首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mitochondrial F1-ATPase is an oligomeric enzyme composed of five distinct subunit polypeptides. The alpha and beta subunits make up the bulk of protein mass of F1. In Saccharomyces cerevisiae both subunits are synthesized as precursors with amino-terminal targeting signals that are removed upon translocation of the proteins to the matrix compartment. Recently, two different complementation groups (G13, G57), consisting of yeast nuclear mutants with defective F1, have been described. Biochemical analyses indicate that the mutational block in both groups of mutants affects a critical step needed for the assembly of the alpha and beta subunits into the F1 oligomer after their transport into mitochondria. In this study the ATP12 gene representative of the nuclear respiratory-deficient mutant of S. cerevisiae (pet) complementation group G57 has been cloned and the encoded product partially characterized. The ATP12 reading frame is 975 base pairs long and codes for a protein of Mr = 36,587. The ATP12 protein is not homologous to the subunits of F1 whose sequences are known, nor does it exhibit significant primary structure similarity to any known protein. In vitro import assays indicate that ATP12 protein is synthesized as a precursor approximately 3 kDa larger than the mature protein. The mitochondrial localization of the protein has been confirmed by Western blot analysis of mitochondrial proteins with an antibody against a hybrid protein expressed from a trpE-ATP12 fusion. Fractionation of mitochondria indicates further that the ATP12 protein is either a minor component of the matrix compartment or is weakly bound to the matrix side of the inner membrane. The molecular weight of the native protein, estimated from its sedimentation properties in sucrose gradients, is at least two times larger than the monomer. This suggests that the ATP12 protein is probably part of a larger complex.  相似文献   

2.
Structural aspects of proton-pumping ATPases   总被引:2,自引:0,他引:2  
ATP synthase is found in bacteria, chloroplasts and mitochondria. The simplest known example of such an enzyme is that in the eubacterium Escherichia coli; it is a membrane-bound assembly of eight different polypeptides assembled with a stoichiometry of alpha 3 beta 3 gamma 1 delta 1 epsilon 1 a1b2c10-12. The first five of these constitute a globular structure, F1-ATPase, which is bound to an intrinsic membrane domain, F0, an assembly of the three remaining subunits. ATP synthases driven by photosynthesis are slightly more complex. In chloroplasts, and probably in photosynthetic bacteria, they have nine subunits, all homologues of the components of the E. coli enzyme; the additional subunit is a duplicated and diverged relation of subunit b. The mammalian mitochondrial enzyme is more complex. It contains 14 different polypeptides, of which 13 have been characterized. Two membrane components, a (or ATPase-6) and A6L, are encoded in the mitochondrial genome in overlapping genes and the remaining subunits are nuclear gene products that are translated on cytoplasmic ribosomes and then imported into the organelle. The sequence of the proteins of ATP-synthase have provided information about amino acids that are important for its function. For example, amino acids contributing to nucleotide binding sites have been identified. Also, they provide the basis of models of secondary structure of membrane components that constitute the transmembrane proton channel. An understanding of the coupling of the transmembrane potential gradient for protons, delta mu H+, to ATP synthesis will probably require the determination of the structure of the entire membrane bound complex. Crystals have been obtained of the globular domain, F1-ATPase. They diffract to a resolution of 3-4 A and data collection is in progress. As a preliminary step towards crystallization of the entire complex, we have purified it from bovine mitochondria and reconstituted it into phospholipid vesicles.  相似文献   

3.
The gene which encodes the beta subunit of the novel membrane-associated ATPase has been identified and characterized. The beta subunit, which is most likely the soluble part of the non-F0F1 type H+-ATPase, was obtained from the archaebacterium, Sulfolobus acidocaldarius. In terms of its location, it follows just after the gene for its alpha subunit. It is comprised of 1398 nucleotides, corresponding to a protein of 465 amino acids, and the consensus sequence in the nucleotide binding proteins is poorly conserved. Together with previously described results, the distant homology of the S. acidocaldarius ATPase alpha and beta subunits when compared to those of F0F1-ATPases indicates that this archaebacterial ATPase belongs to an ion-translocating ATPase family uniquely different than F0F1-ATPases even if S. acidocaldarius ATPase and F0F1-ATPases have been derived from a common ancestral ATPase.  相似文献   

