首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dated sediment cores from five alpine lakes (>3200 m asl) in Rocky Mountain National Park (Colorado Front Range, USA) record near‐synchronous stratigraphic changes that are believed to reflect ecological and biogeochemical responses to enhanced nitrogen deposition from anthropogenic sources. Changes in sediment proxies include progressive increases in the frequencies of mesotrophic planktonic diatom taxa and diatom concentrations, coupled with depletions of sediment δ15N and C : N values. These trends are especially pronounced since approximately 1950. The most conspicuous diatoms to expand in recent decades are Asterionella formosa and Fragilaria crotonensis. Down‐core species changes are corroborated by a year‐long sediment trap experiment from one of the lakes, which reveals high frequencies of these two taxa during autumn and winter months, the interval of peak annual limnetic []. Although all lakes record recent changes, the amplitude of stratigraphic shifts is greater in lakes east of the Continental Divide relative to those on the western slope, implying that most nitrogen enrichment originates from urban, industrial and agricultural sources east of the Rocky Mountains. Deviations from natural trajectories of lake ontogeny are illustrated by canonical correspondence analysis, which constrains the diatom record as a response to changes in nitrogen biogeochemistry. These results indicate that modest rates of anthropogenic nitrogen deposition are fully capable of inducing directional biological and biogeochemical shifts in relatively pristine ecosystems.  相似文献   

2.
1. A diatom‐total phosphorus transfer function has been applied to a sedimentary diatom sequence from Groby Pool, a small shallow lake in Leicestershire, U.K. 2. Extensive aquatic plant records exist for Groby Pool dating back over two centuries. These records, in conjunction with selected aquatic pollen and herbarium diatom data, provide independent, qualitative evidence for the progression of eutrophication and its effects on aquatic plant communities and habitat structure. 3. Before 1800, Groby Pool was probably mesotrophic with clear water and a diverse submerged macrophyte community, but subsequently it experienced considerable nutrient enrichment. Key evidence for this includes: (i) historical plant records indicating the loss of species associated with mesotrophic waters and their replacement by others typical of eutrophic conditions, (ii) a significant increase in the percentage of planktonic diatoms in the lake sediment record (particularly Cyclostephanos dubius) after 1890, and (iii) increases in percentages of Stephanodiscus parvus and Cocconeis placentula in the second half of the twentieth century. 4. Diatom‐inferred total phosphorus (DI‐TP) estimates were inconsistent with the qualitative evidence for eutrophication at Groby Pool. In particular the DI‐TP profile was thought to overestimate phosphorus during the period of dominance by small Fragilaria spp. before 1890, and to misjudge the timing and direction of subsequent changes in nutrient loading. 5. This study highlights some of the problems associated with the application of diatom‐TP transfer functions to sedimentary diatom sequences from shallow lakes. The major problem relates to the frequent dominance of non‐planktonic diatoms in the sediments of these systems, many species of which (particularly small Fragilaria spp.) appear to be more sensitive to changes in habitat availability than to phosphorus. Potential ways of improving diatom‐TP models via altered approaches to sampling are suggested.  相似文献   

3.
The regulation of phosphoribulokinase (PRK) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) was investigated in a freshwater pennate diatom, Asterionella formosa Hassall, and compared to the well‐studied chlorophyte Chlamydomonas reinhardtii P. A. Dang. As has been reported for a marine centric diatom, in A. formosa, PRK was not regulated by reduction with dithiothreitol (DTT) apart from a weak induction in the presence of NADPH and DTT. However, NADPH‐GAPDH was strongly activated when reduced, in contrast to a previous report on a diatom. Surprisingly, it was inhibited by NADPH, unlike in C. reinhardtii, while NADH‐GAPDH was not affected. NADH‐GAPDH was also strongly activated by DTT in contrast to most other photosynthetic cells. In A. formosa, unlike C. reinhardtii, 1,3‐bisphosphoglycerate, the substrate of GAPDH, activated this enzyme, even in the absence of DTT, when using both NADH and NADPH as cofactors. Some of these kinetic behaviors are consistent with regulation by protein–protein interactions involving CP12, a small protein that links PRK and GAPDH in cyanobacteria, green algae, and higher plants. This conclusion was supported by immunodetection of CP12 in crude extracts of A. formosa, using antibodies raised against CP12 from C. reinhardtii. This is the first report of the existence of CP12 in a diatom, but CP12 may be a common feature of diatoms since a bioinformatic search suggested that it was also present in the Thalassiosira pseudonana Hasle et Heimdal genome v3.0. Despite the presence of CP12, this work provides further support for the differential regulation of Calvin cycle enzymes in diatoms compared to green algae.  相似文献   

