首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Mita  Y Yui  N Taniguchi  H Yasueda  T Shida 《Life sciences》1985,37(10):907-914
The formation of 5-lipoxygenase products of arachidonic acid, 5-HETE and 5,12-diHETE, was determined in 100,000 X g supernatant of polymorphonuclear leukocytes from 17 healthy subjects, 17 patients with extrinsic asthma and 15 patients with intrinsic asthma. After the supernatant was incubated with 14C-arachidonic acid in the presence of calcium and indomethacin, the lipoxygenase products of arachidonic acid were separated by thin layer chromatography. The results were expressed as the percentage conversion of 14C-arachidonic acid into the product per 10(7) cells. The formation of 5,12-diHETE, but not of 5-HETE, was significantly increased in the cells from the group of patients with extrinsic asthma (4.38 +/- 0.78%, mean +/- S.E.; p less than 0.01) and intrinsic asthma (6.09 +/- 1.11%; p less than 0.01), when compared to normal subjects (1.74 +/- 0.30%). Both extrinsic and intrinsic asthmatics had significantly enhanced 5-lipoxygenase activity, which was expressed as the sum of percentage conversion of 14C-arachidonic acid into 5-HETE and 5,12-diHETE. The percentage conversion in normal subjects was 4.19 +/- 0.39%, 6.24 +/- 0.84% for 17 patients with extrinsic asthma (p less than 0.05), and 8.59 +/- 1.29% for 15 patients with intrinsic asthma (p less than 0.01). There was no significant difference between these asthmatic groups. These results indicate that 5-lipoxygenase activity is increased in patients with bronchial asthma.  相似文献   

2.
To explore the role of catecholamine release in the pathogenesis of exercise-induced asthma, we had seven asthmatic and seven normal subjects undergo three hourly exercise challenges that were matched for inspired air temperature, minute ventilation, and relative work loads. Pulmonary mechanics and plasma epinephrine and norepinephrine were measured before, at end exercise, and serially after each challenge. There were no differences in the pattern of sympathoadrenal response of asthmatic and normal subjects, and both groups released sufficient quantities of epinephrine and norepinephrine into the peripheral circulation to allow these compounds to function as circulating hormones. As the catecholamines rose with repetitive exercise, progressive bronchodilation occurred in the asthmatics at the end of the work load, thus decreasing the apparent magnitude of the obstructive response. In addition to their effects on airway smooth muscle, the alpha-adrenergic actions of both catecholamines may have reduced airway wall hyperemia and edema. These data demonstrate that asthmatics do not have a defect in catecholamine release during exercise and that the physiological expression of exercise-induced asthma can be modulated by the sympathoadrenal epiphenomena that are associated with physical exertion.  相似文献   

3.
To explore the relationship between the flux of heat and water within the respiratory tract during exercise and recovery to the development of exercise-induced asthma (EIA), we recorded airstream temperature at multiple points throughout the tracheobronchial tree in 10 normal and 10 asthmatic subjects before, during, and after cycle ergometry. In both groups, the intra-airway temperature fell progressively as ventilation increased, and there were no significant differences between the thermal profiles of the two populations at rest or during exercise. Calculation of water losses and the osmolality of the airway surface fluid failed to demonstrate significant airway drying in either group. With cessation of the work load, the airstream temperature increased abruptly, rising two times more rapidly in the asthmatics than the normals. Since the major source of heat in these experiments is the bronchial circulation, our findings suggest a reaction sequence consisting of vasoconstriction and airway cooling during exercise followed by a rapid resupply of heat when exercise ceases. The latter may cause the hyperplastic capillary bed in the airways of asthmatics to develop an exaggerated rebound hyperemia which may lead to airway edema and EIA.  相似文献   

4.
To investigate whether exercise increases the responsivity of the tracheobronchial tree to nonspecific stimuli, 11 atopic asthmatics underwent serial challenges with aerosolized methacholine before and 4 and 24 h after an asthma attack induced by cycle ergometry while breathing cold air (mean +/- SE = -11 +/- 1 degree C). Bronchodilator therapy was withheld the day before and throughout each study day. There were no significant differences in base-line lung function before exercise or any of the three methacholine bronchoprovocations. Exercise produced a 25 +/- 3% maximal fall in 1-s forced expiratory volume (FEV1) within 15 min. This attack was not associated with either an immediate or a delayed increase in methacholine sensitivity. The provocation concentration of methacholine required to reduce the FEV1 20% from saline control at base line and 4 and 24 h after exercise were 0.8 +/- 0.5, 0.9 +/- 0.5, and 1.1 +/- 0.8 mg/ml, respectively. This was not significant by a one-way analysis of variance (F = 0.078, P = NS). These data demonstrate that exercise-induced asthma does not produce an increase in nonspecific bronchial reactivity. Hence, if mediators are elaborated with exercise as has been suggested, they appear to function differently than when released by antigen.  相似文献   

