首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alginic acid gels were studied by small-angle X-ray scattering and rheology to elucidate the influence of alginate chemical composition and molecular weight on the gel elasticity and molecular structure. The alginic acid gels were prepared by homogeneous pH reduction throughout the sample. Three alginates with different chemical composition and sequence, and two to three different molecular weights of each sample were examined. Three alginate samples with fractions of guluronic acid residues of 0.39 (LoG), 0.50 (InG), and 0.68 (HiG), covering the range of commercially available alginates, were employed. The excess scattering intensity I of the alginic acid gels was about 1 order of magnitude larger and exhibited a stronger curvature toward low q compared to ionically cross-linked alginate. The I(q) were decomposed into two components by assuming that the alginic acid gel is composed of aggregated multiple junctions and single chains. Time-resolved experiments showed a large increase in the average size of aggregates and their weight fraction within the first 2 h after onset of gelling, which also coincides with the most pronounced rheological changes. At equilibrium, little or no effect of molecular weight was observed, whereas at comparable molecular weights, an increased scattering intensity with increasing content of guluronic acid residues was recorded, probably because of a larger apparent molecular mass of domains. The results suggest a quasi-ordered junction zone is formed in the initial stage, followed by subsequent assembling of such zones, forming domains in the order of 50 A. The average length of the initial junction zones, being governed by the relative fraction of stabilizing G-blocks and destabilizing alternating (MG) blocks, determines the density of the final random aggregates. Hence, high-G alginates give alginic acid gels of a higher aggregate density compared to domains composed of loosely packed shorter junction zones in InG or LoG system.  相似文献   

2.
The industrially important polysaccharide alginate is a linear copolymer of beta-D-mannuronic acid (M) and alpha-L-guluronic acid (G). It is produced commercially by extraction from brown seaweeds, although some of the bacteria belonging to the genera Azotobacter and Pseudomonas also synthesize alginates. Alginates are synthesized as mannuronan, and varying amounts of the M residues in the polymer are then epimerized to G residues by mannuronan C-5-epimerases. The gel-forming, water-binding, and immunogenic properties of the polymer are dependent on the relative amount and sequence distribution of M and G residues. A family of seven calcium-dependent, secreted epimerases (AlgE1-7) from Azotobacter vinelandii have now been characterized, and in this paper the properties of all these enzymes are described. AlgE4 introduces alternating M and G residues into its substrate, while the remaining six enzymes introduce a mixture of continuous stretches of G residues and alternating sequences. Two of the enzymes, AlgE1 and AlgE3, are composed of two catalytically active domains, each introducing different G residue sequence patterns in alginate. These results indicate that the enzymes can be used for production of alginates with specialized properties.  相似文献   

3.
The mannuronan C-5-epimerase AlgE2 is one of a family of Ca2+-dependent epimerases secreted by Azotobacter vinelandii. These enzymes catalyze the conversion of β- -mannuronic acid residues (M) to - -guluronic acid residues (G) in alginate. AlgE2 has been produced by fermentation with a recombinant strain of Escherichia coli, isolated and partially purified. Epimerization with AlgE2 increased the content of G-residues in different alginates from starting values of 0–45% up to approximately 70%. The new G-residues were mainly present in short blocks. Although G-residues may be introduced next to pre-existing G-residues, AlgE2 was not able to epimerize strictly alternating MG-structures. The epimerization with AlgE2 was greatly affected by the concentration of Ca2+. The type of alginate used as substrate affected the reaction rate and the reaction pattern especially at low Ca2+ concentration. AlgE2 appears to act by a preferred attack mechanism where the enzyme associates with different sequences in the alginate depending on the concentration of Ca2+. During epimerization, AlgE2 occasionally causes cleavage of the alginate chain. The observed frequency corresponds to 1–3 breaks per 1,000 M-units epimerized.  相似文献   

4.
《Phytochemistry》1986,25(2):443-448
Mannitol, sucrose and four monosaccharides were obtained from an ethanolic extract of Ascoseira mirabilis. Sequential extraction with aqueous calcium chloride, dilute acid and dilute alkali gave mixtures of laminaran, ‘fucan’ and alginic acid. Laminarans fractionated from the extracts contained different proportions of uniformly (1 → 3) and (1 → 6) linked chains of β-D-glucose residues. The ‘fucan’ contained varying proportions of fucose, galactose and glucuronic acid, small amounts of xylose, mannose, glucose, half ester sulphate and protein. Extraction of the weed under mild alkaline conditions gave a yield of 13.4% of low molecular weight calcium alginate with a mannuronate to guluronate ratio of 30:70 and only a small proportion of sequences of alternating residues. Selective extraction and fractionation gave alginate fractions rich (> 80%) in mannuronate or guluronate.  相似文献   

