首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neighbor-joining method: a new method for reconstructing phylogenetic trees   总被引:673,自引:29,他引:673  
A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained by using this method. Using computer simulation, we studied the efficiency of this method in obtaining the correct unrooted tree in comparison with that of five other tree-making methods: the unweighted pair group method of analysis, Farris's method, Sattath and Tversky's method, Li's method, and Tateno et al.'s modified Farris method. The new, neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods.   相似文献   

2.
A simple graphic method is proposed for reconstructing phylogenetic trees from molecular data. This method is similar to the unweighted pair-group method with arithmetic mean, but the process of computation of average distances and reconstruction of new matrices, required in the latter method, is eliminated from this new method, so that one can reconstruct a phylogenetic tree without using a computer, unless the number of operational taxonomic units is very large. Furthermore, this method allows a phylogenetic tree to have multifurcating branches whenever there is ambiguity with bifurcation.  相似文献   

3.
The most commonly used measure of evolutionary distance in molecular phylogenetics is the number of nucleotide substitutions per site. However, this number is not necessarily most efficient for reconstructing a phylogenetic tree. In order to evaluate the accuracy of evolutionary distance, D(t), for obtaining the correct tree topology, an accuracy index, A(t), was proposed. This index is defined as D'(t)/square root of[D(t)], where D'(t) is the first derivative of D(t) with respect to evolutionary time and V[D(t)] is the sampling variance of evolutionary distance. Using A(t), namely, finding the condition under which A(t) gives the maximum value, we can obtain an evolutionary distance which is efficient for obtaining the correct topology. Under the assumption that the transversional changes do not occur as frequently as the transitional changes, we obtained the evolutionary distances which are expected to give the correct topology more often than are the other distances.   相似文献   

4.
T-REX (tree and reticulogram reconstruction) is an application to reconstruct phylogenetic trees and reticulation networks from distance matrices. The application includes a number of tree fitting methods like NJ, UNJ or ADDTREE which have been very popular in phylogenetic analysis. At the same time, the software comprises several new methods of phylogenetic analysis such as: tree reconstruction using weights, tree inference from incomplete distance matrices or modeling a reticulation network for a collection of objects or species. T-REX also allows the user to visualize obtained tree or network structures using Hierarchical, Radial or Axial types of tree drawing and manipulate them interactively. AVAILABILITY: T-REX is a freeware package available online at: http://www.fas.umontreal.ca/biol/casgrain/en/labo/t-rex  相似文献   

5.
Steel demonstrated that the maximum-likelihood function for a phylogenetic tree may have multiple local maxima. If this phenomenon were general, it would compromise the applicability of maximum likelihood as an optimality criterion for phylogenetic trees. In several simulation studies reported on in this paper, the true tree, and other trees of very high likelihood, rarely had multiple maxima. Our results thus provide reassurance that the value of maximum likelihood as a tree selection criterion is not compromised by the presence of multiple local maxima--the best estimates of the true tree are not likely to have them. This result holds true even when an incorrect nucleotide substitution model is used for tree selection.  相似文献   

6.
Several indices that measure the degree of balance of a rooted phylogenetic tree have been proposed so far in the literature. In this work we define and study a new index of this kind, which we call the total cophenetic index: the sum, over all pairs of different leaves, of the depth of their lowest common ancestor. This index makes sense for arbitrary trees, can be computed in linear time and it has a larger range of values and a greater resolution power than other indices like Colless’ or Sackin’s. We compute its maximum and minimum values for arbitrary and binary trees, as well as exact formulas for its expected value for binary trees under the Yule and the uniform models of evolution. As a byproduct of this study, we obtain an exact formula for the expected value of the Sackin index under the uniform model, a result that seems to be new in the literature.  相似文献   

7.
8.
Clearcut: a fast implementation of relaxed neighbor joining   总被引:1,自引:0,他引:1  
SUMMARY: Clearcut is an open source implementation for the relaxed neighbor joining (RNJ) algorithm. While traditional neighbor joining (NJ) remains a popular method for distance-based phylogenetic tree reconstruction, it suffers from a O(N(3)) time complexity, where N represents the number of taxa in the input. Due to this steep asymptotic time complexity, NJ cannot reasonably handle very large datasets. In contrast, RNJ realizes a typical-case time complexity on the order of N(2)logN without any significant qualitative difference in output. RNJ is particularly useful when inferring a very large tree or a large number of trees. In addition, RNJ retains the desirable property that it will always reconstruct the true tree given a matrix of additive pairwise distances. Clearcut implements RNJ as a C program, which takes either a set of aligned sequences or a pre-computed distance matrix as input and produces a phylogenetic tree. Alternatively, Clearcut can reconstruct phylogenies using an extremely fast standard NJ implementation. AVAILABILITY: Clearcut source code is available for download at: http://bioinformatics.hungry.com/clearcut  相似文献   