4.
1. In cultural landscapes, lake response to climate can be masked by land‐use change and nutrient loss from their catchments. Palaeolimnological methods were used to reconstruct the ecological response of diatoms in a eutrophic lowland lake (White Lough, Co. Tyrone, Northern Ireland) to altered nutrient P loading and precipitation variability over c. 100 years. 2. 210Pb‐dated sediment cores were analysed to determine diatom assemblage variability, biogenic silica concentration, geochemical phosphorus concentration and accumulation rate. Manure P and agricultural N surplus data were collated from documentary sources. Long‐term trends in annual temperature and precipitation were derived from the Armagh Observatory. 3. Diatom community turnover from 1890 until c. 1960 was limited, and assemblages were dominated by Aulacoseira subarctica; after this date, changes primarily reflected a eutrophication sequence owing to increased diffuse nutrient inputs associated with intensification of land use (external P loading increased by a factor of three). 4. Diatom and biogenic Si profiles were compared with North Atlantic Oscillation (NAO) records, an index of regional weather patterns. Biogenic Si exhibited a c. 7‐year cycle, which tracked a cycle of similar timescale in the Armagh climate record for dry summers. In turn, this cycle was related to the variation in the NAO. 5. Monitoring data from 1971 to 2007 of nitrate exports from the Blackwater River showed that these too followed a roughly 7‐year cycle at least up to 2000, in which dry summers were followed by sharp increases in nitrate export. It is argued that diatom production in White Lough reflects the cyclic behaviour in nitrate loading and the constraints that nitrogen availability places on the spring diatom bloom in a lake that is dominated by cyanobacteria.  相似文献   

5.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

6.
7.
8.
1. Pacific salmon are a textbook example of migratory animals that transfer nutrients between ecosystems, but little is known about how salmon‐derived nutrients (SDN) affect the biodiversity of recipient freshwater ecosystems. We examined paleolimnological records from six Alaskan lakes to define how changes in SDN from sockeye salmon (Oncorhynchus nerka) influenced sedimentary diatom community structure and beta‐diversity among lakes and through time. 2. Using an isotopic mixing model, we showed that SDN loading could account for >80% of the lake total nitrogen budgets and strongly regulated diatom community composition. Spatial dissimilarity in diatom communities was positively related to differences in SDN among lakes (r2 = 0.69, P < 0.01, n = 10). Likewise, temporal dissimilarity in diatom communities was positively related to differences in SDN in a sediment core with substantial variation in salmon spawner dynamics between 1700 and 1950 AD (r2 = 0.34, P < 0.01, n = 19). Finally, beta‐diversity metrics quantifying temporal turnover within each lake’s sediment record were also positively related to the variance in SDN loading among lakes (r2 = 0.88, P < 0.05, n = 5). Mean SDN was only negatively correlated to temporal diatom beta‐diversity. 3. Spatially subsidised systems often receive temporally variable resource inputs, and thus, it is not surprising that, unlike previous studies, we found that resource variability was the key driver of community composition and beta‐diversity. In habitats that receive strongly fluctuating external nutrient loads, environment heterogeneity may overweigh stochastic community processes. In addition, freshwater diatoms are characterised by great dispersal capabilities and short life cycles and therefore may be a more sensitive indicator for evaluating the role of resource variability than previously used model organisms. These results suggest that productivity–diversity relationship vary with the nature of nutrient loading and the life history of the community studied. 4. Overall, our study highlights that the transport of nutrients by sockeye salmon across ecosystem boundaries is a significant driver of algal community and biodiversity in nursery lakes, mainly through changing the magnitude of nutrient variation. As such, freshwater species diversity in regions like the U.S. Pacific Northwest may become impoverished where there have been long‐term declines in salmon populations and decreases in nutrient variability among lakes.  相似文献   

