共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. 总被引:3,自引:0,他引:3 下载免费PDF全文
The Eph family of receptor protein-tyrosine kinases (RTKs) have recently been implicated in patterning and wiring events in the developing nervous system. Eph receptors are unique among other RTKs in that they fall into two large subclasses that show distinct ligand specificities and for the fact that they themselves might function as ''ligands'', thereby activating bidirectional signaling. To gain insight into the mechanisms of ligand-receptor interaction, we have mapped the ligand binding domain in Eph receptors. By using a series of deletion and domain substitution mutants, we now report that an N-terminal globular domain of the Nuk/Cek5 receptor is the ligand binding domain of the transmembrane ligand Lerk2. Using focus formation assays, we show that the Cek5 globular domain is sufficient to confer Lerk2-dependent transforming activity on the Cek9 orphan receptor. Extending our binding studies to other members of both subclasses of receptors, it became apparent that the same domain is used for binding of both transmembrane and glycosylphosphatidyl-anchored ligands. Our studies have determined the first structural elements involved in ligand-receptor interaction and will allow more fine-tuned genetic experiments to elucidate the mechanism of action of these important guidance molecules. 相似文献
3.
Lim J Ghadessy FJ Abdullah AA Pinsky L Trifiro M Yong EL 《Molecular endocrinology (Baltimore, Md.)》2000,14(8):1187-1197
4.
Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition 总被引:29,自引:0,他引:29
Bledsoe RK Montana VG Stanley TB Delves CJ Apolito CJ McKee DD Consler TG Parks DJ Stewart EL Willson TM Lambert MH Moore JT Pearce KH Xu HE 《Cell》2002,110(1):93-105
5.
6.
7.
8.
9.
Wärnmark A Treuter E Gustafsson JA Hubbard RE Brzozowski AM Pike AC 《The Journal of biological chemistry》2002,277(24):21862-21868
The activation function 2/ligand-dependent interaction between nuclear receptors and their coregulators is mediated by a short consensus motif, the so-called nuclear receptor (NR) box. Nuclear receptors exhibit distinct preferences for such motifs depending both on the bound ligand and on the NR box sequence. To better understand the structural basis of motif recognition, we characterized the interaction between estrogen receptor alpha and the NR box regions of the p160 coactivator TIF2. We have determined the crystal structures of complexes between the ligand-binding domain of estrogen receptor alpha and 12-mer peptides from the Box B2 and Box B3 regions of TIF2. Surprisingly, the Box B3 module displays an unexpected binding mode that is distinct from the canonical LXXLL interaction observed in other ligand-binding domain/NR box crystal structures. The peptide is shifted along the coactivator binding site in such a way that the interaction motif becomes LXXYL rather than the classical LXXLL. However, analysis of the binding properties of wild type NR box peptides, as well as mutant peptides designed to probe the Box B3 orientation, suggests that the Box B3 peptide primarily adopts the "classical" LXXLL orientation in solution. These results highlight the potential difficulties in interpretation of protein-protein interactions based on co-crystal structures using short peptide motifs. 相似文献
10.
11.
To examine the role of the ligand binding domain of epidermal growth factor receptor in its dimerization, we studied the dimerization of a truncated form of the receptor that resembles v-erbB in that it lacks a ligand binding domain. Receptor dimerization was determined by sedimentation analysis on sucrose density gradients at different concentrations of Triton X-100. At high concentrations of Triton X-100 (0.2%), the truncated receptor occurred as a monomer and displayed low basal autophosphorylation. By contrast, at low concentrations of Triton X-100 (0.01%), it existed as a dimer and exhibited high basal autophosphorylation. The ability of the truncated receptor to dimerize indicates that the ligand binding domain of the epidermal growth factor receptor is not required for receptor dimerization. 相似文献
12.
13.
Garside H Stevens A Farrow S Normand C Houle B Berry A Maschera B Ray D 《The Journal of biological chemistry》2004,279(48):50050-50059
Glucocorticoids inhibit inflammation by acting through the glucocorticoid receptor (GR) and powerfully repressing NF-kappaB function. Ligand binding to the C-terminal of GR promotes the nuclear translocation of the receptor and binding to NF-kappaB through the GR DNA binding domain. We sought how ligand recognition influences the interaction between NF-kappaB and GR. Both dexamethasone (agonist) and RU486 (antagonist) promote efficient nuclear translocation, and we show occupancy of the same intranuclear compartment as NF-kappaB with both ligands. However, unlike dexamethasone, RU486 had negligible activity to inhibit NF-kappaB transactivation. This failure may stem from altered co-factor recruitment or altered interaction with NF-kappaB. Using both glutathione S-transferase pull-down and bioluminescence resonance energy transfer approaches, we identified a major glucocorticoid ligand effect on interaction between the GR and the p65 component of NF-kappaB, with RU486 inhibiting recruitment compared with dexamethasone. Using the bioluminescence resonance energy transfer assay, we found that RU486 efficiently recruited NCoR to the GR, unlike dexamethasone, which recruited SRC1. Therefore, RU486 promotes differential protein recruitment to both the C-terminal and DNA binding domain of the receptor. Importantly, using chromatin immunoprecipitation, we show that impaired interaction between GR and p65 with RU486 leads to reduced recruitment of the GR to the NF-kappaB-responsive region of the interleukin-8 promoter, again in contrast to dexamethasone that significantly increased GR binding. We demonstrate that ligand-induced conformation of the GR C-terminal has profound effects on the functional surface generated by the DNA binding domain of the GR. This has implications for understanding ligand-dependent interdomain communication. 相似文献
14.