5.
There is an increased need for alginate materials with both enhanced and controllable mechanical properties in the fields of food, pharmaceutical and specialty applications. In the present work, well-characterized algal polymers and mannuronan were enzymatically modified using C-5 epimerases converting mannuronic acid residues to guluronic acid in the polymer chain. Composition and sequential structure of controls and epimerized alginates were analyzed by (1)H NMR spectroscopy. Mechanical properties of Ca-alginate gels were further examined giving Young's modulus, syneresis, rupture strength, and elasticity of the gels. Both mechanical strength and elasticity of hydrogels could be improved and manipulated by epimerization. In particular, alternating sequences were found to play an important role for the final mechanical properties of alginate gels, and interestingly, a pure polyalternating sample resulted in gels with extremely high syneresis and rupture strength. In conclusion, enzymatic modification was shown to be a valuable tool in modifying the mechanical properties of alginates in a highly specific manner.  相似文献   

6.
The availability of mannuronan and mannuronan C-5 epimerases allows the production of a strictly alternating mannuronate-guluronate (MG) polymer and the MG-enrichment of natural alginates, providing a powerful tool for the analysis of the role of such sequences in the calcium-alginate gel network. In view of the calcium binding properties of long alternating sequences revealed by circular dichroism studies which leads eventually to the formation of stable hydrogels, their direct involvement in the gel network is here suggested. In particular, 1H NMR results obtained from a mixed alginate sample containing three polymeric species, G blocks, M blocks, and MG blocks, without chemical linkages between the block structures, indicate for the first time the formation of mixed junctions between G and MG blocks. This is supported by the analysis of the Young's modulus of hydrogels from natural and epimerized samples obtained at low calcium concentrations. Furthermore, the "zipping" of long alternating sequences in secondary MG/MG junctions is suggested to account for the shrinking (syneresis) of alginate gels in view of its dependence on the length of the MG blocks. As a consequence, a partial network collapse, macroscopically revealed by a decrease in the Young's modulus, occurred as the calcium concentration in the gel was increased. The effect of such "secondary" junctions on the viscoelastic properties of alginate gels was evaluated measuring their creep compliance under uniaxial compression. The experimental curves, fitted by a model composed of a Maxwell and a Voigt element in series, revealed an increase in the frictional forces between network chains with increasing length of the alternating sequences. This suggests the presence of an ion mediated mechanism preventing the shear of the gel.  相似文献   

7.
The main scope of this paper is the characterization, in terms of viscoelastic and mechanical properties, of acid gels formed from solutions of mannuronan ALG (0%G/0%GG) and its enzymatically epimerised products. The epimerised products were obtained using recombinantly produced mannuronan C5 epimerases named AlgE1 and AlgE4, which catalyse the conversion of mannuronic residues into guluronic (G) and guluronic–mannuronic (GM) blocks, respectively. The products used in this study resulted from either the action of AlgE1 on mannuronan for 5 and 24 h (named ALG(44%G/32%GG) and ALG (68%G/59%GG), respectively) or AlgE4 on mannuronan (named ALG (47%G/0%GG)). d-gluconic acid-δ-lactone (GDL) was used as H+-donor to produce acidic gels. ALG (0%G/0%GG) yields strong, stable solid-like structures. As predicted by circular dichroism measurements performed at different pH, gelation of ALG (47%G/0%GG) occurs at lower values of pH (1) than those obtainable using GDL. Hydrochloric acid was therefore added to ALG (47%G/0%GG) solutions yielding rapid sol–gel transitions and gels with a remarkable resistance to thermal treatment.