9.
Rooted phylogenetic trees constructed from different datasets (e.g. from different genes) are often conflicting with one another, i.e. they cannot be integrated into a single phylogenetic tree. Phylogenetic networks have become an important tool in molecular evolution, and rooted phylogenetic networks are able to represent conflicting rooted phylogenetic trees. Hence, the development of appropriate methods to compute rooted phylogenetic networks from rooted phylogenetic trees has attracted considerable research interest of late. The CASS algorithm proposed by van Iersel et al. is able to construct much simpler networks than other available methods, but it is extremely slow, and the networks it constructs are dependent on the order of the input data. Here, we introduce an improved CASS algorithm, BIMLR. We show that BIMLR is faster than CASS and less dependent on the input data order. Moreover, BIMLR is able to construct much simpler networks than almost all other methods. BIMLR is available at http://nclab.hit.edu.cn/wangjuan/BIMLR/.  相似文献   

10.
A new method is presented for inferring evolutionary trees using nucleotide sequence data. The birth-death process is used as a model of speciation and extinction to specify the prior distribution of phylogenies and branching times. Nucleotide substitution is modeled by a continuous-time Markov process. Parameters of the branching model and the substitution model are estimated by maximum likelihood. The posterior probabilities of different phylogenies are calculated and the phylogeny with the highest posterior probability is chosen as the best estimate of the evolutionary relationship among species. We refer to this as the maximum posterior probability (MAP) tree. The posterior probability provides a natural measure of the reliability of the estimated phylogeny. Two example data sets are analyzed to infer the phylogenetic relationship of human, chimpanzee, gorilla, and orangutan. The best trees estimated by the new method are the same as those from the maximum likelihood analysis of separate topologies, but the posterior probabilities are quite different from the bootstrap proportions. The results of the method are found to be insensitive to changes in the rate parameter of the branching process. Correspondence to: Z. Yang  相似文献   

11.
The robustness (sensitivity to violation of assumptions) of the maximum- likelihood and neighbor-joining methods was examined using simulation. Maximum likelihood and neighbor joining were implemented with Jukes- Cantor, Kimura, and gamma models of DNA substitution. Simulations were performed in which the assumptions of the methods were violated to varying degrees on three model four-taxon trees. The performance of the methods was evaluated with respect to ability to correctly estimate the unrooted four-taxon tree. Maximum likelihood outperformed neighbor joining in 29 of the 36 cases in which the assumptions of both methods were satisfied. In 133 of 180 of the simulations in which the assumptions of the maximum-likelihood and neighbor-joining methods were violated, maximum likelihood outperformed neighbor joining. These results are consistent with a general superiority of maximum likelihood over neighbor joining under comparable conditions. They extend and clarify an earlier study that found an advantage for neighbor joining over maximum likelihood for gamma-distributed mutation rates.   相似文献   

12.

Background  

Non-parametric bootstrapping is a widely-used statistical procedure for assessing confidence of model parameters based on the empirical distribution of the observed data [1] and, as such, it has become a common method for assessing tree confidence in phylogenetics [2]. Traditional non-parametric bootstrapping does not weigh each tree inferred from resampled (i.e., pseudo-replicated) sequences. Hence, the quality of these trees is not taken into account when computing bootstrap scores associated with the clades of the original phylogeny. As a consequence, traditionally, the trees with different bootstrap support or those providing a different fit to the corresponding pseudo-replicated sequences (the fit quality can be expressed through the LS, ML or parsimony score) contribute in the same way to the computation of the bootstrap support of the original phylogeny.  相似文献   

13.
Bootstrap method of interior-branch test for phylogenetic trees   总被引:5,自引:2,他引:5  
Statistical properties of the bootstrap test of interior branch lengths of phylogenetic trees have been studied and compared with those of the standard interior-branch test in computer simulations. Examination of the properties of the tests under the null hypothesis showed that both tests for an interior branch of a predetermined topology are quite reliable when the distribution of the branch length estimate approaches a normal distribution. Unlike the standard interior-branch test, the bootstrap test appears to retain this property even when the substitution rate varies among sites. In this case, the distribution of the branch length estimate deviates from a normal distribution, and the standard interior-branch test gives conservative confidence probability values. A simple correction method was developed for both interior- branch tests to be applied for testing the reliability of tree topologies estimated from sequence data. This correction for the standard interior-branch test appears to be as effective as that obtained in our previous study, though it is much simpler. The bootstrap and standard interior-branch tests for estimated topologies become conservative as the number of sequence groups in a star-like tree increases.   相似文献   

14.
TOPD/FMTS: a new software to compare phylogenetic trees   总被引:1,自引:0,他引:1  
SUMMARY: TOPD/FMTS has been developed to evaluate similarities and differences between phylogenetic trees. The software implements several new algorithms (including the Disagree method that returns the taxa, that disagree between two trees and the Nodal method that compares two trees using nodal information) and several previously described methods (such as the Partition method, Triplets or Quartets) to compare phylogenetic trees. One of the novelties of this software is that the FMTS (From Multiple to Single) program allows the comparison of trees that contain both orthologs and paralogs. Each option is also complemented with a randomization analysis to test the null hypothesis that the similarity between two trees is not better than chance expectation. AVAILABILITY: The Perl source code of TOPD/FMTS is available at http://genomes.urv.es/topd.  相似文献   