5.
To examine whether endotoxaemia accompanying long-term, strenuous physical exercise is involved in exercise-induced increase in plasma tumour necrosis factor alpha (TNF-alpha) concentration and polymorphonuclear neutrophil (PMN) activation, 14 male recreational athletes [mean age 28 (SEM 1) years] were studied. Exercise consisted of a 1.5-km river swim, a 40-km bicycle race, and a 10-km road race. Mean time to complete the race was 149.8 (SEM 4.8) min. The plasma concentrations of granulocyte myeloperoxidase (MPO) and TNF-alpha were significantly higher than baseline values immediately and 1 h after exercise (P<0.001). Both variables returned to pre-race levels the day after exercise. Marked, transient decreases in plasma concentrations of anti-lipopolysaccharide (LPS) immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies directed against a panel of selected smooth gram-negative LPS were observed after the race, reaching in most cases minimal values in the blood sample drawn immediately following the completion of the triathlon. There was no significant correlation between the magnitude of PMN activation, as assessed by the increase in plasma concentrations of MPO, and the humoral markers of endotoxaemia and TNF-alpha. An inverse, highly significant relationship between the increase in plasma TNF-alpha concentrations and the changes in circulating anti-LPS IgM antibodies concentrations was observed (r = -0.7; P<0.01). These findings suggest that exercise-induced endotoxaemia was involved in the release of TNF-alpha, that the magnitude of the TNF-alpha response to exercise was down-regulated by anti-LPS antibodies of the IgM class, and that the production of TNF-alpha and endotoxaemia did not seem to play a role in the activation of circulating PMN in the exercising subjects.  相似文献   

6.
Epinephrine increases glycogenolysis in resting skeletal muscle, but less is known about the effects of epinephrine on exercising muscle. To study this, epinephrine was given intraarterially to one leg during two-legged cycle exercise in nine healthy males. The epinephrine-stimulated (EPI) and non-stimulated (C) legs were compared with regard to glycogen, glucose, glucose 6-phosphate (G6P), alpha-glycerophosphate (alpha-GP), and lactate contents in muscle biopsies taken before and after the 45-min submaximal exercise, as well as brachial arterial-femoral venous (a-fv) differences for epinephrine, norepinephrine, lactate, glucose, and O2 during exercise. During exercise the arterial plasma epinephrine concentration was 4.8 +/- 0.8 nmol/l and the femoral venous epinephrine concentrations were 10.3 +/- 2.1 and 3.9 +/- 0.6 nmol/l, respectively, in the EPI and C leg. During exercise the a-fv difference for lactate was greater (-0.41 +/- 0.14 vs. -0.21 +/- 0.14 mmol/l; P less than 0.001), and the a-fv difference for glucose was smaller (0.07 +/- 0.12 vs. 0.24 +/- 0.12 mmol/l; P less than 0.01) in the EPI than in the C leg, but the a-fv differences for O2 were similar. Muscle glycogen depletion (137 +/- 63 vs. 99 +/- 43 mmol/kg dry muscle; P less than 0.1) and the muscle concentrations of glucose (P less than 0.05), alpha-GP (P less than 0.1), G6P (P greater than 0.1), and lactate (P greater than 0.1) tended to be higher in the EPI than the C leg after exercise. These findings suggest that physiological concentrations of epinephrine may enhance muscle glycogenolysis during submaximal exercise in male subjects.  相似文献   

