首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1983,96(6):1743-1750
The results presented here show that disruption of the microtubule network acts synergistically with cAMP-elevating agents to stimulate the entry into DNA synthesis of 3T3 cells. Antimicrotubule agents and increased cAMP levels require an additional growth-promoting factor for inducing initiation of DNA synthesis; such requirement can be furnished by insulin, vasopressin, epidermal growth factor, platelet-derived growth factor, or fibroblast-derived growth factor. The involvement of the microtubules is indicated by the fact that enhancement of the DNA synthetic response was demonstrated with the chemically diverse agents colchicine, nocodazole, vinblastine, or demecolcine, all of which elicited the response in a dose-dependent manner. We verified that colchicine and nocodazole, at the doses used in this study, induced microtubule disassembly in the absence as well as in the presence of cAMP-elevating agents as judged by measurement of [3H]colchicine binding of total and pelletable tubulin. The involvement of cAMP was revealed by increasing its endogenous production by cholera toxin or by treatment with 8BrcAMP. The enhancing effects of antimicrotubule drugs and cAMP-elevating agents could be demonstrated by incorporation of [3H]thymidine into acid-insoluble material, autoradiography of labeled nuclei, or flow cytofluorometric analysis. The addition of antimicrotubule drugs does not increase the intracellular level of cAMP nor does addition of cAMP-elevating agents promote disassembly of microtubules (as judged by measuring [3H]colchicine binding of total and pelletable tubulin) in 3T3 cells. In view of these findings and the striking synergistic effects between these agents in stimulating DNA synthesis in the presence of a peptide growth factor, we conclude that increased cAMP levels and a disrupted microtubule network regulate independent pathways involved in proliferative response.  相似文献   

2.
Cytoplasmic calcium levels are believed to be important in blood platelet activation. Upon activation, the discrete marginal microtubule band, which maintains the discoid shape of non-activated platelets, becomes disrupted. Present studies demonstrate that the extent of assembly of the marginal microtubule band is related to cytoplasmic calcium levels. The divalent cationophore, A23187, causes platelet aggregation, secretion, and contraction by promoting calcium transport from intraplatelet storage sites into the cytoplasm. A23187 caused disassembly of platelet microtubules. Quantitation of electron micrographs revealed that numbers of microtubules were reduced by approximately 80% after A23187 treatment. Secondly, assembled microtubules in homogenates of platelets, in which microtubules were stabilized prior to homogenization, were decreased in favor of free tubulin in A23187-treated platelets. Thirdly, A23187 increased 14C-colchicine binding by intact platelets; this also indicated a shift in the microtubule subunit equilibrium to favor free, colchicine-binding tubulin subunits. In control experiments, A23187 did not affect the stability of platelet tubulin, the colchicine binding reaction, or the total tubulin content of platelets. Stimulation of colchicine binding depended on A23187 concentration (0.05-0.5 microM) and did not require extracellular calcium. A23187-stimulation of colchicine binding was blocked by dibutyryl cyclic AMP (0.80 mM) and/or 3-isobutyl-1-methylxanthine (50 microM) and by indomethacin (10 microM). Cyclic AMP or indomethacin also interferes with A23187-induced platelet activation, but indomethacin is not likely to completely inhibit the perturbation of intraplatelet calcium gradients by A23187. It is suggested that A23187-induced microtubule disassembly may be an indirect effect of calcium on microtubules.  相似文献   

3.
K L Crossin  D H Carney 《Cell》1981,23(1):61-71
Microtubule disrupting drugs initiated DNA synthesis in serum-free cultures of nonproliferating fibroblast-like cells. The addition of colchicine to chick, mouse and human fibroblasts in serum-free medium stimulated thymidine incorporation at least twofold, with a half-maximal concentration of 1 X 10(-7) M. This stimulation represented up to 75% of the maximal stimulation by thrombin and was paralleled by an increase in the percentage of labeled nuclei. Other microtubule disrupting drugs showed similar stimulation, whereas lumicolchicine had no effect. Indirect immunofluorescent staining of tubulin showed a correlation between microtubule depolymerization and initiation of DNA synthesis by these drugs. A 2 hr treatment with 10(-6) M colchicine caused complete disruption of the microtubular network and stimulated thymidine incorporation (measured 28 hr later) to an even greater extent than continuous colchicine exposure. A similar 2 hr exposure to 10(-6) M colcemid also stimulated thymidine incorporation and led to a 50% increase in cell number. Taxol, a drug which stabilizes cytoplasmic microtubules, blocks initiation of DNA synthesis by colchicine, indicating that microtubule depolymerization is necessary for this initiation. To determine if microtubule depolymerization is involved in stimulation of DNA synthesis by other growth factors, highly purified human thrombin was added to cells with or without colchicine. In no case did colchicine plus thrombin increase DNA synthesis above that of the maximal stimulation by thrombin alone. Furthermore, pretreatment of cultures with taxol (5 micrograms/ml) inhibited approximately 30% of the stimulation of thymidine incorporation by thrombin. Together, these studies demonstrate that microtubule depolymerization is sufficient to initiate both DNA synthesis and events leading to cell division and suggest that microtubule depolymerization may be a required step in initiation of cell proliferation by growth factors such as highly purified human thrombin.  相似文献   