9.
SUMMARY. 1. Lough Augher, Co. Tyrone, Northern Ireland, underwent eutrophication as a result of untreated effluent disposal by a local creamery, from 1900 until 1972–73, when primary sewage treatment began. When this remedial action met with limited success the effluent was redirected to the River Blackwater, downstream of the lake 2. A sediment core taken in July 1981 shows an unambiguous record of the diatom response to this eutrophication; the species succession represents a clear eutrophication gradient, with a shift from mesotrophic plankton forms (Aulacoseira ambigua, Asterionella formosa, Fragilaria crotonensis, Diatoma tenue var. elongatum) to a variety of small Stephanodiscus spp. typical of very eutrophic conditions (S. parvus, S. hantzschii). The succession is in reasonable agreement with that predicted by changing Si:P ratios. 3. A second, short core, taken in September 1985, shows dramatic changes in the diatom plankton after 1981, with resurgences and rapid increases of species present early in the lake's eutrophication, and representative of mesotrophic conditions. There is clear agreement between the biostratigraphic record of the two cores, for the time period during which they overlap, c. 1970–81. 4. The available chemical data post-dates the re-direction of the creamery effluent. However, it indicates that the phosphorus concentration is in equilibrium with the loading, and has stabilized following effluent re-direction. There were no significant differences for chlorophyll a and total phosphorus between the years for which data are available. The mean concentrations were 10, 14 and 10 g 1?1 chlorophyll a, and 61, 63 and 58 g TP 1?1 in 1978, 1979 and 1982 respectively. 5. A Correspondence Analysis Joint-plot is used to summarize the biostratigraphy of the two cores. It serves as an ecological summary of the responses of the plankton diatoms to changing nutrient concentrations and ratios, following redirection of the creamery effluent, and demonstrates clearly the new direction taken by the planktonic diatoms. Although the phosphorus and chlorophyll a data suggest that the lake returned quickly to an equilibrium state, the diatom community continued to change. suggesting a time-lag effect and non-equilibrium responses by the planktonic diatoms to their nutrient environment. 6. The potential value of palaeolimnological approaches to long- and medium-term monitoring of diatom plankton changes should not be underestimated; they may provide an important time component for limnological restoration projects.  相似文献   

10.
1. Contemporary limnological and palaeolimnological data from Piburger See (Eastern Alps, Austria) allowed the reconstruction of its trophic state since the late 19th century and the assessment of changes in phytoplankton biomass and species composition in relation to selected environmental parameters. 2. A radiometrically dated sediment core from Piburger See was analysed for geochemical parameters, spheroidal carbonaceous particles (SCPs), bacterial and algal pigments, and diatoms. The low SCP sediment inventory assigns Piburger See to the ‘cleaner’ sites in Europe with respect to fossil‐fuel related air pollution. The sedimentary pigment and diatom record reveals moderate eutrophication during the 20th century, followed by a slow re‐oligotrophication since the mid‐1980s because of lake restoration starting in 1970. 3. Epilimnetic temperature for Piburger See was reconstructed using air temperature records. A pronounced temperature increase has been recorded during the mid‐1940s and since the late‐20th century, both promoting algal growth and changes in species composition (e.g. increase in centric diatoms and recent bloom of Asterionella formosa). 4. Climate scenarios project additional substantial warming for this mountain lake by the end of the 21st century which will be most pronounced during the growing season. The predicted change in lake water temperature and thermal dynamics represents a key driver for the trophic and ecological status of Piburger See in the future.  相似文献   

