首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Septic shock is a severe systemic response to bacterial infection. Receptor for advanced glycation end products (RAGE) plays a role in immune reactions to recognize specific molecular patterns as pathogen recognition receptors. However, the interaction between LPS, the bioactive component of bacterial cell walls, and RAGE is unclear. In this study, we found direct LPS binding to RAGE by a surface plasmon resonance assay, a plate competition assay, and flow cytometry. LPS increased TNF-α secretion from peritoneal macrophages and an NF-κB promoter-driven luciferase activity through RAGE. Blood neutrophils and monocytes expressed RAGE, and TLR2 was counterregulated in RAGE(-/-) mice. After LPS injection, RAGE(+/+) mice showed a higher mortality, higher serum levels of IL-6, TNF-α, high mobility group box 1, and endothelin-1, and severe lung and liver pathologies compared with RAGE(-/-) mice without significant differences in plasma LPS level. Administration of soluble RAGE significantly reduced the LPS-induced cytokine release and tissue damage and improved the LPS-induced lethality even in RAGE(-/-) as well as RAGE(+/+) mice. The results thus suggest that RAGE can associate with LPS and that RAGE system can regulate inflammatory responses. Soluble RAGE would be a therapeutic tool for LPS-induced septic shock.  相似文献   

3.
Clearance of apoptotic cells by macrophages and other phagocytic cells, called efferocytosis, is a central process in the resolution of inflammation. Although the receptor for advanced glycation end products (RAGE) has been shown to participate in a variety of acute and chronic inflammatory processes in the lungs and other organs, a role for RAGE in efferocytosis has not been reported. In the present studies, we examined the potential involvement of RAGE in efferocytosis. Macrophages from transgenic RAGE(-/-) mice showed a decreased ability to engulf apoptotic neutrophils and thymocytes. Pretreatment of RAGE(+/+) macrophages with advanced glycation end products, which competitively bind to RAGE, or Abs against RAGE diminished phagocytosis of apoptotic cells. Overexpression of RAGE in human embryonic kidney 293 cells resulted in an increased ability to engulf apoptotic cells. Furthermore, we found that incubation with soluble RAGE enhances phagocytosis of apoptotic cells by both RAGE(+/+) and RAGE(-/-) macrophages. Direct binding of RAGE to phosphatidylserine (PS), an "eat me" signal highly expressed on apoptotic cells, was shown by using solid-phase ELISA. The ability of RAGE to bind to PS on apoptotic cells was confirmed in an adhesion assay. Decreased uptake of apoptotic neutrophils by macrophages was found under in vivo conditions in the lungs and peritoneal cavity of RAGE(-/-) mice. These results demonstrate a novel role for RAGE in which it is able to enhance efferocytosis through binding to PS on apoptotic cells.  相似文献   

4.
The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.  相似文献   

5.
Recent studies demonstrated the beneficial role of atorvastatin in reducing the risk of cardiovascular morbidity and mortality in patients with diabetes mellitus and/or metabolic syndrome. To investigate the mechanisms underlying the anti-atheroscleroic action of atorvastatin, we examined the expression of the receptor for advanced glycation end products (RAGE) and its downstream target gene, monocyte chemoattractant protein-1 (MCP-1) using real-time PCR. In in vitro studies, exposure to high glucose or AGE induced oxidative stress and activation of the AGE/RAGE system in human umbilical vein endothelial cells. Treatment of the cells with atorvastatin significantly released the oxidative stress by restoring the levels of glutathione and inhibited the RAGE upregulation. In diabetic Goto Kakisaki (GK) rats fed with a high-fat diet for 12 weeks, RAGE and MCP-1 were upregulated in the aortas, and there was a significant correlation between RAGE and MCP-1 mRNA abundance (r = 0.482, P = 0.031). Treatment with atorvastatin (20 mg/kg qd) significantly downregulated the expression of RAGE and MCP-1. These data thus demonstrate a novel “pleiotropic” activity of atorvastatin in reducing the risk of cardiovascular diseases by targeting RAGE expression.  相似文献   

