首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Lindskog  B Ahrén 《Hormone research》1988,29(5-6):237-240
The effects of the two intrapancreatic peptides galanin and pancreastatin on basal and stimulated insulin and glucagon secretion in the mouse were compared. It was found that at 2 min after intravenous injection of galanin or pancreastatin (4.0 nmol/kg), basal plasma glucagon and glucose levels were slightly elevated. Galanin was more potent than pancreastatin to elevate basal plasma glucagon levels: they increased from 60 +/- 15 to 145 +/- 19 pg/ml (p less than 0.01) after galanin compared to from 35 +/- 5 to 55 +/- 8 pg/ml (p less than 0.05) after pancreastatin. Plasma insulin levels were lowered by galanin (p less than 0.05), but not by pancreastatin. CCK-8 (6.3 nmol/kg) or terbutaline (3.6 mumol/kg) markedly increased the plasma insulin levels. Galanin (4.0 nmol/kg) completely abolished the insulin response to CCK-8 (p less than 0.001), but pancreastatin (4.0 nmol/kg) was without effect. Galanin inhibited the insulin response to terbutaline by approximately 60% (p less than 0.01), but pancreastatin inhibited the insulin response to terbutaline by approximately 35% only (p less than 0.05). CCK-8 and terbutaline did both elevate plasma glucagon levels by moderate potencies: neither pancreastatin nor galanin could affect these responses. Thus, in the mouse, galanin and pancreastatin both inhibit basal and stimulated insulin secretion, and stimulate basal glucagon secretion. Galanin is thereby more potent than pancreastatin. The study also showed that galanin potently inhibits insulin secretion stimulated by the octapeptide of cholecystokin and by the beta 2-adrenoceptor agonist terbutaline, and that pancreastatin inhibits terbutaline-induced insulin secretion.  相似文献   

2.
The effect of galanin on pancreatic hormone release was studied using isolated perifused rat pancreatic islets. In the presence of 100 mg/dl glucose, 10(-8) mol/L galanin significantly inhibited the basal somatostatin release compared with the perifusion without galanin, whereas there was no significant change in the basal insulin and glucagon release. However, under stimulation of 20 mmol/L arginine, 10(-8) mol/L galanin significantly enhanced glucagon release and suppressed insulin and somatostatin release. These effects disappeared immediately after cessation of galanin infusion. Additionally, 10(-8) mol/L galanin significantly enhanced the first and second phase of glucagon release stimulated by arginine, whereas arginine-stimulated insulin and somatostatin releases were significantly inhibited in both phases. In the cysteamine-treated rat islets, neither enhancement of glucagon release nor suppression of insulin release by galanin was reproducible. These findings indicate two possible explanations. First, it is suggested that the effects of galanin on insulin and glucagon release may be direct and reversed by non-specific effect of cycteamine. Secondly, it seems likely that galanin-enhanced glucagon release may be indirect and in part due to the concomitant somatostatin suppression. Galanin may have an important regulatory function on endocrine pancreas.  相似文献   

3.
Galanin has been shown to be present in the gastrointestinal tract, pancreas and CNS. In the rat stomach, immunohistochemical studies have revealed the presence of galanin in the intrinsic nervous system suggesting a function as putative neurotransmitter or neuromodulator which could affect neighbouring exo- or endocrine cells. Therefore this study was performed to determine the effect of galanin on the secretion of gastrin and somatostatin-like immunoreactivity (SLI) from the isolated perfused rat stomach. The stomach was perfused via the celiac artery and the venous effluent was collected from the portal vein. The luminal content was kept at pH 2 or 7 Galanin at a concentration of 10(-10), 10(-9) and 10(-8) M inhibited basal gastrin release by 60-70% (60-100 pg/min; p less than 0.05) at luminal pH 7. At luminal pH 2 higher concentrations of galanin (10(-9) and 10(-8) M) decreased basal gastrin secretion by 60-70% (60-100 pg/min; p less than 0.05). This inhibitory effect was also present during infusion of neuromedin-C, a mammalian bombesin-like peptide that stimulates gastrin release. SLI secretion remained unchanged during galanin administration. The inhibitory action of galanin on gastrin secretion was also present during the infusion of tetrodotoxin suggesting that this effect is not mediated via neural pathways. The present data demonstrate that galanin is an inhibitor of basal and stimulated gastrin secretion and has to be considered as an inhibitory neurotransmitter which could participate in the regulation of gastric G-cell function.  相似文献   

4.
Galanin, a neuropeptide, has important effects on hormone secretion from the hypothalamus and pituitary, and may also be involved in important biological processes such as pain, memory, and food intake. Yet, there is limited knowledge about how these processes are reflected by circulating galanin. To study the levels and molecular forms of galanin in the human circulation, plasma was analysed from 27 healthy subjects, 14 women and 13 men, using two extraction methods and a specific radioimmunoassay for human galanin. After extraction on Sep Pak C-18 columns, plasma galanin-like immunoreactivity (galanin-LI) in the healthy men was 6.3 +/- 2.5 pmol/l (mean +/- SD, n = 12), which was higher than in the women, 4.1 +/- 1.5 pmol/l (n = 14, p = 0.010). A small increase in galanin-LI was seen with age in the women (r = 0.54, p < 0.05) but there was no significant difference between pre- and postmenopausal women. Galanin immunoreactivity after Sep Pak and immunoextraction correlated (r = 0.74, p < 0.001) the levels being higher after immunoextraction (p < 0.001). Gel chromatography disclosed heterogeneity of circulating galanin-LI with the majority eluting as homologs with a molecular weight higher than synthetic human galanin. Homologs smaller than galanin were also found. Sep Pak C-18 extraction eliminated the majority of the higher molecular forms. In conclusion, circulating galanin-LI was found to be higher in men and to be present mainly as molecular forms larger than synthetic galanin.  相似文献   