4.
Structure-activity relationship studies have established that the A and C rings of colchicine comprise the minimum structural feature necessary for high affinity drug-tubulin binding. Thus, colchicine acts as a bifunctional ligand by making two points of attachment to the protein. Furthermore, analogues belonging to the iso series of colchicine are virtually inactive in binding to tubulin and inhibiting microtubule assembly. In the present study, we found that the substitution of a hydrophobic dansyl group on the B-ring side chain (C7 position) of isocolchicine reverses the structural alterations at the C ring and the newly synthesized -NH-dansyl isocolchicine restores the lost biological activity of the compound. It inhibits microtubule assembly efficiently with an IC(50) value of 10 microM and competes with [(3)H]colchicine for binding to tubulin. Moreover, although -NH-dansyl colchicine binding to tubulin involves two steps, the -NH-dansyl isocolchicine-tubulin interaction has been found to occur via a one-step process. Also, the affinity constant of the -NH-dansyl isocolchicine-tubulin interaction is roughly only 3 times lower than that of the -NH-dansyl colchicine-tubulin interaction. These results suggest that the enhanced microtubule inhibitory ability of -NH-dansyl isocolchicine is therefore related to the affinity of the drug-tubulin interaction and not to any conformational changes upon binding tubulin. We also observed that the competition of -NH-dansyl isocolchicine with [(3)H]colchicine for binding to tubulin was dependent on the tubulin concentration. In conclusion, this paper for the first time indicates that a biologically active bifuntional colchicine analogue can be designed where the drug binds tubulin through its A and B rings, while the C ring remains inactive.  相似文献   

5.
Nordihydroguaiaretic acid (NDGA) protected microtubules in NRK cells from depolymerization caused by structurally and functionally diverse drugs such as nocodazole, colchicine, vinblastine, and ilimaquinone. Hitherto reported drugs, although structurally unrelated to paclitaxel, stabilize microtubules in a way similar to that of paclitaxel and compete for paclitaxel binding to tubulin. However, NDGA had activity toward microtubules different from the effects of paclitaxel. In NRK cells, paclitaxel caused microtubule bundle formation in the presence and absence of microtubule-depolymerizing drugs. However, microtubule bundle did not form, and microtubules radiated from the microtubule-organizing center, in cells treated with NDGA. Acceleration of tubulin polymerization in vitro by paclitaxel was strong but that by NDGA was weak. Microtubules polymerized in vitro in the presence of paclitaxel, but not those polymerized in the presence of NDGA, resisted the effects of cold. NDGA seemed to bind to tubulin, but did not compete for [3H]paclitaxel binding to tubulin. These observations indicate that NDGA belongs to a novel family of microtubule-stabilizing drugs.  相似文献   