15.
A new consensus method for summarizing competing phylogenetic hypotheses, weighted compromise, is described. The method corrects for a bias inherent in majority‐rule consensus/compromise trees when the source trees exhibit non‐independence due to ambiguity in terminal clades. Suggestions are given for its employment in parsimony analyses and tree resampling strategies such as bootstrapping and jackknifing. An R function is described that can be used with the programming language R to produce the consensus.  相似文献   

16.
Quantitative data are essential to an appropriate characterization of vegetation. In the past few years, considerable attention has been paid to vegetation sampling techniques. A number of methods have been developed for plant density estimations that utilize spacing distances instead of fixed-area quadrats. In this paper, we review the main distance methods for estimating density and propose a new distance method denominated the quartered neighbor method. In this method, the sampling point is considered the center, and the area around it is divided into four quadrants. The distance from the closest individual in each quadrant to its closest neighbor in the same quadrant is measured, and the average of them is the distance we need. It is actually an integration of two old distance methods, the nearest neighbor method, and the point-centered quarter method. With our new method and an old distance method (the point-centered quarter method), we calculated the average spacing distances of the Larix principis-rupprechtii population in the larch forests of the Donglingshan Mountain. Comparing the two methods with the quadrat method, we found they were almost the same in accuracy, but the precision of the new one was better. Meanwhile, it is adequate in sampling intensity and adaptable for general use in rapid ecological survey work.  相似文献   

17.
Quantitative data are essential to an appro-priate characterization of vegetation. In the past few years, considerable attention has been paid to vegetation sampling techniques. A number of methods have been developed for plant density estimations that utilize spacing distances instead of fixed-area quadrats. In this paper, we review the main distance methods for estimating density and propose a new distance method denominated the quartered neighbor method. In this method, the sampling point is considered the center, and the area around it is divided into four quadrants. The distance from the closest individual in each quadrant to its closest neighbor in the same quadrant is measured, and the average of them is the distance we need. It is actually an integration of two old distance methods, the nearest neighbor method, and the point-centered quarter method. With our new method and an old distance method (the point-centered quarter method), we calculated the average spacing distances of the Larix principis-rupprechtii population in the larch forests of the Donglingshan Mountain. Comparing the two methods with the quadrat method, we found they were almost the same in accuracy, but the precision of the new one was better. Meanwhile, it is adequate in sampling intensity and adaptable for general use in rapid ecological survey work.  相似文献   

18.
UniFrac: a new phylogenetic method for comparing microbial communities   总被引:9,自引:0,他引:9  
We introduce here a new method for computing differences between microbial communities based on phylogenetic information. This method, UniFrac, measures the phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction of the branch length of the tree that leads to descendants from either one environment or the other, but not both. UniFrac can be used to determine whether communities are significantly different, to compare many communities simultaneously using clustering and ordination techniques, and to measure the relative contributions of different factors, such as chemistry and geography, to similarities between samples. We demonstrate the utility of UniFrac by applying it to published 16S rRNA gene libraries from cultured isolates and environmental clones of bacteria in marine sediment, water, and ice. Our results reveal that (i) cultured isolates from ice, water, and sediment resemble each other and environmental clone sequences from sea ice, but not environmental clone sequences from sediment and water; (ii) the geographical location does not correlate strongly with bacterial community differences in ice and sediment from the Arctic and Antarctic; and (iii) bacterial communities differ between terrestrially impacted seawater (whether polar or temperate) and warm oligotrophic seawater, whereas those in individual seawater samples are not more similar to each other than to those in sediment or ice samples. These results illustrate that UniFrac provides a new way of characterizing microbial communities, using the wealth of environmental rRNA sequences, and allows quantitative insight into the factors that underlie the distribution of lineages among environments.  相似文献   

19.
We introduce a distance-based phylogeny reconstruction method called "weighted neighbor joining," or "Weighbor" for short. As in neighbor joining, two taxa are joined in each iteration; however, the Weighbor criterion for choosing a pair of taxa to join takes into account that errors in distance estimates are exponentially larger for longer distances. The criterion embodies a likelihood function on the distances, which are modeled as correlated Gaussian random variables with different means and variances, computed under a probabilistic model for sequence evolution. The Weighbor criterion consists of two terms, an additivity term and a positivity term, that quantify the implications of joining the pair. The first term evaluates deviations from additivity of the implied external branches, while the second term evaluates confidence that the implied internal branch has a positive branch length. Compared with maximum-likelihood phylogeny reconstruction, Weighbor is much faster, while building trees that are qualitatively and quantitatively similar. Weighbor appears to be relatively immune to the "long branches attract" and "long branch distracts" drawbacks observed with neighbor joining, BIONJ, and parsimony.  相似文献   

20.
SUMMARY: BAOBAB is a Java user interface dedicated to viewing and editing large phylogenetic trees. Original features include: (i) a colour-mediated overview of magnified subtrees; (ii) copy/cut/paste of (sub)trees within or between windows; (iii) compressing/ uncompressing subtrees; and (iv) managing sequence files together with tree files. AVAILABILITY: http://www.univ-montp2.fr/~genetix/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号