6.
Advanced glycation end products (AGEs) accumulate with age and at an accelerated rate in diabetes. AGEs bind cell-surface receptors including the receptor for advanced glycation end products (RAGE). The dependence of RAGE binding on specific biochemical characteristics of AGEs is currently unknown. Using standardized procedures and a variety of AGE measures, the present study aimed to characterize the AGEs that bind to RAGE and their formation kinetics in vitro. To produce AGEs with varying RAGE binding affinity, bovine serum albumin (BSA) AGEs were prepared with 0.5M glucose, fructose, or ribose at times of incubation from 0 to 12 weeks or for up to 3 days with glycolaldehyde or glyoxylic acid. The AGE-BSAs were characterized for RAGE binding affinity, fluorescence, absorbance, carbonyl content, reactive free amine content, molecular weight, pentosidine content, and N-epsilon-carboxymethyl lysine content. Ribose-AGEs bound RAGE with high affinity within 1 week of incubation in contrast to glucose- and fructose-AGE, which required 12 and 6 weeks, respectively, to generate equivalent RAGE ligands (IC50=0.66, 0.93, and 1.7 microM, respectively). Over time, all of the measured AGE characteristics increased. However, only free amine content robustly correlated with RAGE binding affinity. In addition, detailed protocols for the generation of AGEs that reproducibly bind RAGE with high affinity were developed, which will allow for further study of the RAGE-AGE interaction.  相似文献   

7.
High sensitivity C-reactive protein (hs-CRP) is synthesized mainly by hepatocytes in response to tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). The interaction of advanced glycation end products (AGEs) with the receptor for advanced glycation end products (RAGE) increases the expression of the cytokines TNF-α, IL-1, and IL-6. Soluble receptor for advanced glycation end products (sRAGE) competes with RAGE for binding with AGEs. Hence, low sRAGE levels may increase interaction of AGEs with RAGE resulting in the increased production of cytokines. It is hypothesized that serum levels of sRAGE modulate serum levels of hs-CRP. The objectives are to determine if (i) serum levels of sRAGE are lower and those of TNF-α and hs-CRP are higher in non-ST-segment elevation myocardial infarction (NSTEMI) patients compared to control subjects; (ii) serum levels of TNF-α and hs-CRP are positively correlated; and (iii) sRAGE is negatively correlated with hs-CRP and TNF-α. The study consisted of 36 patients with NSTEMI and 30 age-matched healthy male subjects. Serum levels of sRAGE and TNF-α were determined by enzyme-linked immunoassay and hs-CRP was measured using near infrared immunoassay. Serum levels of sRAGE were lower, while those of TNF-α and hs-CRP were higher in patients with NSTEMI compared to controls. The levels of sRAGE were negatively correlated with those of TNF-α and hs-CRP, while TNF-α was positively correlated with hs-CRP in both the control subjects and NSTEMI patients. The data suggest that sRAGE modulates the synthesis of hs-CRP through TNF-α.  相似文献   

8.
The receptor for advanced glycation end-product (RAGE) is the signal transduction receptor which senses a variety of signalling molecules including advanced glycation end products (AGEs), HMGB1, S100/calgranulins, β-amyloid, phosphatidylserine, C3a and advanced oxidation protein products (AOPPs). It is usually abnormally up-regulated and plays crucial roles during the development of many human diseases such as diabetes, cardiovascular diseases, osteoarthritis and cancer. RAGE regulates a number of cell processes of pivotal importance like inflammation, apoptosis, proliferation and autophagy. Therapeutic strategies to block RAGE may represent great therapeutic potentials and therefore it has been under extensive investigation during the last decade. Accordingly, there is a growing interest of unraveling the intracellular signalling pathways by which RAGE controls these disease-related processes. Early studies are mainly focused on inflammatory pathways involving the NFκB and the MAPK pathways. Nevertheless, many novel signalling pathways implicated in other cell processes, such as autophagy, have also recently been found to be activated upon RAGE stimulation and contribute to the detrimental effects of RAGE. In this review, we aim to provide a comprehensive summary of previous and recent studies relating to the complex molecular network of RAGE signalling, with a particular emphasis on RAGE transgenic mouse models.  相似文献   