6.
Herein we report the effects of microtubule- and actin-like filament disrupting drugs, as well as the microtubule stabilizer taxol, on PCH-induced pigment granule aggregation within erythrophores of the freshwater crustacean Macrobrachium potiuna. Dose-response curves (DRCs) to the pigment-concentrating hormone PCH were determined under control and experimental conditions to evaluate the effects elicited by the cytoskeleton-affecting drugs. Colchicine, at temperatures 22°C and 4°C, and vinblastine significantly inhibited the aggregating response to PCH and affected the dynamics of the process, as shown by the change in the slope of the regression curve calculated from the DRCs. Lumicolchicine, a colchicine analogue with no affinity for tubulin, also inhibited pigment migration, though no change in the slope of the regression curve was observed. The inhibitory effects of lumicolchicine demonstrate that changes in sites other than cytoskeleton, such as membrane permeability, may also cause a decrease in the PCH-induced aggregating responses and that the colchicine effects may result from its action on cellular sites additional to the cytoskeleton. Taxol, a microtubule stabilizer, did not affect the DRC to PCH, and DMSO improved the PCH-evoked responses, pointing out to the maintenance of tubulin in the polymerized state as the appropriate condition for aggregation. Cytochalasin B, an actin-like filament disrupter, diminished the aggregating responses to the hormone, with no change in the slope of the regression curve, indicating that these elements take part in the process and that cytosolic calcium rise, sol/gel transformations and endoplasmic reticulum motility may well play an important role in granule migration. It is suggested that microtubules are steadily polymerized as a requirement for pigment aggregation and that the process is biphasic, the initial phase being dependent on the microtubule integrity.  相似文献   

7.
Reactive oxygen metabolites (ROM) are increased in the inflamed mucosa of inflammatory bowel disease (IBD) and may contribute to loss of intestinal barrier function in this disorder. Growth factors (GF) are protective. But the mechanisms of disruption and protection remain elusive. In the present investigation, we hypothesized that the microtubules (a critical cytoskeletal element) play a key role in the molecular mechanism of intestinal barrier dysfunction induced by ROM and in GF-mediated protection. Utilizing monolayers of a human colonic cell line (Caco-2), we evaluated the effects of ROM (H(2)O(2) or HOCl), in the presence or absence of GF (epidermal growth factor [EGF]; transforming growth factor-alpha [TGF-alpha]), on intestinal barrier function, tubulin (microtubule structural protein), and microtubule stability. Monolayers were also processed for two highly sensitive western immunoblots: fractionated polymerized tubulin (S2; an index of stability); monomeric tubulin (S1; an index of disruption) to detect the oxidation and disassembly/assembly of tubulin. ROM exposure led to a significant increase in the oxidation of tubulin, decrease in the stable S2 polymerized tubulin, and increase in the unstable S1 monomeric tubulin. In concert, each ROM in a dose dependent manner damaged the microtubule cytoskeleton and disrupted barrier function. GF pretreatment not only increased the S2 stable tubulin and decreased tubulin oxidation but also, concomitantly, prevented the disruption of microtubules and loss of barrier function in monolayers exposed to ROM. Antibody against the GF-receptor and inhibitors of GF-receptor tyrosine kinase abolished GF protection, indicating the involvement of epidermal growth factor receptor (EGFR) signaling pathway. As predicted, colchicine, an inhibitor of microtubule assembly, caused barrier dysfunction and prevented GF protection whereas taxol, a microtubule-stabilizing agent, mimicked the protective effects of GF. Thus, organization and stability of the microtubule cytoskeleton appears to be critical to both oxidant-induced mucosal barrier dysfunction and protection of intestinal barrier mediated by GF. Therefore, microtubules may be useful targets for development of drugs for the treatment of IBD.  相似文献   

8.
Assembly of brain microtubule proteins isolated from the Atlantic cod, Gadus morhua, was found to be much less sensitive to colchicine than assembly of bovine brain microtubules, which was completely inhibited by low colchicine concentrations (10 microM). The degree of disassembly by colchicine was also less for cod microtubules. The lack of colchicine effect was not caused by a lower affinity of colchicine to cod tubulin, as colchicine bound to cod tubulin with a dissociation constant, Kd, and a binding ratio close to that of bovine tubulin. Cod brain tubulin was highly acetylated and mainly detyrosinated, as opposed to bovine tubulin. When cod tubulin, purified by means of phosphocellulose chromatography, was assembled by addition of DMSO in the absence of microtubule-associated proteins (MAPs), the microtubules became sensitive to low concentrations of colchicine. They were, however, slightly more stable to disassembly, indicating that posttranslational modifications induce a somewhat increased stability to colchicine. The stability was mainly MAPs dependent, as it increased markedly in the presence of MAPs. The stability was not caused by an extremely large amount of cod MAPs, since there were slightly less MAPs in cod than in bovine microtubules. When "hybrid" microtubules were assembled from cod tubulin and bovine MAPs, these microtubules became less sensitive to colchicine. This was not a general effect of MAPs, since bovine MAPs did not induce a colchicine stability of microtubules assembled from bovine tubulin. We can therefore conclude that MAPs can induce colchicine stability of colchicine labile acetylated tubulin.  相似文献   