7.
With the use of the microdialysis method, exercise-induced lipolysis was investigated in subcutaneous adipose tissue (SCAT) in obese subjects and compared with lean ones, and the effect of blockade of alpha(2)-adrenergic receptors (ARs) on lipolysis during exercise was explored. Changes in extracellular glycerol concentrations and blood flow were measured in SCAT in a control microdialysis probe at rest and during 60-min exercise bouts (50% of heart rate reserve) and in a probe supplemented with the alpha(2)-AR antagonist phentolamine. At rest and during exercise, plasma norepinephrine and epinephrine concentrations were not different in obese compared with lean men. In the basal state, plasma and extracellular glycerol concentrations were higher, whereas blood flow was lower in SCAT of obese subjects. During exercise, the increase of plasma glycerol was higher in obese subjects (115 +/- 35 vs. 65 +/- 21 micromol/l). Oppositely, the exercise-induced increase in extracellular glycerol concentrations in SCAT was five- to sixfold lower in obese than in lean subjects (50 +/- 14 vs. 318 +/- 53 micromol/l). The exercise-induced increase in extracellular glycerol concentration was not significantly modified by phentolamine infusion in lean subjects but was strongly enhanced in the obese subjects and reached the concentrations found in lean sujects (297 +/- 46 micromol/l). These findings demonstrate that the physiological stimulation of SCAT adipocyte alpha(2)-ARs during exercice-induced sympathetic nervous system activation contributes to the blunted lipolysis noted in obese men.  相似文献   

8.
We examined 1) the effect of L-carnitine supplementation on free fatty acid (FFA) utilization during exercise and 2) exercise-induced alterations in plasma levels and skeletal muscle exchange of carnitine. Seven moderately trained human male subjects serving as their own controls participated in two bicycle exercise sessions (120 min, 50% of VO2max). The second exercise was preceded by 5 days of oral carnitine supplementation (CS; 5 g daily). Despite a doubling of plasma carnitine levels, with CS, there were no effects on exercise-induced changes in arterial levels and turnover of FFA, the relation between leg FFA inflow and FFA uptake, or the leg exchange of other substrates. Heart rate during exercise after CS decreased 7-8%, but O2 uptake was unchanged. Exercise before CS induced a fall from 33.4 +/- 1.6 to 30.8 +/- 1.0 (SE) mumol/l in free plasma carnitine despite a release (2.5 +/- 0.9 mumol/min) from the leg. Simultaneously, acylated plasma carnitine rose from 5.0 +/- 1.0 to 14.2 +/- 1.4 mumol/l, with no evidence of leg release. Consequently, total plasma carnitine increased. We concluded that in healthy subjects CS does not influence muscle substrate utilization either at rest or during prolonged exercise and that free carnitine released from muscle during exercise is presumably acylated in the liver and released to plasma.  相似文献   

9.
Previous studies suggest that prostaglandins may contribute to exercise-induced increases in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA was measured at rest and during exercise before and after oral administration of ketoprofen, a cyclooxygenase inhibitor, or placebo. Twenty-one subjects completed two bouts of graded dynamic and isometric handgrip to fatigue. Each exercise bout was followed by 2 min of postexercise muscle ischemia. The second exercise bouts were performed after 60 min of rest in which 11 subjects were given ketoprofen (300 mg) and 10 subjects received a placebo. Ketoprofen significantly lowered plasma thromboxane B(2) in the drug group (from 36 +/- 6 to 22 +/- 3 pg/ml, P < 0.04), whereas thromboxane B(2) in the placebo group increased from 40 +/- 5 to 61 +/- 9 pg/ml from trial 1 to trial 2 (P < 0.008). Ketoprofen and placebo did not change sympathetic and cardiovascular responses to dynamic handgrip, isometric handgrip, and postexercise muscle ischemia. There was no relationship between thromboxane B(2) concentrations and MSNA or arterial pressure responses during both exercise modes. The data indicate that physiological increases or decreases in prostaglandins do not alter exercise-induced increases in MSNA and arterial pressure in humans. These findings suggest that contraction-induced metabolites other than prostaglandins mediate MSNA responses to exercise in humans.  相似文献   

10.
In this study we have evaluated the effect of maximal incremental cycling exercise (IE) on the systemic release of prostacyclin (PGI(2)), assessed as plasma 6-keto-PGF(1alpha) concentration in young healthy men. Eleven physically active - untrained men (mean +/- S.D.) aged 22.7 +/- 2.1 years; body mass 76.3 +/- 9.1 kg; BMI 23.30 +/- 2.18 kg . m(-2); maximal oxygen uptake (VO(2max)) 46.5 +/- 3.9 ml . kg(-1) . min(-1), performed an IE test until exhaustion. Plasma concentrations of 6-keto-PGF(1alpha), lactate, and cytokines were measured in venous blood samples taken prior to the exercise and at the exhaustion. The net exercise-induced increase in 6-keto-PGF(1alpha) concentration, expressed as the difference between the end-exercise minus pre-exercise concentration positively correlated with VO(2max) (r=0.78, p=0.004) as well as with the net VO(2) increase at exhaustion (r=0.81, p=0.003), but not with other respiratory, cardiac, metabolic or inflammatory parameters of the exercise (minute ventilation, heart rate, plasma lactate, IL-6 or TNF-alpha concentrations). The exercise-induced increase in 6-keto-PGF(1alpha) concentration?? was significantly higher (p=0.008) in a group of subjects (n=5) with the highest VO(2max) when compared to the group of subjects with the lowest VO(2max), in which no increase in 6-keto-PGF(1alpha) concentration was found. In conclusion, we demonstrated, to our knowledge for the first time, that exercise-induced release of PGI(2) in young healthy men correlates with VO(2max), suggesting that vascular capacity to release PGI(2) in response to physical exercise represents an important factor characterizing exercise tolerance. Moreover, we postulate that the impairment of exercise-induced release of PGI(2) leads to the increased cardiovascular hazard of vigorous exercise.  相似文献   