9.
Diabetic nephropathy is one of the main causes of end-stage renal disease, in which the development of tubular damage depends on factors such as high glucose levels, albuminuria and advanced glycation end-product. In this study, we analyzed the involvement of heparanase, a heparan sulfate glycosidase, in the homeostasis of proximal tubular epithelial cells in the diabetic milieu. In vitro studies were performed on a wild-type and stably heparanase-silenced adult tubular line (HK2) and HEK293. Gene and protein expression analyses were performed in the presence and absence of diabetic mediators. Albumin and advanced glycation end-product, but not high glucose levels, increased heparanase expression in adult tubular cells via the AKT/PI3K signaling pathway. This over-expression of heparanase is then responsible for heparan sulfate reduction via its endoglycosidase activity and its capacity to regulate the heparan sulfate-proteoglycans core protein. In fact, heparanase regulates the gene expression of syndecan-1, the most abundant heparan sulfate-proteoglycans in tubular cells. We showed that heparanase is a target gene of the diabetic nephropathy mediators albumin and advanced glycation end-product, so it may be relevant to the progression of diabetic nephropathy. It could take part in several processes, e.g. extracellular-matrix remodeling and cell-cell crosstalk, via its heparan sulfate endoglycosidase activity and capacity to regulate the expression of the heparan sulfate-proteoglycan syndecan-1.  相似文献   

10.
Receptor for advanced glycation end products (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface molecules whose repertoire of ligands includes advanced glycation end products (AGEs), amyloid fibrils, amphoterins and S100/calgranulins. The overlapping distribution of these ligands and cells overexpressing RAGE results in sustained receptor expression which is magnified via the apparent capacity of ligands to upregulate the receptor. We hypothesize that RAGE-ligand interaction is a propagation factor in a range of chronic disorders, based on the enhanced accumulation of the ligands in diseased tissues. For example, increased levels of AGEs in diabetes and renal insufficiency, amyloid fibrils in Alzheimer's disease brain, amphoterin in tumors and S100/calgranulins at sites of inflammation have been identified. The engagement of RAGE by its ligands can be considered the 'first hit' in a two-stage model, in which the second phase of cellular perturbation is mediated by superimposed accumulation of modified lipoproteins (in atherosclerosis), invading bacterial pathogens, ischemic stress and other factors. Taken together, these 'two hits' eventuate in a cellular response with a propensity towards tissue destruction rather than resolution of the offending pathogenic stimulus. Experimental data are cited regarding this hypothesis, though further studies will be required, especially with selective low molecular weight inhibitors of RAGE and RAGE knockout mice, to obtain additional proof in support of our concept.  相似文献   

11.
The receptor for advanced glycated end products (RAGE) is a multiligand receptor that is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. The ability of RAGE to recognize advanced glycated end products (AGEs) formed by nonenzymatic glycoxidation of cellular proteins places RAGE in the category of pattern recognition receptors. The structural mechanism of AGE recognition was an enigma due to the diversity of chemical structures found in AGE-modified proteins. Here, using NMR spectroscopy we showed that the immunoglobulin V-type domain of RAGE is responsible for recognizing various classes of AGEs. Three distinct surfaces of the V domain were identified to mediate AGE-V domain interactions. They are located in the positively charged areas of the V domain. The first interaction surface consists of strand C and loop CC ', the second interaction surface consists of strand C ', strand F, and loop FG, and the third interaction surface consists of strand A ' and loop EF. The secondary structure elements of the interaction surfaces exhibit significant flexibility on the ms-micros time scale. Despite highly specific AGE-V domain interactions, the binding affinity of AGEs for an isolated V domain is low, approximately 10 microm. Using in-cell fluorescence resonance energy transfer we show that RAGE is a constitutive oligomer on the plasma membrane. We propose that constitutive oligomerization of RAGE is responsible for recognizing patterns of AGE-modified proteins with affinities less than 100 nm.  相似文献   

