《Genetics》1992,132(4):1081-1093
We studied the effects of double-strand breaks on intramolecular extrachromosomal homologous recombination in mammalian cells. Pairs of defective herpes thymidine kinase (tk) sequences were introduced into mouse Ltk- cells on a DNA molecule that also contained a neo gene under control of the SV40 early promoter/enhancer. With the majority of the constructs used, gene conversions or double crossovers, but not single crossovers, were recoverable. DNA was linearized with various restriction enzymes prior to transfection. Recombination events producing a functional tk gene were monitored by selecting for tk-positive colonies. For double-strand breaks placed outside of the region of homology, maximal recombination frequencies were measured when a break placed the two tk sequences downstream from the SV40 early promoter/enhancer. We observed no relationship between recombination frequency and either the distance between a break and the tk sequences or the distance between the tk sequences. The quantitative effects of the breaks appeared to depend on the degree of homology between the tk sequences. We also observed that inverted repeats recombined as efficiently as direct repeats. The data indicated that the breaks influenced recombination indirectly, perhaps by affecting the binding of a factor(s) to the SV40 promoter region which in turn stimulated or inhibited recombination of the tk sequences. Taken together, we believe that our results provide strong evidence for the existence of a pathway for extrachromosomal homologous recombination in mammalian cells that is distinct from single-strand annealing. We discuss the possibility that intrachromosomal and extrachromosomal recombination have mechanisms in common.  相似文献   

15.

Background

Targeting stem cells holds great potential for studying the embryonic stem cell and development of stem cell-based regenerative medicine. Previous studies demonstrated that nanoparticles can serve as a robust platform for gene delivery, non-invasive cell imaging, and manipulation of stem cell differentiation. However specific targeting of embryonic stem cells by peptide-linked nanoparticles has not been reported.

Methodology/Principal Findings

Here, we developed a method for screening peptides that specifically recognize rhesus macaque embryonic stem cells by phage display and used the peptides to facilitate quantum dot targeting of embryonic stem cells. Through a phage display screen, we found phages that displayed an APWHLSSQYSRT peptide showed high affinity and specificity to undifferentiated primate embryonic stem cells in an enzyme-linked immunoabsorbent assay. These results were subsequently confirmed by immunofluoresence microscopy. Additionally, this binding could be completed by the chemically synthesized APWHLSSQYSRT peptide, indicating that the binding capability was specific and conferred by the peptide sequence. Through the ligation of the peptide to CdSe-ZnS core-shell nanocrystals, we were able to, for the first time, target embryonic stem cells through peptide-conjugated quantum dots.

Conclusions/Significance

These data demonstrate that our established method of screening for embryonic stem cell specific binding peptides by phage display is feasible. Moreover, the peptide-conjugated quantum dots may be applicable for embryonic stem cell study and utilization.  相似文献   

16.
This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in the time-interval 0.5–24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, γ-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of γ-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PK-deficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of γ-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.  相似文献   

17.
Two different approaches for introducing pathogenic mutations into the β-amyloid precursor protein gene in mouse embryonic stem cells were compared. Both approaches require two sequential modifications of the targeting locus by homologous recombinations. One approach was a “targeting-in-out” procedure that is based on a double-replacement strategy, and the other was a “hit-and-run” procedure that makes use of an unstable genomic duplication after vector integration. Both approaches showed similar targeting frequencies for the first step. In the targeting-in-out procedure, targeted-in embryonic stem cell clones with the desired mutation and an intron-located selection cassette were obtained at a high frequency after the first step. Targeting out, however, resulted not only in the expected loss of the intron-located selection cassette but also in unavoidable reversion to wild type. In contrast, pure mutants, i.e., those without additional genomic changes, were generated by the hit-and-run procedure. Although targeted-in embryonic stem cells might be used to generate animals with modified β-amyloid precursor protein, the hit-and-run procedure appears to be the superior way to target gene modifications in vivo, leading to pure, correct mutants. For further improvements, optimization of the homologous recombination efficiency could be envisaged.  相似文献   

18.
弄清胚胎肝脏发育的分化调节机制,对指导干细胞在肝再生中的应用以及研究肝分化相关疾病分子机制具有重要意义.胚胎干细胞的全能性使得体外建立肝向分化模型成为可能,采用单层贴壁培养方式,分阶段加入成纤维细胞生长因子(FGF)、肝细胞生长因子(HGF)、制瘤素(OSM)等因子,诱导小鼠胚胎干细胞D3(mESC-D3)的肝向分化.分化细胞在光镜和电镜下呈现肝样细胞形态,RT-PCR、细胞免疫荧光检测以及PAS染色分析表明,这些细胞具有肝细胞特征性的基因表达和生化功能.采用干细胞分化相关基因芯片比较早期肝定向分化前后的基因表达差异,结果显示,48个差异表达基因中(大于2倍),20个上调、28个下调.进一步的生物信息学分析发现,它们集中体现在细胞外基质、细胞连接、FGF、BMP分子及Notch、Wnt信号通路上,提示这些改变可能与胚胎早期的肝向分化密切相关.  相似文献   

19.
目的:为阐明E1A激活基因阻遏子(Cellular repressor of E1A-stimulated genes,CREG)在发育过程中的作用,本研究拟通过高浓度药物筛选获得基因敲除的小鼠胚胎干细胞(Embryonic stem cell,ESC)。方法:用0.5 mg/ml、1.0 mg/ml、1.5 mg/ml、2.0mg/ml、2.5 mg/ml及3.0 mg/ml 6个浓度的G418培养CREG杂合型(CREG其中一个等位基因被新霉素抗性neo基因替代)小鼠ESC 2周,确定最佳的G418筛选浓度。挑取该浓度下存活的ESC克隆进行扩增。将每个ESC克隆一半冻存,另一半贴壁培养。待ESC生长至80%融合后分别提取基因组DNA和蛋白。PCR方法扩增CREG基因明确基因组中是否存在CREG基因,WesternBlot方法鉴定是否有CREG蛋白表达。结果:确定2.0 mg/ml G418为最佳的筛选浓度。在该浓度下,共获得存活的克隆10个,PCR证实C2及C7克隆基因组中没有CREG基因,Western Blot证实C2及C7无CREG蛋白表达。结论:成功获得CREG基因敲除的小鼠ESC 2株,为深入研究CREG功能奠定了基础。  相似文献   

20.
小鼠胚胎干细胞建系技术研究进展   总被引:4,自引:0,他引:4  
目前,对小鼠胚胎干细胞的研究较为深入,并已成为研究细胞分化及信号转导、新基因发现及功能鉴定、器官发生、人类疾病和药物开发等的有效手段。胚胎干细胞建系是一项基础性工作。虽然技术日趋成熟,有些品系小鼠的胚胎干细胞建系已是常规技术,但不同品系小鼠胚胎干细胞的建系效率仍有很大差异,建系途径和方法各有特点,一个品系胚胎干细胞的建系方法不一定都适用于其他品系。本文从小鼠胚胎干细胞建系的途径、分离操作技术、培养体系等方面进行综述,并就与之相关的有些问题提出思考和对策。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号