The introduction of guluronic residues along the chain (ALG (44%G/32%GG)) causes a reduction in the storage modulus at the equilibrium with respect to that of ALG (0%G/0%GG) and the occurrence of negligible syneresis at the highest polymer concentrations. The increase in the average length of the G blocks (ALG (68%G/59%GG)) is accompanied by a further increase in the storage modulus without the occurrence of any significant syneresis.  相似文献   


8.
Diffusion characteristics of calcium alginate gels.   总被引:3,自引:0,他引:3  
The diffusivity of a protein solute (bovine serum albumin) within calcium alginate gels made from sodium alginate of different guluronic acid content was determined. It was found that protein diffusion within alginate gels, prepared to be isotropic in structure, was greatest for gels prepared from sodium alginate of low guluronic acid content as opposed to those prepared from sodium alginate of high guluronic acid content. This finding was explained in terms of the difference in flexibility of the polymer backbone of the two alginates. The greater the polymer backbone flexibility, the greater the solute diffusivity within the gel.  相似文献   

9.
Structural polysaccharides of the alginate family form gels in aqueous Ca2+-containing solutions by lateral association of chain segments. The effect of adding oligomers of alpha-l-guluronic acid (G blocks) to gelling solutions of alginate was investigated using rheology and atomic force microscopy (AFM). Ca-alginate gels were prepared by in situ release of Ca2+. The gel strength increased with increasing level of calcium saturation of the alginate and decreased with increasing amount of free G blocks. The presence of free G blocks also led to an increased gelation time. The gel point and fractal dimensionalities of the gels were determined based on the rheological characterization. Without added free G blocks the fractal dimension of the gels increased from df = 2.14 to df = 2.46 when increasing [Ca2+] from 10 to 20 mM. This increase was suggested to arise from an increased junction zone multiplicity induced by the increased concentration of calcium ions. In the presence of free G blocks (G block/alginate = 1/1) the fractal dimension increased from 2.14 to 2.29 at 10 mM Ca2+, whereas there was no significant change associated with addition of G blocks at 20 mM Ca2+. These observations indicate that free G blocks are involved in calcium-mediated bonds formed between guluronic acid sequences within the polymeric alginates. Thus, the added oligoguluronate competes with the alginate chains for the calcium ions. The gels and pregel situations close to the gel point were also studied using AFM. The AFM topographs indicated that in situations of low calcium saturation microgels a few hundred nanometers in diameter develop in solution. In situations of higher calcium saturation lateral association of a number of alginate chains are occurring, giving ordered fiber-like structures. These results show that G blocks can be used as modulators of gelation kinetics as well as local network structure formation and equilibrium properties in alginate gels.  相似文献   

10.
The study of alginate hydrogels is of increasing interest, given their potential applications as biomaterials for tissue engineering and for encapsulating drugs and living cells. In this study, we present a new strategy for tailoring alginates on the basis of homopolymeric mannuronan, where the chain stiffness and the content of G-residues could be varied independently. Partial periodate oxidation (0–8%) followed by borohydride reduction, introducing flexible linkages through C2–C3 cleavage and ring opening, was combined with in vitro epimerization, introducing either alternating (MG) sequences (in the case of enzyme AlgE4) or G-blocks (in the case of enzyme AlgE6). Both enzymes are recombinantly expressed from Azotobacter vinelandii. Two strategies were followed: (a) oxidation/reduction followed by epimerization (b) epimerization to 90% G followed by oxidation/reduction. The resulting alginates were characterised by NMR spectroscopy and size-exclusion chromatography (SEC) with multi angular laser light scattering (MALLS) and viscosity detectors. Gels were prepared using the ‘internal setting’ method with either 10 mM or 20 mM Ca2+ present, and studied by small-strain oscillatory measurements. It was found that periodate oxidation, in the range P0 = 0.02–0.06, had a pronounced influence on the gelling properties. The decrease in dynamic storage modulus (G′) could mainly be attributed to increased local flexibility and not only a decrease in G-block lengths as a consequence of oxidation. The new alginate gels are easily degradable in a mild acidic environment and the degradation is easier to control than gels made of unoxidized alginate.  相似文献   

11.
Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads   总被引:7,自引:0,他引:7  
Microcapsules of alginate cross-linked with divalent ions are the most common system for cell immobilization. In this study, we wanted to characterize the effect of different alginates and cross-linking ions on important microcapsule properties. The dimensional stability and gel strength increased for high-G alginate gels when exchanging the traditional Ca2+ ions with Ba2+. The use of Ba2+ decreased the size of alginate beads and reduced the permeability to immunoglobulin G. Strontium gave gels with characteristics lying between calcium and barium. Interestingly, high-M alginate showed an opposite behavior in combination with barium and strontium as these beads were larger than beads of calcium-alginate and tended to swell more, also resulting in increased permeability. Binding studies revealed that different block structures in the alginate bind the ions to a different extent. More specifically, Ca2+ was found to bind to G- and MG-blocks, Ba2+ to G- and M-blocks, and Sr2+ to G-blocks solely.  相似文献   