4.
F1-ATPase is the major enzyme for ATP synthesis in mitochondria, chloroplasts, and bacterial plasma membranes. F1-ATPase obtained from thermophilic bacterium PS3 (TF1) is the only ATPase which can be reconstituted from its primary structure. Its beta subunit constitutes the catalytic site, and is capable of forming hybrid F1's with E. coli alpha and gamma subunits. Since the stability of TF1 resides in its primary structure, we cloned a gene coding for TF1, and the primary structure of the beta subunit was deduced from the nucleotide sequence of the gene to compare the sequence with those of beta's of three major categories of F1's; prokaryotic membranes, chloroplasts, and mitochondria. The following results were obtained. Homology: The primary structure of the TF1 beta subunit (473 residues, Mr = 51,995.6) showed 89.3% homology with 270 residues which are identical in the beta subunits from human mitochondria, spinach chloroplasts, and E. coli. It contained regions homologous to several nucleotide-binding proteins. Secondary structure: The deduced alpha-helical (30.1%) and beta-sheet (22.3%) contents were consistent with those determined from the circular dichroism spectra. Residues forming reverse turns (Gly and Pro) were highly conserved among the F1 beta subunits. Substituted residues and stability of TF1: We compared the amino acid sequence of the TF1 beta subunit with those of the other F1 beta subunits mentioned above. The observed substitutions in the thermophilic subunit increased its propensities to form secondary structures, and its external polarity to form tertiary structure. Codon usage: The codon usage of the TF1 beta gene was found to be unique. The changes in codons that achieved these amino acid substitutions were much larger than those caused by minimal mutations, and the third letters of the optimal codons were either guanine or cytosine, except in codons for Gln, Lys, and Glu.  相似文献   

5.
The alpha-subunit of ATP synthase from mitochondria is a major component of the extrinsic membrane sector of the enzyme. It is encoded in nuclear DNA. A family of overlapping complementary DNA clones encoding its precursor has been isolated from a bovine library by using in the first instance a mixture of 128 synthetic oligonucleotides designed on the basis of the known protein sequence, and the sequence of the full-length cDNA has been determined. The deduced protein sequence shows that the alpha-subunit of ATP synthase has a presequence of 43 amino acids that is not present in the mature protein. Presumably it directs the protein into the mitochondrial matrix and is removed during the import process. The encoded protein sequence is also longer by one amino acid at its C-terminal end than the protein isolated from F1-ATPase, but this alanine residue may have been removed artifactually during release of the F1-ATPase particle from the inner mitochondrial membrane. With the exception of one uncertainty caused by an ambiguity at one position in the nucleotide sequence, the mature protein sequence encoded in the cDNA is exactly the same as the sequence determined previously by direct analysis of the protein isolated from bovine heart mitochondria [Walker et al. (1985) J. Mol. Biol. 184, 677-701]. The cDNA sequence differs in 158 nucleotides over a region of alignment of 1097 nucleotides from a partial cDNA for the alpha-subunit that has been isolated from a bovine cDNA derived from liver RNA [Breen (1988) Biochem. Biophys. Res. Commun. 152, 264-269].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit.  相似文献   

7.
In mitochondria, the hydrolytic activity of ATP synthase is prevented by an inhibitor protein, IF1. The active bovine protein (84 amino acids) is an alpha-helical dimer with monomers associated via an antiparallel alpha-helical coiled coil composed of residues 49-81. The N-terminal inhibitory sequences in the active dimer bind to two F1-ATPases in the presence of ATP. In the crystal structure of the F1-IF1 complex at 2.8 A resolution, residues 1-37 of IF1 bind in the alpha(DP)-beta(DP) interface of F1-ATPase, and also contact the central gamma subunit. The inhibitor opens the catalytic interface between the alpha(DP) and beta(DP) subunits relative to previous structures. The presence of ATP in the catalytic site of the beta(DP) subunit implies that the inhibited state represents a pre-hydrolysis step on the catalytic pathway of the enzyme.  相似文献   