12.
13.
The receptor for advanced glycation end products (RAGE) is a multiligand cell surface receptor involved in various human diseases, as it binds to numerous molecules and proteins that modulate the activity of other proteins. Elucidating the three-dimensional structure of this receptor is therefore most important for understanding its function during activation and cellular signaling. The major alternative splice product of RAGE comprises its extracellular region that occurs as a soluble protein (sRAGE). Although the structures of sRAGE domains were available, their assembly into the functional full-length protein remained unknown. We observed that the protein has concentration-dependent oligomerization behavior, and this is also mediated by the presence of Ca(2+) ions. Moreover, using synchrotron small angle x-ray scattering, the solution structure of human sRAGE was determined in the monomeric and dimeric forms. The model for the monomer displays a J-like shape, whereas the dimer is formed through the association of the two N-terminal domains and has an elongated structure. These results provide insights into the assembly of the RAGE homodimer, which is essential for signal transduction, and the sRAGE:RAGE heterodimer that leads to blockage of the receptor signaling, paving the way for the design of therapeutic strategies for a large number of different pathologies.  相似文献   

14.
Recent studies have suggested that the receptor for advanced glycation end products (RAGE) participates in melanoma progression by promoting tumor growth. However, the mechanisms of RAGE activation in melanoma tumors are not clearly understood. To get deeper insights into these mechanisms, we transfected a melanoma cell line, which was established from a human melanoma primary tumor, with RAGE, and studied the effect of RAGE overexpression on cell proliferation and migration in vitro. We observed that overexpression of RAGE in these cells not only resulted in significantly increased migration rates compared to control cells, but also in decreased proliferation rates (Meghnani et al., 2014).In the present study, we compared the growth of xenograft tumors established from RAGE overexpressing WM115 cells, to that of control cells. We observed that when implanted in mice, RAGE overexpressing cells generated tumors faster than control cells. Analysis of protein tumor extracts showed increased levels of the RAGE ligands S100B, S100A2, S100A4, S100A6 and S100A10 in RAGE overexpressing tumors compared to control tumors. We show that the tumor growth was significantly reduced when the mice were treated with anti-RAGE antibodies, suggesting that RAGE, and probably several S100 proteins, were involved in tumor growth. We further demonstrate that the anti-RAGE antibody treatment significantly enhanced the efficacy of the alkylating drug dacarbazine in reducing the growth rate of RAGE overexpressing tumors.  相似文献   

15.
目的:本实验探讨缬沙坦对糖基化终产物诱导的人肾小球系膜细胞氧化应激水平及糖基化终产物受体(RAGE)表达的影响。方法:体外常规培养人肾小球系膜细胞,运用糖基化修饰的牛血清白蛋白(AGE-BSA)和缬沙坦进行干预,流式细胞术检测细胞内活性氧(ROS),RT-PCR法检测NADPH氧化酶的亚基p47^phox的mRNA表达,RT-PCR和细胞免疫化学法检测RAGE的表达量。结果:缬沙坦干预组人肾小球系膜细胞的ROS产生量、NADPH氧化酶的亚基p47^phox mRNA表达量、RAGE表达量均低于AGE-BSA组(P〈0.05),且缬沙坦的抑制作用呈浓度和时间依赖性。结论:缬沙坦可能通过降低氧化应激水平来抑制RAGE的表达。  相似文献   

