共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
The uptake of methylamine and of methanol by the facultative methylotroph Pseudomonas sp. strain AM1 was investigated. It was found that this organism possesses two uptake systems for methylamine. One of these operates when methylamine is the sole source of carbon, nitrogen, and energy. It has a Km of 1.33 X 10(-4) M and a Vmax of 67 nmol/min per mg of cells (dry weight). The other system, found when methylamine is the sole nitrogen source only, has a Km of 1.2 X 10(-5) M and a Vmax of 8.9 nmol/min per mg of cells (dry weight). Both uptake systems were severely inhibited by azide, cyanide, carbonyl cyanide-m-chlorophenyl hydrazone, and N-ethylmaleimide, but only the high-affinity system was inhibited by ammonium ions with a Ki of 7.7 mM. Both systems were susceptible to osmotic shock treatment, competitively inhibited by ethylamine, and unaffected by most amino acids. Methanol uptake showed a Km of 4.8 microM and a Vmax of 60.6 nmol/min per mg of cells (dry weight) and was not inhibited by osmotic shock treatment. Azide, cyanide, and N-ethylmaleimide curtailed uptake, but carbonyl cyanide-m-chlorophenyl hydrazone merely reduced the rate of uptake. A methanol dehydrogenase mutant, M15A, was unable to take up methanol. It is proposed that methanol diffuses into the cell where it is rapidly oxidized by methanol dehydrogenase. 相似文献
3.
The moxFG region encodes four polypeptides in the methanol-oxidizing bacterium Methylobacterium sp. strain AM1. 下载免费PDF全文
The polypeptides encoded by a putative methanol oxidation (mox) operon of Methylobacterium sp. strain AM1 were expressed in Escherichia coli, using a coupled in vivo T7 RNA polymerase/promoter gene expression system. Two mox genes had been previously mapped to this region: moxF, the gene encoding the methanol dehydrogenase (MeDH) polypeptide; and moxG, a gene believed to encode a soluble type c cytochrome, cytochrome cL. In this study, four polypeptides of Mr 60,000, 30,000, 20,000, and 12,000 were found to be encoded by the moxFG region and were tentatively designated moxF, -J, -G, and -I, respectively. The arrangement of the genes (5' to 3') was found to be moxFJGI. The identities of three of the four polypeptides were determined by protein immunoblot analysis. The product of moxF, the Mr-60,000 polypeptide, was confirmed to be the MeDH polypeptide. The product of moxG, the Mr-20,000 polypeptide, was identified as mature cytochrome cL, and the product of moxI, the Mr-12,000 polypeptide, was identified as a MeDH-associated polypeptide that copurifies with the holoenzyme. The identity of the Mr-30,000 polypeptide (the moxJ gene product) could not be determined. The function of the Mr-12,000 MeDH-associated polypeptide is not yet clear. However, it is not present in mutants that lack the Mr-60,000 MeDH subunit, and it appears that the stability of the MeDH-associated polypeptide is dependent on the presence of the Mr-60,000 MeDH polypeptide. Our data suggest that both the Mr-30,000 and -12,000 polypeptides are involved in methanol oxidation, which would bring to 12 the number of mox genes in Methylobacterium sp. strain AM1. 相似文献
4.
The second subunit of methanol dehydrogenase of Methylobacterium extorquens AM1. 总被引:4,自引:0,他引:4 下载免费PDF全文
The nucleotide and deduced amino acid sequence of a novel small (beta) subunit of methanol dehydrogenase of Methylobacterium extorquens AM1 (previously Pseudomonas AM1) has been determined. Work with the whole protein has shown that is has an alpha 2 beta 2 configuration. 相似文献
5.
Nucleotide sequence of the Methylobacterium extorquens AM1 moxF and moxJ genes involved in methanol oxidation 总被引:10,自引:0,他引:10
The nucleotide sequence has been determined for two genes involved in methanol oxidation in the facultative methylotroph, Methylobacterium extorquens AM1. The two genes are moxF, encoding the 66-kDa subunit of the methanol dehydrogenase and moxJ, located immediately downstream from moxF, which encodes a 30-kDa protein with unknown function. This information completes the sequence of the 5.86-kb XhoI-SalI fragment containing the moxFJGI region in M. extorquens AM1, and the structure of this gene cluster is presented. Evidence is presented that moxJ is also present in Paracoccus denitrificans. The aa sequence of MoxJ has provided little information concerning its function, but it does appear to contain a signal sequence suggesting a periplasmic location. 相似文献
6.