11.
12.
1. Changes in nutrients and climate have occurred over approximately the same timescales in many European lake catchments. Here, we attempt to interpret the sedimentary diatom record of a large shallow lake, Loch Leven, in relation to these pressures using information gained from analysis of long‐term data sets of water quality, climate and planktonic diatoms. 2. The core data indicate the enrichment of Loch Leven starting in c. 1800–1850, most likely from agricultural practices in the catchment, with a more marked phase since c. 1940–1950 caused by increased phosphorus inputs from sewage treatment works, land drainage and a woollen mill. 3. While the recent diatom plankton remains are dominated by taxa associated with nutrient‐rich conditions, an increase in Aulacoseira subarctica relative to Stephanodiscus taxa since the mid‐1980s suggests that reductions in external catchment sources of nutrients (since 1985) may have resulted in partial recovery. This observation accords well with the long‐term monitoring series of water chemistry and phytoplankton. 4. On a decadal‐centennial scale, the eutrophication signal in the sediment record outweighs any evidence of climate as a control on the diatom community. However, at an inter‐annual scale, while the diatom data exhibit high variability, there are several changes in species composition in the recent fossil record that may be attributed to climatic controls. 5. The study highlights the value of a palaeolimnological approach, particularly when coupled with long‐term data sets, for developing our understanding of environmental change at a range of temporal scales. The diatom record in the sediment can be used effectively to track recovery from eutrophication, but requires greater understanding of contemporary ecology to fully interpret climate impacts. 6. The study illustrates the complexity of ecosystem response to synchronous changes in nutrients and climate, and the difficulty of disentangling the effects of these multiple, interacting pressures.  相似文献   

13.
Diatom concentrations in surface sediments are positively correlated with limnetic chlorophyll a concentrations in Florida (USA) lakes. Using this relationship, I examine models that provide quantitative inferences for trophic state in historical applications.The best model predicts chlorophyll a trophic state index (TSI) values from log-transformed diatom concentrations and explains approximately half the variance in the dependent variable. Diatom accumulation rates are not better than sedimentary diatom concentrations as predictors of TSI. The entire diatom assemblage is as sensitive an indicator of TSI as are the planktonic diatoms alone. A model that considers the ecological preferences of specific taxa was found to be a better predictor than the model based on total diatom concentration.The sedimentary diatom concentration model provides a useful method for assessing historical changes in primary productivity, except in lakes where factors (e.g., silica limitation, blue-green bacterial inhibition) limited diatom production, or post-depositional changes removed sedimentary diatoms. TSI inferences are presented for sediment cores from two Florida lakes, one of which demonstrates a problematic application, and the other of which does not.  相似文献   

14.
  • 1 Stratigraphic analyses of inorganic geochemistry, pigments and fossil diatoms in a 0.7 m core of profundal sediments are used to reconstruct the limnological history of Harvey's Lake, Vermont, over the last 1000 years. The lake is moderately productive, deep (44 m) and clear, and the phytoplankton today is dominated by the blue-green alga, Oscillatoria rubescens. Sedimentary pigments unique to blue-green algae, oscillaxanthin and myxoxanthophyll, provide a detailed history of changes in the O. rubescens population. Accurate sediment chronology is derived from 210Pb, 137Cs and 14C dating and from the stratigraphy of pollen and sawmill wastes.
  • 2 Primary production increased in Harvey's Lake in 1780 following European settlement and again after 1945, as shown by greater accumulation of sedimentary pigments and diatom frustules, and changes in fossil algal assemblages. Blue-green algae first appeared in abundance about 1945, indicating nutrient enrichment from dairy wastes and shoreline development. Increased deposition of elements associated with classic minerals also suggests greater soil erosion during both of these intervals.
  • 3 Two episodes of increased sedimentary anoxia (1820–1920 and 1945–present) are marked in the sedimentary record by enhanced pigment preservation, changes in authigenic Fe and Mn stratigraphy,’and the development of laminated sediments. The earlier episode of oxygens depletion is correlated with the discharge of sawmill wastes into the lake, and the later episode is associated with increased primary production.
  • 4 Based on these data a new model for Fe and Mn sediment stratigraphy is proposed for lakes that do not undergo complete hypolimnetic anoxia.
  • 5 Fine-scale resolution of recent diatom and oscillaxanthin stratigraphy provides historical evidence for a long-term negative interaction between diatom and blue-green algal populations in Harvey's Lake.
  相似文献   