16.
Ligation of the receptor for advanced glycation end products (RAGE) occurs during inflammation. Engagement of RAGE results in enhanced expression of addressins and it is therefore, not surprising that previous studies have shown a role of RAGE/ligand interactions in immune responses including cell/cell contact but the role of RAGE in spontaneous autoimmunity has not been clearly defined. To study the role of RAGE/ligand interactions in autoimmune diabetes, we tested the ability of soluble RAGE, a scavenger of RAGE ligands, in late stages of diabetes development in the NOD mouse-disease transferred with diabetogenic T cells and recurrent disease in NOD/scid recipients of syngeneic islet transplants. RAGE expression was detected on CD4(+), CD8(+), and B cells from diabetic mice and transferred to NOD/scid recipients. RAGE and its ligand, S100B, were found in the islets of NOD/scid mice that developed diabetes. Treatment of recipient NOD/scid mice with soluble RAGE prevented transfer of diabetes and delayed recurrent disease in syngeneic islet transplants. RAGE blockade was associated with increased expression of IL-10 and TGF-beta in the islets from protected mice. RAGE blockade reduced the transfer of disease with enriched T cells, but had no effect when diabetes was transferred with the activated CD4(+) T cell clone, BDC2.5. We conclude that RAGE/ligand interactions are involved in the differentiation of T cells to a mature pathogenic phenotype during the late stages of the development of diabetes.  相似文献   

17.
18.
Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.  相似文献   

19.
Receptor for advanced glycation end products (RAGE) is a cell-surface molecule member of the immunoglobulin superfamily and thought to play a critical role in diabetic atherosclerosis. A growing body of studies has been conducted to determine the extent to which the variants of RAGE gene influence the risk of coronary artery disease (CAD). However, these have reported conflicting results. To investigate this inconsistency, we performed a comprehensive meta-analysis on the associations between the RAGE ?374T/A, ?429T/C, and Gly82Ser polymorphisms and the risk of CAD. A total of 4,402 cases and 6,081 controls from 17 published case–control studies were included. The overall odds ratio (OR) of CAD was 0.99 (95 % CI 0.87–1.13), 1.06 (95 % CI 0.95–1.18) and 1.12 (95 % CI 0.90–1.39) for ?374A, ?429C, and the minor S allele of the Gly82Ser polymorphism, respectively. Similarly, no significant results were observed for these polymorphisms using dominant model. However, when stratified by diabetic/non-diabetic status of the CAD patients, we found significant association among Caucasian type two diabetic CAD patients with the ?374A allele [OR 1.39, 95 % CI 1.10–1.76, P(Z) = 0.006], while no association was detected between the ?374T/A polymorphism and non-diabetic CAD in Caucasians [OR 0.79, 95 % CI 0.58–1.07, P(Z) = 0.13]. In conclusion, this meta-analysis suggested that possession of the ?374A allele may be a risk factor in CAD among Caucasian patients with type two diabetes.  相似文献   

20.
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface proteins that has been implicated as a progression factor in a number of pathologic conditions from chronic inflammation to cancer to Alzheimer's disease. In such conditions, RAGE acts to facilitate pathogenic processes. Its secreted isoform, soluble RAGE or sRAGE, has the ability to prevent RAGE signaling by acting as a decoy. sRAGE has been used successfully in animal models of a range of diseases to antagonize RAGE-mediated pathologic processes. In humans, sRAGE results from alternative splicing of RAGE mRNA. This study was aimed to determine whether the same holds true for mouse sRAGE and, in addition, to biochemically characterize mouse sRAGE. The biochemical characteristics examined include glycosylation and disulfide patterns. In addition, sRAGE was found to bind heparin, which may mediate its distribution in the extracellular matrix and cell surfaces of tissues. Finally, our data indicated that sRAGE in the mouse is likely produced by carboxyl-terminal truncation, in contrast to the alternative splicing mechanism reported in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号