R68.45 mediated mobilisation of the chromosome of Methylobacterium sp strain AM1 has been investigated. High frequencies of cotransfer of four genes required for C-1 metabolism with the genes coding for streptomycin, phosphonomycin and cycloserine resistance were demonstrated. A preliminary map of this region has been constructed on the basis of the results of three and four factor crosses showing that not all the C-1 genes are contiguous.Abbreviations Str
streptomycin
- Pho
phosphonomycin
- Cyc
cycloserine
- Tc
tetracycline
- Km
kanamycin
- Cb
carbenicillin
- Ade
adenine
- Thi
thiamine
- Met
methionine 相似文献
7.
Single crystals of methanol dehydrogenase (MDH) from Methylobacterium extorquens AM1 have been grown by the vapour diffusion method. These crystals diffract to beyond 2 A resolution and are suitable for X-ray crystallography. They belong to the orthorhombic space group P2(1)2(1)2(1) and have the following unit cell parameters: a = 66.79 A, b = 108.9 A, c = 188.9 A. One asymmetric unit contains an alpha 2 beta 2 tetramer of MDH and the location of the non-crystallographic 2-fold symmetry axis of this tetramer is defined by the paired positions of the binding sites of heavy atoms in four MDH-derivatives. 相似文献
8.
In Gram-negative methylotrophic bacteria, the first step in methylotrophic growth is the oxidation of methanol to formaldehyde in the periplasm by methanol dehydrogenase. In most organisms studied to date, this enzyme consists of the MxaF and MxaI proteins, which make up the large and small subunits of this heterotetrameric enzyme. The Methylobacterium extorquens AM1 genome contains two homologs of MxaF, XoxF1 and XoxF2, which are ~50% identical to MxaF and ~90% identical to each other. It was previously reported that xoxF is not required for methanol growth in M. extorquens AM1, but here we show that when both xoxF homologs are absent, strains are unable to grow in methanol medium and lack methanol dehydrogenase activity. We demonstrate that these defects result from the loss of gene expression from the mxa promoter and suggest that XoxF is part of a complex regulatory cascade involving the 2-component systems MxcQE and MxbDM, which are required for the expression of the methanol dehydrogenase genes. 相似文献
9.
Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol 下载免费PDF全文
Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the alpha-proteobacterium Methylobacterium extorquens AM1, we found a previously unknown enzyme that efficiently catalyzes the removal of formaldehyde: it catalyzes the condensation of formaldehyde and tetrahydromethanopterin to methylene tetrahydromethanopterin, a reaction which also proceeds spontaneously, but at a lower rate than that of the enzyme-catalyzed reaction. Formaldehyde-activating enzyme (Fae) was purified from M. extorquens AM1 and found to be one of the major proteins in the cytoplasm. The encoding gene is located within a cluster of genes for enzymes involved in the further oxidation of methylene tetrahydromethanopterin to CO(2). Mutants of M. extorquens AM1 defective in Fae were able to grow on succinate but not on methanol and were much more sensitive toward methanol and formaldehyde. Uncharacterized orthologs to this enzyme are predicted to be encoded by uncharacterized genes from archaea, indicating that this type of enzyme occurs outside the methylotrophic bacteria. 相似文献
10.
Van Dien SJ Marx CJ O'Brien BN Lidstrom ME 《Applied and environmental microbiology》2003,69(12):7563-7566
Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments. 相似文献
11.
Methylobacterium extorquens AM1, a strain serendipitously isolated half a century ago, has become the best-characterized model system for the study of aerobic methylotrophy (the ability to grow on reduced single-carbon compounds). However, with 5 replicons and 174 insertion sequence (IS) elements in the genome as well as a long history of domestication in the laboratory, genetic and genomic analysis of M. extorquens AM1 face several challenges. On the contrary, a recently isolated strain - M. extorquens PA1- is closely related to M. extorquens AM1 (100% 16S rRNA identity) and contains a streamlined genome with a single replicon and only 20 IS elements. With the exception of the methylamine dehydrogenase encoding gene cluster (mau), genes known to be involved in methylotrophy are well conserved between M. extorquens AM1 and M. extorquens PA1. In this paper we report four primary findings regarding methylotrophy in PA1. First, with a few notable exceptions, the repertoire of methylotrophy genes between PA1 and AM1 is extremely similar. Second, PA1 grows faster with higher yields compared to AM1 on C1 and multi-C substrates in minimal media, but AM1 grows faster in rich medium. Third, deletion mutants in PA1 throughout methylotrophy modules have the same C1 growth phenotypes observed in AM1. Finally, the precision of our growth assays revealed several unexpected growth phenotypes for various knockout mutants that serve as leads for future work in understanding their basis and generality across Methylobacterium strains. 相似文献
12.