Growth factor receptor binding protein 2-mediated recruitment of the RING domain of Cbl to the epidermal growth factor receptor is essential and sufficient to support receptor endocytosis 总被引:10,自引:0,他引:10 下载免费PDF全文
Knockdown of growth factor receptor binding protein 2 (Grb2) by RNA interference strongly inhibits clathrin-mediated endocytosis of the epidermal growth factor receptor (EGFR). To gain insights into the function of Grb2 in EGFR endocytosis, we have generated cell lines in which endogenous Grb2 was replaced by yellow fluorescent protein (YFP)-tagged Grb2 expressed at the physiological level. In these cells, Grb2-YFP fully reversed the inhibitory effect of Grb2 knockdown on EGFR endocytosis and, moreover, trafficked together with EGFR during endocytosis. Overexpression of Grb2-binding protein c-Cbl did not restore endocytosis in Grb2-depleted cells. However, EGFR endocytosis was rescued in Grb2-depleted cells by chimeric proteins consisting of the Src homology (SH) 2 domain of Grb2 fused to c-Cbl. The "knockdown and rescue" analysis revealed that the expression of Cbl-Grb2/SH2 fusions containing RING finger domain of Cbl restores normal ubiquitylation and internalization of the EGFR in the absence of Grb2, consistent with the important role of the RING domain in EGFR endocytosis. In contrast, the carboxy-terminal domain of Cbl, when attached to Grb2 SH2 domain, had 4 times smaller endocytosis-rescue effect compared with the RING-containing chimeras. Together, the data suggest that the interaction of Cbl carboxy terminus with CIN85 has a minor and a redundant role in EGFR internalization. We concluded that Grb2-mediated recruitment of the functional RING domain of Cbl to the EGFR is essential and sufficient to support receptor endocytosis. 相似文献
15.
16.
17.
18.
19.
The pregnane X receptor (PXR), a member of the nuclear receptor superfamily, regulates the expression of drug-metabolizing enzymes in a ligand-dependent manner. The conventional view of nuclear receptor action is that ligand binding enhances the receptor's affinity for coactivator proteins, while decreasing its affinity for corepressors. To date, however, no known rigorous biophysical studies have been conducted to investigate the interaction among PXR, its coregulators, and ligands. In this work, steady-state total internal reflection fluorescence microscopy (TIRFM) and total internal reflection with fluorescence recovery after photobleaching were used to measure the thermodynamics and kinetics of the interaction between the PXR ligand binding domain and a peptide fragment of the steroid receptor coactivator-1 (SRC-1) in the presence and absence of the established PXR agonist, rifampicin. Equilibrium dissociation and dissociation rate constants of ~5 μM and ~2 s(-1), respectively, were obtained in the presence and absence of rifampicin, indicating that the ligand does not enhance the affinity of the PXR and SRC-1 fragments. Additionally, TIRFM was used to examine the interaction between PXR and a peptide fragment of the corepressor protein, the silencing mediator for retinoid and thyroid receptors (SMRT). An equilibrium dissociation constant of ~70 μM was obtained for SMRT in the presence and absence of rifampicin. These results strongly suggest that the mechanism of ligand-dependent activation in PXR differs significantly from that seen in many other nuclear receptors. 相似文献
20.
Endogenous and synthetic glucocorticoids (GCs), such as cortisol and dexamethasone (Dex), modulate airway inflammation, regulate the production of surfactant by lung epithelial cells, and influence fetal lung maturation. The 11-beta hydroxysteroid dehydrogenase type 2 (HSD2) enzyme catalyzes the oxidation of bioactive cortisol and Dex to their 11-keto metabolites. Thiram (tetramethylthiuram disulfide) specifically inhibits HSD2 activity by oxidizing cysteine residues located in the cofactor binding domain of the enzyme. During studies performed to define a potential role for HSD2 in modulating GC action in human lung epithelial cells, we observed that exposure of intact human lung epithelial cells (NCI-H441) to 50 microM Thiram significantly attenuated the down-stream effects of Dex (100 nM) on the expression of two GC-sensitive genes, pulmonary surfactant proteins A and B. This observation appeared to be inconsistent with simple inhibition of HSD2 activity. Although Thiram inhibited HSD2 oxidase activity in a dose-dependent manner without affecting HSD2 protein expression, Thiram also reduced specific binding of [3H]-Dex to the glucocorticoid receptor (GR). Pre-treatment of cells with 1 mM dithiothreitol (DTT), a thiol-reducing agent, completely blocked the inhibitory effect of Thiram on ligand binding. These results are suggestive that Thiram may alter the ligand-binding domain of the GR by oxidizing critical thiol-containing amino acid residues. Taken collectively, these data demonstrate that attenuated down-stream GC signaling, via decreased binding of ligand to the GR, is a novel cellular effect of Thiram exposure in human lung epithelial cells. 相似文献