9.
Mechanical properties of brain tubulin and microtubules   总被引:7,自引:0,他引:7       下载免费PDF全文
We measured the elasticity and viscosity of brain tubulin solutions under various conditions with a cone and plate rheometer using both oscillatory and steady shearing modes. Microtubules composed of purified tubulin, purified tubulin with taxol and 3x cycled microtubule protein from pig, cow, and chicken behaved as mechanically indistinguishable viscoelastic materials. Microtubules composed of pure tubulin and heat stable microtubule-associated proteins were also similar but did not recover their mechanical properties after shearing like other samples, even after 60 min. All of the other microtubule samples were more rigid after flow orientation, suggesting that the mechanical properties of anisotropic arrays of microtubules may be substantially greater than those of randomly arranged microtubules. These experiments confirm that MAPs do not cross link microtubules. Surprisingly, under conditions where microtubule assembly is strongly inhibited (either 5 degrees or at 37 degrees C with colchicine or Ca++) tubulin was mechanically indistinguishable from microtubules at 10-20 microM concentration. By electron microscopy and ultracentrifugation these samples were devoid of microtubules or other obvious structures. However, these mechanical data are strong evidence that tubulin will spontaneously assemble into alternate structures (aggregates) in nonpolymerizing conditions. Because unpolymerized tubulin is found in significant quantities in the cytoplasm, it may contribute significantly to the viscoelastic properties of cytoplasm, especially at low deformation rates.  相似文献   

10.
Tertiary amine local anesthetics previously have been shown to influence some microtubule-dependent cellular functions. Since several cell secretion processes, including secretion of collagen, have been shown to be inhibited by microtubule-disrupting drugs such as colchicine, we determined whether local anesthetics affect collagen secretion. Six local anesthetics inhibited collagen and non-collagen protein secretion (up to 98%) into the extracellular medium of 3T3 cells and human fibroblasts, an effect apparently independent of influences on proline transport and total protein synthesis. A combination of colchicine and cytochalasin B did not duplicate the effects of local anesthetics. The effects of subsaturating concentrations of colchicine and procaine on secretion were additive, suggesting that both drugs act on the secretory pathway at the level of microtubules, but other effects of the two types of drugs were strikingly different. In comparing the mechanisms of action of colchicine and local anesthetics, it was seen that, in contrast to colchicine, radioactive procaine and lidocaine were slowly transported into 3T3 cells, did not bind to the tubulin-containing TCA-insoluble fraction, and did not bind to purified tubulin in vitro. The fraction of cellular tubulin present as microtubules (47% in normal cells) was determined by measuring tubulin in stabilized, sedimentable microtubules compared to total tubulin, using a [3H]colchicine binding assay. Pretreatment of cells in the cold or with colchicine led to depolymerization of microtubules, but pretreatment with five local anesthetics tested did not. Therefore, in contrast to colchicine, local anesthetics in concentrations that inhibit secretion do not directly interact with or depolymerize microtubules. These drugs, however, do affect a microtubule-dependent process and may do so by detaching the microtubular system from the cell membrane.  相似文献   

11.
Enhancement of tubulin assembly as monitored by a rapid filtration assay   总被引:1,自引:0,他引:1  
The early kinetics of microtubule formation from lamb brain tubulin isolated by affinity chromatography can be followed by a newly developed filter assay. The rapid collection of microtubules on glass fiber filters permits the calculation of the moles of tubulin polymerized. The filter assay gives both a rate and extent of polymerization that are identical to those obtained by turbidity or sedimentation analysis, respectively. The microtubules trapped by the filter are readily depolymerized by cold (t12= 3 min) and slowly by colchicine (t1/2= 32min). Tubulin purified by affinity chromatography requires a high protein concentration (>4 mg/ml) for polymerization. Although 5m glycerol allows polymerization to occur at tubulin concentrations below 2 mg/ml, the maximum amount of microtubule formation is observed at low tubulin concentration when microtubule-associated proteins are present. These proteins are not retained by the affinity resin; however, they can be eluted from diethylaminoethyl-Sephadex by solutions containing 0.3m KCl. Microtubule-associated proteins enhance both the rate of polymerization and the total amount of tubulin polymerized as assessed by the filter assay, suggesting that they are involved in both initiation and elongation of microtubules.  相似文献   