12.
Addition of specific types of alginates to drinks can enhance postmeal suppression of hunger, by forming strong gastric gels in the presence of calcium. However, some recent studies have not demonstrated an effect of alginate/calcium on appetite, perhaps because the selected alginates do not produce sufficiently strong gels or because the alginates were not sufficiently hydrated when consumed. Therefore, the objective of the study was to test effects on appetite of a strongly gelling and fully hydrated alginate in an acceptable, low-viscosity drink formulation. In a balanced order crossover design, 23 volunteers consumed a meal replacement drink containing protein and calcium and either 0 (control), 0.6, or 0.8% of a specific high-guluronate alginate. Appetite (six self-report scales) was measured for 5 h postconsumption. Relevant physicochemical properties of the drinks were measured, i.e., product viscosity and strength of gel formed under simulated gastric conditions. Hunger was robustly reduced (20-30% lower area under the curve) with 0.8% alginate (P < 0.001, analysis of covariance), an effect consistent across all appetite scales. Most effects were also significant with 0.6% alginate, and a clear dose-response observed. Gastric gel strength was 1.8 and 3.8 N for the 0.6 and 0.8% alginate drinks, respectively, while product viscosity was acceptable (<0.5 Pa.s at 10 s(-1)). We conclude that strongly gastric-gelling alginates at relatively low concentrations in a low-viscosity drink formulation produced a robust reduction in hunger responses. This and other related studies indicate that the specific alginate source and product matrix critically impacts upon apparent efficacy.  相似文献   

13.
Ionotropic gels of alginate, a polysaccharide, can be easily converted to aerogels of high surface area. The potential of alginate aerogels as adsorbents for trace polar contaminants in hydrocarbon feedstocks is evaluated, n-hexanol being used as a polar probe molecule. The influence of the nature of the gelling cation has been studied by testing Ca-, Ba-, Ni-, Co-, and Cu-alginate aerogels and a gel of alginic acid, formed by proton exchange of Na-alginate. Adsorption capacity can reach 15% hexanol (w/w) without any swelling of the gel. The amount adsorbed in the monolayer allows to evaluate the surface area of the adsorbent and confirms that the immersion in hydrocarbon does not modify the size and the dispersion of the polysaccharide fibrils. The comparison of the surface density of adsorbate with the structure of the surface indicates that hexanol is adsorbed on alginic acid by the formation of hydrogen bonds between the alcohol heads and two hydroxyls of the polymer surface. In the case of alginates gelled by divalent cations, stronger adsorption sites allows completion of a monolayer at lower concentrations of the polar molecule.  相似文献   

14.
Advanced magnetic resonance (MR) relaxation and diffusion correlation measurements and imaging provide a means to non-invasively monitor gelation for biotechnology applications. In this study, MR is used to characterize physical gelation of three alginates with distinct chemical structures; an algal alginate, which is not O-acetylated but contains poly guluronate (G) blocks, bacterial alginate from Pseudomonas aeruginosa, which does not have poly-G blocks, but is O-acetylated at the C2 and/or C3 of the mannuronate residues, and alginate from a P. aeruginosa mutant that lacks O-acetyl groups. The MR data indicate that diffusion-reaction front gelation with Ca(2+) ions generates gels of different bulk homogeneities dependent on the alginate structure. Shorter spin-spin T(2) magnetic relaxation times in the alginate gels that lack O-acetyl groups indicate stronger molecular interaction between the water and biopolymer. The data characterize gel differences over a hierarchy of scales from molecular to system size.  相似文献   

15.
Lysis of alginates and of their saturated and unsaturated fragments was monitored by 1H NMR spectroscopy. AlxM(B) alginate lyase performs beta-elimination on the mannuronic acid (M) residues. It does not cleave the guluronic acid (G) sequences, nor the M-G or the G-M diads. In consequence, it is a true mannuronate lyase. The end product of the reaction is O-(4-deoxy-alpha-L-ery-thro-hex-4-enopyranosyl-uronic acid)-(1->(4)-O-(beta-D-mannopyranosyluronic acid)-(1->4)-O-beta-D-mannpyranuronic acid. Viscosity measurements made during degradation of a polymannuronate alginate showed that AlxM(B) behaves as an endo-enzyme. HPLC analysis of the degradation products of oligomannuronates and oligoalginates suggested that the beta-elimination requires the interaction of the enzyme with at least three sequential mannuronic acid residues. The catalytic site may possess 5 sub-sites and accommodate pentamers with different M/G ratio. Kinetic measurements showed that the specificity constant Vm/Km increased with the number of mannuronic acid residues. AlxM(B) may be reversibly inhibited by heteropolymeric blocks in a competitive manner.  相似文献   