11.
To date, the results of studies that have examined the effects of altering preexercise muscle glycogen content and exercise intensity on endogenous carbohydrate oxidation are equivocal. Differences in the training status of subjects between investigations may, in part, explain these inconsistent findings. Accordingly, we determined the relative effects of exercise intensity and carbohydrate availability on patterns of fuel utilization in the same subjects who performed a random order of four 60-min rides, two at 45% and two at 70% of peak O(2) uptake (Vo(2 peak)), after exercise-diet intervention to manipulate muscle glycogen content. Preexercise muscle glycogen content was 596 +/- 43 and 202 +/- 21 mmol/kg dry mass (P < 0.001) for high-glycogen (HG) and low-glycogen (LG) conditions, respectively. Respiratory exchange ratio was higher for HG than LG during exercise at both 45% (0.85 +/- 0.01 vs. 0.74 +/- 0.01; P < 0.001) and 70% (0.90 +/- 0.01 vs. 0.79 +/- 0.01; P < 0.001) of Vo(2 peak). The contribution of whole body muscle glycogen oxidation to energy expenditure differed between LG and HG for exercise at both 45% (5 +/- 2 vs. 45 +/- 5%; P < 0.001) and 70% (25 +/- 3 vs. 60 +/- 3%; P < 0.001) of Vo(2 peak). Yet, despite marked differences in preexercise muscle glycogen content and its subsequent utilization, rates of plasma glucose disappearance were similar under all conditions. We conclude that, in moderately trained individuals, muscle glycogen availability (low vs. high) does not influence rates of plasma glucose disposal during either low- or moderate-intensity exercise.  相似文献   