12.
Microtubule protein preparations purified by cycles of assembly-disassembly contain the enzyme tubulinyltyrosine carboxypeptidase (TTCPase). Using these preparations, containing tubulinyl[14C]tyrosine, we studied the release of [14C]tyrosine from assembled and non-assembled tubulin under steady-state conditions. It was found that both states of aggregation were detyrosinated at similar rates by the action of the endogenous TTCPase. However, practically no release of [14C]tyrosine from the non-assembled tubulin pool was found when microtubules were previously eliminated from the incubation mixture. These results indicated that non-assembled tubulin requires to interact with microtubules to be detyrosinated. This interaction seems to occur through the incorporation of dimers into microtubules, since when the capability of tubulin to incorporate into microtubules was diminished by binding of colchicine a concomitant decrease in the rate of release of tyrosine was observed. When detyrosination was accelerated by increasing the concentration of TTCPase relative to the microtubule protein concentration, microtubules were found to be detyrosinated faster than was non-assembled tubulin. Using exogenous TTCPase in an incubation system in which the formation of microtubules was not allowed, tubulinyl[14C]tyrosine and tubulinyl[14C]tyrosine-colchicine complex were shown to have similar capabilities to act as substrates for this enzyme. Free colchicine was shown not to affect the activity of TTCPase.  相似文献   

13.
Previous work demonstrated that tubulin binding drugs specifically inhibit the capacity of prolactin to initiate casein and DNA synthesis in the mammary cell. It was concluded that microtubules or other tubulin containing cellular structures were involved in the transmission of the prolactin message to genes. In the present work, it is shown that griseofulvin, an antimitotic drug which alters microtubule structure and function, does not prevent prolactin actions. Autoradiographic studies showed that [3H]colchicine binds preferentially to plasma and Golgi membranes in the mammary cell. Short term cultures of mammary explants with [3H]colchicine demonstrated that the labelled drug binds to membranous cellular structures which were isolated from explants at the end of the culture. Fractions containing plasma and Golgi membranes contained the highest amount of radioactivity. Solubilisation of the membranes by Triton X-100 dissociated the [3H]colchicine from the prolactin receptors as judged by a chromatography of the soluble fraction on a Sepharose 6 B column. On the column, the labelled colchicine remains associated with a molecular entity which may be free tubulin. In all cases, the binding of [3H]colchicine was greatly attenuated by an excess of unlabelled colchicine but was only slightly affected by the competition with lumicolchicine. These results suggest that mammary membranes contain tubulin and that binding of drugs to this molecule inhibits the generation of the prolactin second messengers eliciting the hormonal actions in the mammary cell. This also suggests that microtubules are probably not involved in the mechanism of prolactin action.  相似文献   

14.
Pyridostigmine bromide (PB), an inhibitor of acetylcholinesterase, has been used as a prophylactic for nerve gas poisoning. N,N-diethyl-m-toluamide (DEET) is the active ingredient in most insect repellents and is thought to interact synergistically with PB. Since PB can inhibit the binding of organophosphates to tubulin and since organophosphates inhibit microtubule assembly, we decided to examine the effects of PB and DEET on microtubule assembly as well as their interactions with tubulin, the subunit protein of microtubules. We found that PB binds to tubulin with an apparent K d of about 60 M. PB also inhibits microtubule assembly in vitro, although at higher concentrations PB induces formation of tubulin aggregates of high absorbance. Like PB, DEET is a weak inhibitor of microtubule assembly and also induces formation of tubulin aggregates. Many tubulin ligands stabilize the conformation of tubulin as measured by exposure of sulfhydryl groups and hydrophobic areas and stabilization of colchicine binding. PB appears to have very little effect on tubulin conformation, and DEET appears to have no effect. Neither compound interferes with colchicine binding to tubulin. Our results raise the possibility that PB and DEET may exert some of their effects in vivo by interfering with microtubule assembly or function, although high intracellular levels of these compounds would be required.  相似文献   