16.
The moduli of elasticity of calcium and lead alginate gels increase with time after preparation, and the temperature dependence of the rate of syneresis suggests an activation energy of 8?12 x 104 J.mol?1 for the formation of new junctions. At zero time, a negative temperature-dependence was found for the elastic force measured at a low degree of deformation (4%). Deformation of the gels was associated with an increase in entropy and internal energy. When the calcium ions in a preformed calcium alginate gel were exchanged for lead ions, which have a higher affinity for alginate, the modulus increased due to an enhanced increase in internal energy with deformation. Reversal of the sequence of introducing the two types of ions gave the opposite effect. The data suggest that the junctions are “weak points” in the gels, and that even small deformations can cause partial rupture.  相似文献   

17.
The enzymes mannuronan C-5 epimerases catalyze conversion of beta-D-mannuronic acid to alpha-L-guluronic acid in alginates at the polymer level and thereby introduce sequences that have functional properties relevant to gelation. The enzymatic conversion by recombinant mannuronan C-5 epimerases AlgE4 and AlgE2 on alginate type substrates with different degree of polymerization and initial low fraction of alpha-L-guluronic acid was investigated. Essentially no enzymatic activity was found for fractionated mannuronan oligomer substrates with an average degree of polymerization, DP(n), less than or equal 6, whereas increasing the DP(n) yielded increased epimerization activity. This indicates that these enzymes have an active site consisting of binding domains for consecutive residues that requires interaction with 7 or more consecutive residues to show enzymatic activity. The experimentally determined kinetics of the reaction, and the residue sequence arrangement introduced by the epimerization, were modeled using Monte Carlo simulation accounting for the various competing intrachain substrates and assuming either a processive mode of action or preferred attack. The comparison between experimental data and simulation results suggests that epimerization by AlgE4 is best described by a processive mode of action, whereas the mode of action of AlgE2 appears to be more difficult to determine.  相似文献   

18.
Studies on diffusion of NAD and hemoglobin from calcium and barium gels are reported where alginate grade, concentration, and gel dimensions were varied. These show that NAD diffusion characteristics are unaffected by alginate and ion concentrations; however, hemoglobin diffusion is affected by alginate concentration. Both hemoglobin and NAD diffusion patterns were shown to be affected by alginate gel dimensions. Studies are reported that show that polymannuronic alginate gels posses good porosity characteristics while polyguluronic alginates from gels with lower porosity, specifically with respect to high-molecular-weight compounds. These findings are discussed with the view to the use of alginate gels for immobilization, solids separation, and diffusion chromatography techniques.  相似文献   

19.
Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.  相似文献   

20.
The Azotobacter vinelandii genome encodes a family of seven secreted Ca(2+)-dependent epimerases (AlgE1--7) catalyzing the polymer level epimerization of beta-D-mannuronic acid (M) to alpha-L-guluronic acid (G) in the commercially important polysaccharide alginate. AlgE1--7 are composed of two types of protein modules, A and R, and the A-modules have previously been found to be sufficient for epimerization. AlgE7 is both an epimerase and an alginase, and here we show that the lyase activity is Ca(2+)-dependent and also responds similarly to the epimerases in the presence of other divalent cations. The AlgE7 lyase degraded M-rich alginates and a relatively G-rich alginate from the brown algae Macrocystis pyrifera most effectively, producing oligomers of 4 (mannuronan) to 7 units. The sequences cleaved were mainly G/MM and/or G/GM. Since G-moieties dominated at the reducing ends even when mannuronan was used as substrate, the AlgE7 epimerase probably stimulates the lyase pathway, indicating a complex interplay between the two activities. A truncated form of AlgE1 (AlgE1-1) was converted to a combined epimerase and lyase by replacing the 5'-798 base pairs in the algE1-1 gene with the corresponding A-module-encoding DNA sequence from algE7. Furthermore, substitution of an aspartic acid residue at position 152 with glycine in AlgE7A eliminated almost all of both the lyase and epimerase activities. Epimerization and lyase activity are believed to be mechanistically related, and the results reported here strongly support this hypothesis by suggesting that the same enzymatic site can catalyze both reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号