Seiji Imoto Noriki Totsui Noboru Kishimoto 《Bioscience, biotechnology, and biochemistry》2020,84(7):1444-1450
ABSTRACT In the present study, we purified and characterized three formaldehyde dismutases (Fdms) (EC 1.2.98.1) (Fdm1, Fdm2, and Fdm3) of Methylobacterium sp. FD1. These Fdms (with His-tag) were produced in the recombinant E. coli and purified by immobilized metal affinity chromatography from the E. coli extracts. In each of the three Fdms, the enzyme-bound coenzyme was nicotinamide adenine dinucleotide (NAD(H)) and the enzyme-bound metal was zinc. The quaternary structures of these Fdms were estimated as homotetrameric. The optimal pHs and temperatures of Fdm1, Fdm2, and Fdm3 were approximately 6.5, 6.0, and 6.0, and 35°C, 25°C, and 30°C, respectively. The Km values of Fdm1, Fdm2, and Fdm3 were 621, 865, and 414 mM, respectively. These results were similar to the properties of already-known Fdms. However, each of the Fdms of FD1 had methanol:p-nitroso-N,N-dimethylaniline oxidoreductase activity that is not found in already-known Fdms. 相似文献
13.
Purification and characterization of hydroxypyruvate reductase from the facultative methylotroph Methylobacterium extorquens AM1. 下载免费PDF全文
Hydroxypyruvate reductase was purified to homogeneity from the facultative methylotroph Methylobacterium extorquens AM1. It has a molecular mass of about 71 kDa, and it consists of two identical subunits with a molecular mass of about 37 kDa. This enzyme uses both NADH (Km = 0.04 mM) and NADPH (Km = 0.06 mM) as cofactors, uses hydroxypyruvate (Km = 0.1 mM) and glyoxylate (Km = 1.5 mM) as the only substrates for the forward reaction, and carries out the reverse reaction with glycerate (Km = 2.6 mM) only. It was not possible to detect the conversion of glycolate to glyoxylate, a proposed role for this enzyme. Kinetics and inhibitory studies of the enzyme from M. extorquens AM1 suggest that hydroxypyruvate reductase is not a site for regulation of the serine cycle at the level of enzyme activity. 相似文献
14.
Methylobacterium extorquens AM1 possesses a formaldehyde-oxidation pathway that involves enzymes with high sequence identity with enzymes from methanogenic and sulfate-reducing archaea. Here we describe the purification and characterization of formylmethanofuran-tetrahydromethanopterin formyltransferase (Ftr), which catalyzes the reversible formation of formylmethanofuran (formylMFR) and tetrahydromethanopterin (H4MPT) from N5-formylH4MPT and methanofuran (MFR). Formyltransferase from M. extorquens AM1 showed activity with MFR and H4MPT isolated from the methanogenic archaeon Methanothermobacter marburgensis (apparent Km for formylMFR = 50 microM; apparent Km for H4MPT = 30 microM). The enzyme is encoded by the ffsA gene and exhibits a sequence identity of approximately 40% with Ftr from methanogenic and sulfate-reducing archaea. The 32-kDa Ftr protein from M. extorquens AM1 copurified in a complex with three other polypeptides of 60 kDa, 37 kDa and 29 kDa. Interestingly, these are encoded by the genes orf1, orf2 and orf3 which show sequence identity with the formylMFR dehydrogenase subunits FmdA, FmdB and FmdC, respectively. The clustering of the genes orf2, orf1, ffsA, and orf3 in the chromosome of M. extorquens AM1 indicates that, in the bacterium, the respective polypeptides form a functional unit. Expression studies in Escherichia coli indicate that Ftr requires the other subunits of the complex for stability. Despite the fact that three of the polypeptides of the complex showed sequence similarity to subunits of Fmd from methanogens, the complex was not found to catalyze the oxidation of formylMFR. Detailed comparison of the primary structure revealed that Orf2, the homolog of the active site harboring subunit FmdB, lacks the binding motifs for the active-site cofactors molybdenum, molybdopterin and a [4Fe-4S] cluster. Cytochrome c was found to be spontaneously reduced by H4MPT. On the basis of this property, a novel assay for Ftr activity and MFR is described. 相似文献
15.