12.
The responses to brief maximal exercise of 10 male subjects have been studied. During 30 s of exercise on a non-motorized treadmill, the mean power output (mean +/- SD) was 424.8 +/- 41.9 W, peak power 653.3 +/- 103.0 W and the distance covered was 167.3 +/- 9.7 m. In response to the exercise blood lactate concentrations increased from 0.60 +/- 0.26 to 13.46 +/- 1.71 mmol.l-1 (p less than 0.001) and blood glucose concentrations from 4.25 +/- 0.45 to 5.59 +/- 0.67 mmol.l-1 (p less than 0.001). The severe nature of the exercise is indicated by the fall in blood pH from 7.38 +/- 0.02 to 7.16 +/- 0.07 (p less than 0.001) and the estimated decrease in plasma volume of 11.5 +/- 3.4% (p less than 0.001). The plasma catecholamine concentrations increased from 2.2 +/- 0.6 to 13.4 +/- 6.4 nmol.l-1 (p less than 0.001) and 0.2 +/- 0.2 to 1.4 +/- 0.6 nmol.l-1 (p less than 0.001) for noradrenaline (NA) and adrenaline (AD) respectively. The plasma concentration of the opioid beta-endorphin increased in response to the exercise from less than 5.0 to 10.2 +/- 3.9 p mol.l-1. The post-exercise AD concentrations correlated with those for lactate as well as with changes in pH and the decrease in plasma volume. Post-exercise beta-endorphin levels correlated with the peak speed attained during the sprint and the subjects peak power to weight ratio. These results suggest that the increases in plasma adrenaline are related to those factors that reflect the stress of the exercise and the contribution of anaerobic metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A possible contribution of exercise to the fluid retention associated with acute mountain sickness (AMS) was investigated in 17 mountaineers who underwent an exercise test for 30 min on a bicycle ergometer with a constant work load of 148 +/- 9 (SE) W at low altitude (LA) and with 103 +/- 6 W 4-7 h after arrival at 4,559 m or high altitude (HA). Mean heart rates during exercise at both altitudes and during active ascent to HA were similar. Exercise-induced changes at LA did not differ significantly between the eight subjects who stayed well and the nine subjects who developed AMS during a 3-day sojourn at 4,559 m. At HA, O2 saturation before (71 +/- 2 vs. 83 +/- 2%, P less than 0.01) and during exercise (67 +/- 2 vs. 72 +/- 1%, P less than 0.025) was lower and exercise-induced increase of plasma aldosterone (617 +/- 116 vs. 233 +/- 42 pmol/l, P less than 0.025) and plasma antidiuretic hormone (23.8 +/- 14.4 vs. 3.4 +/- 1.8 pmol/l, P less than 0.05) was greater in the AMS group, whereas exercise-induced rise of plasma atrial natriuretic factor and changes of hematocrit, potassium, and osmolality in plasma were similar in both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Iron, Nitric Oxide, and Myeloperoxidase in Asthmatic Patients   总被引:2,自引:0,他引:2  
Plasma nitric oxide (NO), myeloperoxidase (MPO), and iron (Fe) levels were determined in bronchial asthma. The relations among these parameters in different stages of asthma were interpreted. Their association with airway inflammation observed in patients with bronchial asthma as well as the roles and the contributions to the pathological processes were evaluated. A total of 62 individuals, 32 asthmatics and 30 controls, were included into the scope of this study. Plasma nitric oxide metabolites (NOx) and MPO and Fe levels were determined by the Griess reaction, ELISA, and the automated TPTZ (2,4,6-tri[2-pyridyl]-5-triazine) method, respectively. In the asthmatic individuals, plasma NOx, MPO, and Fe concentrations were 133 +/- 13 microM, 95 +/- 20 ng/ml, and 159 +/- 20 microg/dl, respectively; in the control group these values were 82 +/- 11 microM, 62 +/- 11 ng/ml, and 96 +/- 9 microg/dl. Increased values were detected for plasma MPO (p > 0.05), NOx (p < 0.01), and Fe (p < 0.01) concentrations in asthmatic individuals. Considering the facts that NO modulates the catalytic activity of MPO and induces the expression of heme oxygenase as important contributors to the mechanisms causing free Fe release, it is concluded that elevated NOx, MPO, and Fe levels observed in the asthmatic group act in a concerted manner and appear to be involved in the pathogenesis of asthma.  相似文献   

15.
Acute exercise increases insulin binding to its receptors on blood cells. Whether the enhanced insulin binding explains the exercise-induced increase in glucose uptake is unclear, since insulin binding and glucose uptake have not been measured simultaneously in a target tissue of insulin. In this study, we determined insulin binding and the rate of glucose transport in adipocytes obtained by needle biopsy from 10 healthy men before and after 3 h of cycle-ergometric exercise. During the exercise, plasma glucose (P less than 0.01) and insulin (P less than 0.001) fell and serum free fatty acid level rose 4.3-fold (P less than 0.001). 125I-insulin binding to adipocytes remained unchanged during exercise. The rate of basal glucose transport clearance fell from 28.1 +/- 5.7 fl.cell-1.s-1 to 22.9 +/- 5.6 fl.cell-1.s-1 (P less than 0.005), and the insulin-stimulated increase in glucose transport rate rose from 196 +/- 26 to 279 +/- 33% (P less than 0.025) during the exercise. Thus, in the adipocytes during exercise, the basal glucose transport rate and the responsiveness of glucose transport to insulin changed in the absence of alterations in insulin binding. These data indicate that the exercise-induced changes in insulin binding show tissue specificity and do not always parallel alterations in glucose transport.  相似文献   