15.
Isocolchicine is a structurally related isomer of colchicine altered in the methoxytropone C ring. In spite of virtual structural homology of colchicine and isocolchicine, isocolchicine is commonly believed to be inactive in binding to tubulin and inhibiting microtubule assembly. We have found that isocolchicine does indeed bind to the colchicine site on tubulin, as demonstrated by its ability to competitively inhibit [3H]colchicine binding to tubulin with a KI approximately 400 microM. Isocolchicine inhibits tubulin assembly into microtubules with an I50 of about 1 mM, but the affinity of isocolchicine for the colchicine receptor site, 5.5 +/- 0.9 x 10(3) M-1 at 23 degrees C, is much less (approximately 500-fold) than that of colchicine. Unlike colchicine, isocolchicine binds rapidly, and the absorption and fluorescence properties of the complex are only modestly altered compared to free ligand. It is proposed that the binding of isocolchicine to tubulin may be rationalized either in terms of conformational states of colchicinoids when liganded to tubulin or by the structural requirements for C-10 substituents for high affinity binding to the colchicine receptor.  相似文献   

16.
In the testis, microtubule-disrupting agents cause breakdown of the Sertoli cell cytoskeleton and sloughing of germ cells with associated Sertoli cell fragments, although the mechanism underlying this event is not understood. In this study, we investigated the effects of carbendazim and colchicine on microtubule polymerization status and posttranslational modifications of tubulin in freshly isolated rat seminiferous tubules. Soluble and polymerized tubulin pools were separated and tubulin was quantified using a competitive ELISA. Carbendazim and colchicine caused extensive microtubule depolymerization, shifting the ratio of soluble to polymerized tubulin from 40%:60% to 78%:22%, and to 84%:16%, respectively. Total tubulin levels remained relatively constant after carbendazim treatment but decreased twofold after colchicine treatment. To determine if modifications to tubulin may be associated with polymerization status, tubulin pools were analyzed by immunoblotting. Acetylated alpha-tubulin and betaIII-tubulin distribution in tubulin pools was not affected by treatment. Tyrosinated alpha-tubulin (52 kDa) was localized in both tubulin pools and had decreased tyrosination in the microtubule pool after carbendazim treatment. A 47-kDa protein immunoreactive with both tyrosinated alpha-tubulin and general alpha-tubulin antibodies was found only in the microtubule pool. The 47-kDa protein (potentially an alpha-tubulin isoform) lost tyrosination, yet was still present in the microtubule pool based on detection with the general alpha-tubulin antibody, after carbendazim treatment. Similar effects were seen with colchicine, although loss of total tubulin protein was measured. Thus, decreased tyrosination of the microtubule pool of tubulin appears to be associated with depolymerization of microtubules.  相似文献   

17.
Taccalonolide A is a microtubule stabilizer that has cellular effects almost identical to paclitaxel. However, biochemical studies show that, unlike paclitaxel, taccalonolide A does not enhance purified tubulin polymerization or bind tubulin/microtubules. Mechanistic studies aimed at understanding the nature of the differences between taccalonolide A and paclitaxel were conducted. Our results show that taccalonolide A causes bundling of interphase microtubules at concentrations that cause antiproliferative effects. In contrast, the concentration of paclitaxel that initiates microtubule bundling is 31-fold higher than its IC50. Taccalonolide A''s effects are further differentiated from paclitaxel in that it is unable to enhance the polymerization of tubulin in cellular extracts. This finding extends previous biochemical results with purified brain tubulin to demonstrate that taccalonolide A requires more than tubulin and a full complement of cytosolic proteins to cause microtubule stabilization. Reversibility studies were conducted and show that the cellular effects of taccalonolide A persist after drug washout. In contrast, other microtubule stabilizers, including paclitaxel and laulimalide, demonstrate a much higher degree of cellular reversibility in both short-term proliferation and long-term clonogenic assays. The propensity of taccalonolide A to alter interphase microtubules at antiproliferative concentrations as well as its high degree of cellular persistence may explain why taccalonolide A is more potent in vivo than would be expected from cellular studies. The close linkage between the microtubule bundling and antiproliferative effects of taccalonolide A is of interest given the recent hypothesis that the effects of microtubule targeting agents on interphase microtubules might play a prominent role in their clinical anticancer efficacy.Key words: taccalonolide, paclitaxel, microtubule stabilizer, microtubule targeted agent, tubulin, microtubule, laulimalide, antimitotic agent, drug persistence  相似文献   