Characterization of a novel soluble c-type cytochrome in a moxD mutant of Methylobacterium extorquens AM1 总被引:3,自引:0,他引:3
Methylobacterium extorquens AM1 contains a novel c-type cytochrome, called cytochrome c-553, previously thought to be a precursor of the electron acceptor (cytochrome cL) for methanol dehydrogenase. Its amino acid composition and serological characteristics show that it has no structural relationship to cytochrome cL. It usually comprises less than 5% of the total c-type cytochromes. In a moxD mutant, which contains neither methanol dehydrogenase nor cytochrome cL, it comprises 30% of the soluble cytochrome and it has been purified and characterized from that mutant. Cytochrome c-553 is large (Mr 23,000), acidic and monohaem, with a redox potential of 194 mV. It reacts rapidly and completely with CO but is not autoxidizable. It is not autoreducible, and it is not an electron acceptor from methanol dehydrogenase or methylamine dehydrogenase, nor an important electron donor to the oxidase. It is able to accept electrons from cytochrome cL and to donate electrons to cytochrome cH. It is present in the soluble fraction (presumably periplasmic) and membrane fraction of wild-type bacteria during growth on a wide range of growth substrates, but its function in these bacteria or in the moxD mutant has not been determined. 相似文献
16.
17.
Biochemical characterization of a dihydromethanopterin reductase involved in tetrahydromethanopterin biosynthesis in Methylobacterium extorquens AM1 下载免费PDF全文
During growth on one-carbon (C1) compounds, the aerobic alpha-proteobacterium Methylobacterium extorquens AM1 synthesizes the tetrahydromethanopterin (H4MPT) derivative dephospho-H4MPT as a C1 carrier in addition to tetrahydrofolate. The enzymes involved in dephospho-H4MPT biosynthesis have not been identified in bacteria. In archaea, the final step in the proposed pathway of H4MPT biosynthesis is the reduction of dihydromethanopterin (H2MPT) to H4MPT, a reaction analogous to the reaction of the bacterial dihydrofolate reductase. A gene encoding a dihydrofolate reductase homolog has previously been reported for M. extorquens and assigned as the putative H2MPT reductase gene (dmrA). In the present work, we describe the biochemical characterization of H2MPT reductase (DmrA), which is encoded by dmrA. The gene was expressed with a six-histidine tag in Escherichia coli, and the recombinant protein was purified by nickel affinity chromatography and gel filtration. Purified DmrA catalyzed the NAD(P)H-dependent reduction of H2MPT with a specific activity of 2.8 micromol of NADPH oxidized per min per mg of protein at 30 degrees C and pH 5.3. Dihydrofolate was not a substrate for DmrA at the physiological pH of 6.8. While the existence of an H2MPT reductase has been proposed previously, this is the first biochemical evidence for such an enzyme in any organism, including archaea. Curiously, no DmrA homologs have been identified in the genomes of known methanogenic archaea, suggesting that bacteria and archaea produce two evolutionarily distinct forms of dihydromethanopterin reductase. This may be a consequence of different electron donors, NAD(P)H versus reduced F420, used, respectively, in bacteria and methanogenic archaea. 相似文献
18.
Okubo Y Skovran E Guo X Sivam D Lidstrom ME 《Omics : a journal of integrative biology》2007,11(4):325-340
Microarrays are an important tool for understanding global gene expression changes, and the resulting data sets can be used to direct physiologic and metabolic studies. To take advantage of this technology, 60-mer oligonucleotide microarrays were designed for Methylobacterium extorquens AM1 to study gene expression changes that occur under differing physiological conditions. The carbon utilization pathways for methanol and succinate have been well characterized, and growth with these substrates was chosen as the condition used to validate the microarray data. The data were analyzed using two different methods and compared to previously obtained experimental data. The array data processed using the Significance Analysis of Microarrays followed by p-value assessment, correlated best to the experimental data. In addition to validating the microarrays, these studies uncovered possible connections between methylotrophy, iron, and sulfur homeostasis, bacteriochlorophyll production and polyketide synthesis, and will likely aid in uncovering further metabolic networks and genes required for methylotrophy. 相似文献
19.
Genetic and physical analyses of Methylobacterium organophilum XX genes encoding methanol oxidation. 总被引:3,自引:7,他引:3 下载免费PDF全文
When allyl alcohol was used as a suicide substrate, spontaneous mutants and UV light- and nitrous acid-generated mutants of Methylobacterium organophilum XX were selected which grew on methylamine but not on methanol. There was no detectable methanol dehydrogenase (MDH) activity in crude extracts of these mutants, yet Western blots revealed that some mutants still produced MDH protein. Complementation of 50 mutants by a cosmid gene bank of M. organophilum XX demonstrated that three major regions of the genome, each of which was separated by a minimum of 40 kilobases, were required for expression of active MDH. By subcloning and Tn5 insertion mutagenesis of subcloned fragments, at least 11 genes clustered within these three regions were subsequently identified. The identity of the MDH structural gene, which was initially determined by hybridization to the structural gene of Methylobacterium sp. strain AM1, was confirmed by Western blot analysis of an MDH-beta-galactosidase fusion protein. 相似文献