16.
For several hours after exercise-induced bronchoconstriction, there is diminished responsiveness to repeated challenge. The mechanism causing this refractoriness is unclear. Inhalation of dry powder mannitol is a new bronchial provocation test that has been suggested as a surrogate for an exercise challenge. Refractoriness to repeated mannitol challenge has however not been established. Our objective was to investigate if repeated challenge with mannitol is associated with refractoriness and diminished release of mast cell mediators of bronchoconstriction. Sixteen subjects with asthma underwent repeated inhalation of mannitol 90 min apart. Lung function was assessed by forced expiratory volume in 1 s (FEV?). The urinary excretion (ng/mmol creatinine) of the mediators 9α,11β-prostaglandin (PG) F? and leukotriene (LT) E? were measured. The group mean fall in FEV? after the second challenge was 48.5 ± 5.8% of the first (P < 0.001). The protection afforded by the initial challenge, however, varied considerably between subjects (range 88-0%). Furthermore, the urinary excretion of the two mediators was increased after both challenges. The average excretion of mediators after the challenges was significantly higher for the six most refractory subjects. This was observed both for LTE? (95.6 ± 5.2 vs. 58.0 ± 2.4 for the 6 least refractory) (P < 0.001) and for 9α,11β-PGF? (137.6 ± 6.7 vs. 50.1 ± 1.1 for the 6 least refractory) (P = 0.002). As occurs with exercise-induced bronchoconstriction, repeated inhalation of mannitol induced refractoriness. We propose that refractoriness is due to tachyphylaxis at the level of the airway smooth muscle responsiveness to mediators of bronchoconstriction rather than due to fatigue of their release from mast cells.  相似文献   

17.
The effects of endothelin (ET) on transmembrane potential and isometric force were studied in ferret bronchial and tracheal smooth muscles. At rest, the muscle cells were electrically and mechanically quiescent. The mean resting potential for the bronchial cells was -70 +/- 1 mV (n = 25 cells/8 ferrets), and that of the tracheal cells was -60 +/- 1 mV (n = 7 cells/2 ferrets). ET depolarized and contracted both types of muscle cells in a concentration-dependent manner. At 1 nM ET, the bronchial muscle cells were significantly depolarized with concomitant force generation. In contrast, greater than 30 nM ET was required for the tracheal muscle cells to respond. The bronchial cells were further depolarized by 10 and 100 nM ET with electrical slow-wave activity present. The calcium channel antagonist verapamil substantially inhibited the contractions produced by 100 nM ET and abolished the slow-wave activity without affecting the base-line depolarization. Pretreatment of the bronchial muscle with 30 microM indomethacin did not affect the ET-induced contraction. These results suggest that ET modulates airway smooth muscle tone by direct activation and/or depolarization-induced activation of sarcolemmal calcium channels.  相似文献   

18.
The secretion of growth hormone (GH) increases acutely during exercise, but whether this is associated with the concomitant alterations in substrate metabolism has not previously been studied. We examined the effects of acute GH administration on palmitate, glucose, and protein metabolism before, during, and after 45 min of moderate-intensity aerobic exercise in eight GH-deficient men (mean age = 40.8 +/- 2.9 yr) on two occasions, with (+GH; 0.4 IU GH) and without GH administered (-GH). A group of healthy controls (n = 8, mean age = 40.4 +/- 4.2 yr) were studied without GH. The GH replacement during exercise on the +GH study mimicked the endogenous GH profile seen in healthy controls. No significant difference in resting free fatty acid (FFA) flux was found between study days, but during exercise a greater FFA flux was found when GH was administered (211 +/- 26 vs. 168 +/- 28 micromol/min, P < 0.05) and remained elevated throughout recovery (P < 0.05). With GH administered, the exercise FFA flux was not significantly different from that observed in control subjects (188 +/- 14 micromol/min), but the recovery flux was greater on the +GH day than in the controls (169 +/- 17 vs. 119 +/- 11 micromol/min, respectively, P < 0.01). A significant time effect (P < 0.01) for glucose rate of appearance from rest to exercise and recovery occurred in the GH-deficient adults and the controls, whereas there were no differences in glucose rate of disappearance. No significant effect across time was found for protein muscle balance. In conclusion, 1) acute exposure to GH during exercise stimulates the FFA release and turnover in GH-deficient adults, 2) GH does not significantly impact glucose or protein metabolism during exercise, and 3) the exercise-induced secretion of GH plays a significant role in the regulation of fatty acid metabolism.  相似文献   

19.
The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.  相似文献   

20.
In this study, serum copper, zinc, magnesium, iron and calcium concentrations were investigated in 40 patients with bronchial asthma (BA) and in 43 healthy subjects. Copper and calcium levels were found to be increased in patients with BA compared to the control group (p < 0.001 and p < 0.001 respectively). On the other hand, the serum zinc level was significantly lower in healthy subjects (p < 0.01). No changes were found in serum magnesium and iron levels in patients with BA compared to controls. In addition to various elements, certain serum proteins such as albumin, transferrin and ferritin were also assessed to determine whether there was a relationship between the elements and proteins in patients with BA. There was only a significant decrease in albumin concentration in patients with BA (p < 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号