15.
The plastidic glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) catalyzes the only reductive step in the Calvin cycle and exists as different forms of which GapC1 enzyme is present in chromalveolates, such as diatoms. Biochemical studies on diatoms are still fragmentary, and, thus, in this report, GAPDH from the freshwater diatom Asterionella formosa Hassall has been purified and kinetically characterized. It is a homotetrameric enzyme with a molecular mass of ~150 ± 15 kDa. The enzyme showed Michaelis–Menten kinetics with respect to both cofactors, NADPH and NADH, with a 16‐fold greater catalytic constant for NADPH. The Km for NADPH was 140 μM, the lowest affinity reported, while the catalytic constant, 815 s?1, is the highest reported. The Km for NADH was 93 μM, and the catalytic constant was 50 s?1, both are similar to reported values for other types of GAPDH. The GapC1 enzyme, like the Chlamydomonas reinhardtii A4 GAPDH, exhibits a cooperative behavior toward the substrate, 1,3‐bisphosphoglyceric acid (BPGA), with both cofactors. Mass spectrometry analysis showed that when GapC1 enzyme was purified without reducing agents, it copurified with a small protein with a mass of 8.2 kDa. This protein was recognized by antibodies against CP12. When associated with this protein, GAPDH displayed a lag that disappeared upon incubation with reducing agent in the presence of either BPGA or NADPH as a consequence of dissociation of the GAPDH/CP12 complex. Thus, as in other species of algae and higher plants, regulation of GapC1 enzyme in A. formosa may occur through association‐dissociation processes linked to dark‐light transitions.  相似文献   

16.
1. Long‐term data on the meteorology, hydrology, physicochemistry and plankton of a reservoir and its tributaries in SE Germany run from 1976 until now. This dimictic reservoir changed from mesotrophic to eutrophic in the 1970s, remained eutrophic in the 1980s and returned to the mesotrophic state after a sharp reduction in P loading in 1990. 2. Phytoplankton biomass reaches an annual maximum in spring and consists almost entirely of diatoms. While Asterionella formosa was dominant until 1990, Aulacoseira subarctica became more frequent at the end of the 1990s and was particularly abundant in years with short winters. 3. Statistical analyses suggested that these changes were triggered primarily by the mild winters that were frequent after 1988. Climate‐related hydrophysical variables and the initial biomass of the diatoms at the beginning of the year, considered as an ‘inoculum’, were identified as most important. These variables explained 39% of the total variance of the relative abundance, whereas the change in trophic conditions was responsible for about 20%. 4. The absolute and relative abundance of A. subarctica was positively related to short ice cover, early ice‐out and a long‐lasting spring circulation. Owing to its physiological traits, and particularly its ability to survive under low‐light conditions, A. subarctica benefitted from short, mild winters. Under such conditions, it could sustain or establish a high initial biomass, whereas the concentrations of the other diatoms decreased over winter. However, this advantage may be lost if further warming causes an early onset of summer stratification. Because of its low population growth rate and requirement for high turbulence, A. subarctica needs long, cold springs to exploit the improved starting conditions and to become abundant. 5. In contrast to A. subarctica, A. formosa required a substantial soluble reactive phosphorus supply to compete successfully. The eutrophic conditions until 1990 were the prerequisite for its mass growth under low‐light and low‐temperature conditions during the spring. After reduction in P concentration from 1990, A. formosa declined and other diatom species became more abundant. 6. These other diatoms may be viewed as ‘stopgaps’ when conditions were not favourable for A. subarctica or A. formosa. Diatoma elongatum exploited brief circulation periods in years with low P loading. Synedra acus and Fragilaria crotonensis, because of their poor competitive ability at low light intensity, reached high density in the upper water column in the transitional period between spring circulation and summer stratification. 7. Our study suggests that climate‐related variables have crucial impacts on the spring phytoplankton dynamics of deep stratified waterbodies. They can mask the consequences of changes in the trophic conditions and, corresponding to the functional traits of the different phytoplankton species, also decisively control their relative abundances. In this reservoir, the warmer winters and prolonged spring circulations did not only lead to high phytoplankton biomass (despite considerably reduced nutrient loads) but also cause a marked shift in the diatom assemblage during the spring bloom.  相似文献   