8.
The three-dimensional structure of F1-ATPase from beef heart mitochondria was investigated by electron microscopic techniques. The presence of high concentrations of nucleotides is essential for preservation of the quaternary structure. When investigated under such conditions, monodisperse F1-ATPase could not be distinguished from the membrane-bound enzyme. At low resolution, the particle shape resembles an oblate ellipsoid of revolution with an axial ratio of about 2:1. From several lines of evidence (including field micrographs at higher magnifications, Markham rotational analysis, and tilting experiments), two conclusions may be drawn concerning the three-dimensional fine structure of F1-ATPase. 1. At the periphery of the molecule, six globular protein masses are orientated in a way similar to the chair conformation of cyclohexane. This array is interpreted to be made up of an alternating sequence of alpha and beta subunits. 2. Part of the central space is occupied by a seventh protein mass, protrusions of which are likely to be in contact with some of the outer subunits. A gamma subunit is supposed to be constituent part of this central protein mass. As a consequence, this model favours a stoichiometry of alpha 3 beta 3 gamma for the large subunits of beef heart F1-ATPase.  相似文献   

9.
The enzyme complex F1-ATPase has been isolated from bovine heart mitochondria by gel filtration of the enzyme released by chloroform from sub-mitochondrial particles. The five individual subunits alpha, beta, gamma, delta and epsilon that comprise the complex have been purified from it, and their amino acid sequences determined almost entirely by direct protein sequence analysis. A single overlap in the gamma-subunit was obtained by DNA sequence analysis of a complementary DNA clone isolated from a bovine cDNA library using a mixture of 32 oligonucleotides as the hybridization probe. The alpha, beta, gamma, delta and epsilon subunits contain 509, 480, 272, 146 and 50 amino acids, respectively. Two half cystine residues are present in the alpha-subunit and one in each of the gamma- and epsilon-chains; they are absent from the beta- and delta-subunits. The stoichiometry of subunits in the complex is estimated to be alpha 3 beta 3 gamma 1 delta 1 epsilon 1 and the molecular weight of the complex is 371,135. Mild trypsinolysis of the F1-ATPase complex, which has little effect on the hydrolytic activity of the enzyme, releases peptides from the N-terminal regions of the alpha- and beta-chains only; the C-terminal regions are unaffected. Sequence analysis of the released peptides demonstrates that the N terminals of the alpha- and beta-chains are ragged. In 65% of alpha-chains, the terminus is pyrrolidone carboxylic acid; in the remainder this residue is absent and the chains commence at residue 2, i.e. lysine. In the beta-subunit a minority of chains (16%) have N-terminal glutamine, or its deamidation product, glutamic acid (6%), or the cyclized derivative, pyrrolidone carboxylic acid (5%). A further 28% commence at residue 2, alanine, and 45% at residue 3, serine. The delta-chains also are heterogeneous; in 50% of chains the N-terminal alanine residue is absent. The sequences of the alpha- and beta-chains show that they are weakly homologous, as they are in bacterial F1-ATPases. The sequence of the bovine delta-subunit of F1-ATPase shows that it is the counterpart of the bacterial epsilon-subunit. The bovine epsilon-subunit is not related to any known bacterial or chloroplast H+-ATPase subunit, nor to any other known sequence. The counterpart of the bacterial delta-subunit is bovine oligomycin sensitivity conferral protein, which helps to bind F1 to the inner mitochondrial membrane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Membrane vesicles and the F1-ATPase from Clostridium thermoaceticum were examined by electron microscopy. F1-ATPase particles projecting from the vesicles have a diameter of 10 to 12 nm. The F1-ATPase has an alpha 3 beta 3 gamma delta structure. The alpha and beta subunits are most likely arranged in an alternating sequence around a central protein mass consisting of the gamma and delta subunits.  相似文献   