18.
Using the gel shift assay system, we have measured the apparent affinity constant for the interaction of two different DNAs with MAP proteins found in both total calf brain microtubules and heat stable brain preparations. Both DNAs studied contained centromere/kinetochore sequences- one was enriched in the calf satellite DNA; the other was a large restriction fragment containing the yeast CEN11 DNA sequence. Complexes formed using both DNAs had similar Kapp values in the range of 2.1 x 10(7) M-1 to 2.0 x 10(8) M-1. CEN11 DNA-MTP complexes had by far the highest Kapp value of 2.0 x 10(8) M-1. The CEN11 DNA sequence is where the yeast kinetochore of chromosome 11 is formed and where the single yeast microtubule is bound in vivo. The CEN11 conserved region II known binding sites-(dA/dT)n runs- for mammalian MAP2 protein, are in good agreement with this higher Kapp value. The effects of the classical tubulin binding drugs colchicine, podophyllotoxin and vinblastine on the DNA-MAP protein complex stability were investigated by determining the drug concentrations where the complexes were destabilized. Only the complexes formed from total microtubule protein (tubulin containing) were destabilized over a wide drug concentration range. Heat stable brain protein complexes (no tubulin) were largely unaffected. Furthermore, it took 10-100 fold higher drug concentrations to disrupt the CEN11 DNA complexes compared to the calf thymus satellite DNA enriched complexes. These data support our previous results suggesting that there is a DNA sequence dependent interaction with MAP proteins that appears to be conserved in evolution (Marx et. al., Biochim. Biophys. Acta. 783, 383-392, 1984; Marx and Denial, Molecular Basis of Cancer 172B, 65-75 1985). In addition, these results imply that the classical tubulin binding drugs may exert their biological effects in cells at least in part by disrupting DNA-Protein complexes of the type we have studied here.  相似文献   

19.
Tubulin undergoes posttranslational modifications proposed to specify microtubule subpopulations for particular functions. Most of these modifications occur on the C-termini of tubulin and may directly affect the binding of microtubule-associated proteins (MAPs) or motors. Acetylation of Lys-40 on α-tubulin is unique in that it is located on the luminal surface of microtubules, away from the interaction sites of most MAPs and motors. We investigate whether acetylation alters the architecture of microtubules or the conformation of tubulin, using cryo–electron microscopy (cryo-EM). No significant changes are observed based on protofilament distributions or microtubule helical lattice parameters. Furthermore, no clear differences in tubulin structure are detected between cryo-EM reconstructions of maximally deacetylated or acetylated microtubules. Our results indicate that the effect of acetylation must be highly localized and affect interaction with proteins that bind directly to the lumen of the microtubule. We also investigate the interaction of the tubulin acetyltransferase, αTAT1, with microtubules and find that αTAT1 is able to interact with the outside of the microtubule, at least partly through the tubulin C-termini. Binding to the outside surface of the microtubule could facilitate access of αTAT1 to its luminal site of action if microtubules undergo lateral opening between protofilaments.  相似文献   

20.
Taccalonolide A is a microtubule stabilizer that has cellular effects almost identical to paclitaxel. However, biochemical studies show that, unlike paclitaxel, taccalonolide A does not enhance purified tubulin polymerization or bind tubulin/microtubules. Mechanistic studies aimed at understanding the nature of the differences between taccalonolide A and paclitaxel were conducted. Our results show that taccalonolide A causes bundling of interphase microtubules at concentrations that cause antiproliferative effects. In contrast, the concentration of paclitaxel that initiates microtubule bundling is 31-fold higher than its IC50. Taccalonolide A’s effects are further differentiated from paclitaxel in that it is unable to enhance the polymerization of tubulin in cellular extracts. This finding extends previous biochemical results with purified brain tubulin to demonstrate that taccalonolide A requires more than tubulin and a full complement of cytosolic proteins to cause microtubule stabilization. Reversibility studies were conducted and show that the cellular effects of taccalonolide A persist after drug washout. In contrast, other microtubule stabilizers, including paclitaxel and laulimalide, demonstrate a much higher degree of cellular reversibility in both short-term proliferation and long-term clonogenic assays. The propensity of taccalonolide A to alter interphase microtubules at antiproliferative concentrations as well as its high degree of cellular persistence may explain why taccalonolide A is more potent in vivo than would be expected from cellular studies. The close linkage between the microtubule bundling and antiproliferative effects of taccalonolide A is of interest given the recent hypothesis that the effects of microtubule targeting agents on interphase microtubules might play a prominent role in their clinical anticancer efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号