17.
Diatoms form large spring blooms in lakes and oceans, providing fuel for higher trophic levels at the start of the growing season. Some of the diatom blooms, however, are not grazed by filter-feeding zooplankton like Daphnia due to their large size. Several of these large diatoms are susceptible to chytrid infections. Zoospores of chytrids appeared to be excellent food for Daphnia, both in terms of size, shape, and quality (PUFAs and cholesterol). Thus, zoospores of chytrids can bridge the gap between inedible diatoms and Daphnia. In order to examine the effects of diatoms and chytrids on the survival of copepods, we performed one grazing and one survival experiment. The grazing experiment revealed that the diatom, Asterionella formosa, was not grazed by the copepod, Eudiaptomus gracilis, even after being infected by the chytrid Zygorhizidium planktonicum. However, carbon and nitrogen concentrations were significantly reduced by E. gracilis only when A. formosa was infected by Z. planktonicum, indicating that the chytrids might facilitate material transfer from inedible diatoms to the copepods. The survival experiment revealed that E. gracilis lived shorter with A. formosa than with the cryptophyta Cryptomonas pyrenoidifera. However, the survival of E. gracilis increased significantly in the treatment where A. formosa cells were infected by Z. planktonicum. Since E. gracilis could not graze A. formosa cells due to their large colonial forms, E. gracilis may acquire nutrients by grazing on the zoospores, and were so able to survive in the presence of the A. formosa. This provides new insights into the role of parasitic fungi in aquatic food webs, where chytrids may improve copepod survival during diatom blooms.  相似文献   

18.
An endemic diatom, Cyclotella rhomboideo‐elliptica Skuja, from the Yunnan Plateau, has been disappearing gradually from some lakes of the plateau. This study investigated the diatom's distribution in 30 lakes and documents long‐term population changes in the paleolimnological record of a deep lake, Lake Fuxian. Living cells of C. rhomboideo‐elliptica were found in five Yunnan Plateau lakes in 1957, but cells were restricted to Lake Fuxian in 2005. Its absolute abundance fluctuated from low to high to low. Our study suggests that nutrient concentrations correlate with C. rhomboideo‐elliptica's s abundance and survival. We infer that the disappearance of C. rhomboideo‐elliptica in some lakes may be due to increased nutrient concentrations and the species may be indicators of low nutrients. During the study, we also found that decreased in the diatoms average long axis length after the early 1990s. This morphological change was likely due to higher nutrient concentrations or to the increase in temperature, or a combination of the two.  相似文献   