11.
The yeast nuclear gene ATP2 encodes a F1-ATPase beta-subunit protein of 509 amino acids with a predicted mass of 54,575 daltons. In contrast to the ATPase beta-subunit proteins determined previously from Escherichia coli and various plant sources, the yeast mitochondrial precursor peptide contains a unique cysteine residue within its immediate amino terminus. Expression of an in-frame deletion in ATP2 between residues 28 and 34 to eliminate this single cysteine residue located near the processing site of the matrix protease does not prevent the in vivo delivery of the subunit to mitochondria or its assembly into a functional ATPase complex. Thus, the import F1 beta-subunit into mitochondria does not require a covalent modification of the type utilized for the secretion of the major lipoprotein from E. coli. In addition, analysis of the level of the major F1-ATPase subunits in mitochondria prepared from an atp2- disruption mutant demonstrates that the in vivo import of these catalytic subunits is not dependent on each other. These data and additional studies, therefore, suggest that the determinants for mitochondrial delivery reside within the amino terminus of the individual precursors.  相似文献   

12.
Normal modes have been used to explore the inherent flexibility of the alpha, beta and gamma subunits of F(1)-ATPase in isolation and as part of the alpha(3)beta(3)gamma complex. It was found that the structural plasticity of the gamma and beta subunits, in particular, correlates with their functions. The N and C-terminal helices forming the coiled-coil domain of the gamma subunit are highly flexible in the isolated subunit, but more rigid in the alpha(3)beta(3)gamma complex due to interactions with other subunits. The globular domain of the gamma subunit is structurally relatively rigid when isolated and in the alpha(3)beta(3)gamma complex; this is important for its functional role in coupling the F(0) and F(1) complex of ATP synthase and in inducing the conformational changes of the beta subunits in synthesis. Most important, the character of the lowest-frequency modes of the beta(E) subunit is highly correlated with the large beta(E) --> beta(TP) transition. This holds for the C-terminal domain and the nucleotide-binding domain, which undergo significant conformational transitions in the functional cycle of F(1)-ATPase. This is most evident in the ligand-free beta(E) subunit; the flexibility in the nucleotide-binding domain is reduced somewhat in the beta(TP) subunit in the presence of Mg(2+).ATP. The low-frequency modes of the alpha(3)beta(3)gamma complex show that the motions of the globular domain of the gamma subunit and of the C-terminal and nucleotide binding domains of the beta(E) subunits are coupled, in accord with their function. Overall, the normal mode analysis reveals that F(1)-ATPase, like other macromolecular assemblies, has the intrinsic structural flexibility required for its function encoded in its sequence and three-dimensional structure. This inherent plasticity is an essential aspect of assuring a small free energy cost for the large-scale conformational transition that occurs in molecular motors.  相似文献   

13.
Isolation of novel membrane-associated ATPases, presumably soluble parts of the H+-ATPases, from archaebacteria has been recently reported, and their properties were found to be significantly different from the usual F1-ATPase. In order to assess the relationship of the archaebacterial ATPases to the F1-ATPases and other known ATPases, the amino acid sequence of the alpha subunit of the ATPase from Sulfolobus acidocaldarius, an acidothermophilic archaebacterium, was compared with the sequences of other ATPases. The gene encoding its alpha subunit was cloned from the genomic library of S. acidocaldarius, and the nucleotide sequence was determined. The 591-amino acid sequence deduced from the nucleotide sequence contains a small number of short stretches that shows sequence similarity to the alpha and beta subunits of F1-ATPase. However, the overall similarity is too weak to consider it to be a typical member of the F1-ATPase family when the highly conserved sequences of the F1-ATPase subunits among various organisms are taken into account. Moreover, most of these stretches overlap the consensus sequences that are commonly found in some nucleotide-binding proteins. There is no significant sequence similarity to the ion-translocating ATPases, which form phosphorylated intermediates, such as animal Na+,K+-ATPases. Thus, the S. acidocaldarius ATPase and probably other archaebacterial ATPases also appear to belong to a new group of ion-translocating ATPases that has only a distant relationship to F1-ATPase.  相似文献   

14.
1. Isolation of ATPase from rat liver submitochondrial particles by chloroform treatment requires the presence of ATP or ADP during enzyme solubilization. In the absence of adenine nucleotides the enzyme activity is very low although all protein components of F1-ATPase are released. The low concentrations of ATP or ADP required (5 microM) indicate that the high affinity nucleotide-binding sites are involved in enzyme stabilization. Other nucleotides tested (ITP, GTP, UTP, CTP) were found to be less effective. 2. Polyacrylamide gel electrophoresis and immunodiffusion in agar plates revealed that in the absence of adenine nucleotides a fraction of F1-ATPase released by chloroform treatment is split into fragments. The part of the dissociated enzyme molecule has a molecular weight identical with that of a beta-subunit of F1-ATPase. 3. Dissociation of the F1-ATPase molecule could also be prevented by aurovertin. 4. Crude F1-ATPase solubilized by chloroform treatment can be further purified by Sepharose 6B gel filtration. Specific ATPase activity of the purified enzyme was 90 mumol Pi/min per mg protein and the enzyme was composed of five protein subunits (alpha, beta, gamma, delta, epsilon) with molecular weights 58 000, 55 000, 28 000, 13 000 and 8000, respectively. 5. Chloroform-released F1-ATPase from rat liver mitochondria displayed immunochemical cross-reactivity with that isolated from beef heart mitochondria.  相似文献   

15.
16.
Eukaryotic cells require mitochondrial compartments for viability. However, the budding yeast Saccharomyces cerevisiae is able to survive when mitochondrial DNA suffers substantial deletions or is completely absent, so long as a sufficient mitochondrial inner membrane potential is generated. In the absence of functional mitochondrial DNA, and consequently a functional electron transport chain and F(1)F(o)-ATPase, the essential electrical potential is maintained by the electrogenic exchange of ATP(4-) for ADP(3-) through the adenine nucleotide translocator. An essential aspect of this electrogenic process is the conversion of ATP(4-) to ADP(3-) in the mitochondrial matrix, and the nuclear-encoded subunits of F(1)-ATPase are hypothesized to be required for this process in vivo. Deletion of ATP3, the structural gene for the gamma subunit of the F(1)-ATPase, causes yeast to quantitatively lose mitochondrial DNA and grow extremely slowly, presumably by interfering with the generation of an energized inner membrane. A spontaneous suppressor of this slow-growth phenotype was found to convert a conserved glycine to serine in the beta subunit of F(1)-ATPase (atp2-227). This mutation allowed substantial ATP hydrolysis by the F(1)-ATPase even in the absence of the gamma subunit, enabling yeast to generate a twofold greater inner membrane potential in response to ATP compared to mitochondria isolated from yeast lacking the gamma subunit and containing wild-type beta subunits. Analysis of the suppressing mutation by blue native polyacrylamide gel electrophoresis also revealed that the alpha(3)beta(3) heterohexamer can form in the absence of the gamma subunit.  相似文献   

17.
ATP synthase, the assembly which makes ATP in mitochondria, chloroplasts and bacteria, uses transmembrane proton gradients generated by respiration or photosynthesis to drive the phosphorylation of ADP. Its membrane domain is joined by a slender stalk to a peripheral catalytic domain, F1-ATPase. This domain is made of five subunits with stoichiometries of 3 alpha: 3 beta: 1 gamma: 1 delta: 1 epsilon, and in bovine mitochondria has a molecular mass of 371,000. We have determined the 3-dimensional structure of bovine mitochondrial F1-ATPase to 6.5 A resolution by X-ray crystallography. It is an approximately spherical globule 110 A in diameter, on a 40 A stem which contains two alpha-helices in a coiled-coil. This stem is presumed to be part of the stalk that connects F1 with the membrane domain in the intact ATP synthase. A pit next to the stem penetrates approximately 35 A into the F1 particle. The stem and the pit are two examples of the many asymmetric features of the structure. The central element in the asymmetry is the longer of the two alpha-helices in the stem, which extends for 90 A through the centre of the assembly and emerges on top into a dimple 15 A deep. Features with threefold and sixfold symmetry, presumed to be parts of homologous alpha and beta subunits, are arranged around the central rod and pit, but the overall structure is asymmetric. The central helix provides a possible mechanism for transmission of conformational changes induced by the proton gradient from the stalk to the catalytic sites of the enzyme.  相似文献   