19.
1. How climate warming may interact with other pressures on aquatic ecosystems is an important issue for research and management. We combined lake monitoring data with a palaeolimnological study to explore the combined effects of eutrophication and subsequent oligotrophication with a long‐term temperature increase in epilimnetic waters. Our goals were (i) to evaluate how well sediment‐based reconstructions reflect the instrumental observations, (ii) to use the palaeo‐record to characterise a reference state for the lake and (iii) to explore whether data from the sediment record can aid in separating the effects of nutrient load and temperature in a large and deep lake. 2. Lake Mjøsa is a large and deep lake in south‐eastern Norway. Eutrophication symptoms peaked in the 1970s, which led to extensive measures to reduce the phosphorus load. A monitoring programme has run continuously from 1972. Monitoring has documented a marked decrease in phosphorus load and algal biomass and also revealed an increase in epilimnetic temperature and extended summer stratification. 3. Records of algal pigments and diatoms were extracted from sediment cores taken from 236 m depth. The pigment record documented dramatic changes in lake production consistent with the monitoring record. The diatom record reflected well the eutrophication history of the lake and also demonstrated that the assemblage of the recent recovery stage differs from that of the pre‐eutrophication period. 4. Ordination of diatom assemblages over time constrained by proxies for nutrient load and temperature indicated that the diatom assemblage correlated with both factors, which together accounted for 60% of the variation in diatom composition. No interaction was detected between these factors. The results suggest that the diatom assemblage has responded to varying nutrient loads as well as to changes in temperature and/or factors that correlate with temperature. 5. Reconstructions of algal biomass and total phosphorus content mirrored known changes through the monitoring period, although the absolute phosphorus estimates were too high relative to the instrumental record. The sediment record from Lake Mjøsa provides a baseline for lake production in terms of algal pigments and organic contents, and for the diatom assemblage composition in a pristine stage.  相似文献   

20.
A combined study of foraminifera, diatoms and stable isotopes in marine sediments off North Iceland records major changes in sea surface conditions since about 15 800 cal years (yr) BP. Results are presented from two gravity cores obtained at about 400 m water depth from two separate sedimentary basins on each side of the submarine Kolbeinsey Ridge. The chronology of the sedimentary record is based partly on AMS 14C dates, partly on the Vedde and the Saksunarvatn tephra markers, as well as the historical Hekla AD 1104 tephra. During the regional deglaciation, the planktonic foraminiferal assemblages are characterised by consistently high percentages of sinistrally coiled Neogloboquadrina pachyderma. However, major environmental variability is reflected by changes in stable isotope values and diatom assemblages. Low δ18O values indicate a strong freshwater peak as well as possible brine formation by sea-ice freezing during a pre-Bølling interval (Greenland Stadial 2), corresponding to the Heinrich 1 event. The foraminifera suggest a strong concurrent influence of relatively warm and saline Atlantic water, and both the foraminifera and the diatoms suggest mixing of cold and warm water masses. Similar but weaker environmental signals are observed during the Younger Dryas (Greenland Stadial 1) around the level of the Vedde Ash. Each freshwater peak is succeeded by an interval of severe cooling both at the beginning of the Bølling–Allerød Interstadial Complex (Greenland Interstadial 1) and during the Preboreal, presumably associated with the onset of intense deep water formatiom in the Nordic Seas. The Holocene thermal optimum, between 10 200 and about 7000 cal years (yr) BP, is interrupted by a marked cooling of the surface waters around 8200 cal yr BP. This cold event is clearly expressed by a pronounced increase in the percentages of sinistrally coiled N. pachyderma, corresponding to a temperature decrease of about 3°C. A general cooling in the area is indicated after 7000–6000 cal yr BP, both by the diatom data and by the planktonic foraminiferal data. After a severe cooling around 6000 cal yr BP, the planktonic foraminiferal assemblages suggest a warmer interval between 5500 and 4500 cal yr BP. Minor temperature fluctuations are reflected both in the foraminiferal and in the diatom data in the upper part of the record, but the time resolution of the present data is not high enough to pick up details in environmental changes through the late Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号