18.
The alpha catalytic subunits of Na+/K(+)-ATPase were isolated from the kidney and brain of rats (alpha 1 and alpha 2, respectively). The antisera raised against these subunits were used as probes to analyze the isoform of catalytic subunits of Na+/K(+)-ATPase in various tissues of rats. Of 27 rat tissues examined, most had a catalytic subunit identical to alpha 1 but some, such as the nervous and muscle tissues, had both alpha 1 and alpha 2 isoforms as judged by their reactivities to antisera and their electrophoretic mobility. We found that the submandibular gland contained a new electrophoretic variant of immunoreactive alpha subunit (designated alpha(S) in this report) in addition to alpha 1 identical to those found in kidney and brain. The new variant, alpha(S), strongly cross-reacted with anti-alpha 1 antiserum, but to a lesser extent with anti-alpha 2 antiserum. The alpha(S) had a molecular mass which was found to be slightly less (approx. 90 kDa) than brain and kidney alpha 1. We examined whether or not the alpha(S) is formed by proteolytic cleavage of alpha subunits during preparation and concluded that this is not the case. The alpha(S) reacted with [gamma-32P]ATP, resulting in the formation of radioactive alpha subunit which was stabilized by 2 mM ouabain but which was labile in the presence of 70 mM potassium chloride. Since N-terminal amino acid sequence of alpha(S) protein [G()DKY()PAAVS] corresponds exactly and uniquely with the sequence of the alpha 1 chain between residues 1 and 11, it is very probable that alpha(S) protein originated from alpha 1 protein following the post-translational processing.  相似文献   

19.
The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells.  相似文献   

20.
We have generated nine monoclonal antibodies against subunits of the maize (Zea mays L.) mitochondrial F1-ATPase. These monoclonal antibodies were generated by immunizing mice against maize mitochondrial fractions and randomly collecting useful hybridomas. To prove that these monoclonal antibodies were directed against ATPase subunits, we tested their cross-reactivity with purified F1-ATPase from pea cotyledon mitochondria. One of the antibodies ([alpha]-ATPaseD) cross-reacted with the pea F1-ATPase [alpha]-subunit and two ([beta]-ATPaseD and [beta]-ATPaseE) cross-reacted with the pea F1-ATPase [beta]-subunit. This established that, of the nine antibodies, four react with the maize [alpha]-ATPase subunit and the other five react with the maize [beta]-ATPase subunit. Most of the monoclonal antibodies cross-react with the F1-ATPase from a wide range of plant species. Each of the four monoclonal antibodies raised against the [alpha]-subunit recognizes a different epitope. Of the five [beta]-subunit antibodies, at least three different epitopes are recognized. Direct incubation of the monoclonal antibodies with the F1-ATPase failed to inhibit the ATPase activity. The monoclonal antibodies [alpha]-ATPaseD and [beta]-ATPaseD were bound to epoxide-glass QuantAffinity beads and incubated with a purified preparation of pea F1-ATPase. The ATPase activity was not inhibited when the antibodies bound the ATPase. The antibodies were used to help map the pea F1-ATPase subunits on a two-dimensional map of whole pea cotyledon mitochondrial protein. In addition, the antibodies have revealed antigenic similarities between various isoforms observed for the [alpha]- and [beta]-subunits of the purified F1-ATPase. The specificity of these monoclonal antibodies, along with their cross-species recognition and their ability to bind the F1-ATPase without inhibiting enzymic function, makes these antibodies useful and invaluable tools for the further purification and characterization of plant mitochondrial F1-ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号