5.
Apelin is the endogenous ligand of the G-protein coupled apj receptor. Apelin is expressed in the brain, the hypothalamus and the stomach and was recently shown also to be an adipokine secreted from the adipocytes. Although apelin has been suggested to be involved in the regulation of food intake, it is not known whether the peptide affects islet function and glucose homeostasis. We show here that the apj receptor is expressed in pancreatic islets and that intravenous administration of full-length apelin-36 (2 nmol/kg) inhibits the rapid insulin response to intravenous glucose (1 g/kg) by 35% in C57BL/6J mice. Thus, the acute (1-5 min) insulin response to intravenous glucose was 682+/-23 pmol/l after glucose alone (n=17) and 445+/-58 pmol/l after glucose plus apelin-36 (n=18; P=0.017). This was associated with impaired glucose elimination (the 5-20 min glucose elimination was 2.9+/-0.1%/min after glucose alone versus 2.3+/-0.2%/min after glucose plus apelin-36, P=0.008). Apelin (2 nmol/kg) also inhibited the insulin response to intravenous glucose in obese insulin resistant high-fat fed C57BL/6J mice (P=0.041). After 60 min incubation of isolated islets from normal mice, insulin secretion in the presence of 16.7 mmol/l glucose was inhibited by apelin-36 at 1 mumol/l, whereas apelin-36 did not significantly affect insulin secretion at 2.8 or 8.3 mmol/l glucose or after stimulation of insulin secretion by KCl. Islet glucose oxidation at 16.7 mmol/l was not affected by apelin-36. We conclude that the apj receptor is expressed in pancreatic islets and that apelin-36 inhibits glucose-stimulated insulin secretion both in vivo and in vitro. This may suggest that the islet beta-cells are targets for apelin-36.  相似文献   

6.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

7.
Monoglycated cholecystokinin octapeptide (Asp(1)-glucitol CCK-8) was prepared under hyperglycaemic reducing conditions and purified by reverse phase-high performance liquid chromatography. Electrospray ionisation mass spectrometry and automated Edman degradation demonstrated that CCK-8 was glycated specifically at the amino-terminal Asp(1) residue. Effects of Asp(1)-glucitol CCK-8 and CCK-8 on insulin secretion were examined using glucose-responsive clonal BRIN-BD11 cells. In acute (20 min) incubations, 10(-10) mol/l CCK-8 enhanced insulin release by 1.2-1.5-fold at 5.6-11.1 mmol/l glucose. The stimulatory effect induced by 10(-10) mol/l CCK-8 was abolished following glycation. At 5.6 mmol/l glucose, CCK-8 at concentrations ranging from 10(-11) to 10(-7) mol/l induced a significant 1.6-1.9-fold increase in insulin secretion. Insulin output in the presence of Asp(1)-glucitol CCK-8 over the concentration range 10(-11)-10(-7) mol/l was decreased by 21-35% compared with CCK-8, and its insulinotropic action was effectively abolished. Asp(1)-glucitol CCK-8 at 10(-8) mol/l also completely blocked the stimulatory effects of 10(-11)-10(-8) mol/l CCK-8. These data indicate that structural modification by glycation at the amino-terminal Asp(1) residue effectively abolishes and/or antagonises the insulinotropic activity of CCK-8.  相似文献   

8.
The effects of galanin on pancreatic exocrine function were examined using rat pancreatic tissues. In anesthetized rats, galanin (40 micrograms/kg/h) decreased amylase secretion stimulated by 2-deoxy glucose (5.8 +/- 0.1 vs. 3.1 +/- 0.1 times basal) and cholecystokinin octapeptide (21.5 +/- 0.6 vs. 16.8 +/- 0.5), while not inhibiting bethanechol-stimulated secretion. In dispersed acini, there was no effect of galanin alone (10(-8) to 10(-13) M) on amylase release, nor did galanin (10(-6) or 10(-8) M) coincubation affect amylase release stimulated by bethanechol (10(-3) to 10(-7) M) or CCK-8 (10(-8) to 10(-13) M). Using pancreatic lobules, coincubation with galanin (10(-6) M) suppressed 75 mM KCl-stimulated amylase secretion and ACh release (10.1 +/- 0.6% vs. 7.3 +/- 0.4%). Veratridine-stimulated (10(-4) M) amylase secretion and ACh release (12.4 +/- 1.7% vs. 8.5 +/- 0.7%) were similarly diminished.  相似文献   

9.
It has been suggested that insulin-induced suppression of endogenous glucose production (EGP) may be counteracted independently of increased epinephrine (Epi) or glucagon during moderate hypoglycemia. We examined EGP in nondiabetic (n = 12) and type 1 diabetic (DM1, n = 8) subjects while lowering plasma glucose (PG) from clamped euglycemia (5.6 mmol/l) to values just above the threshold for Epi and glucagon secretion (3.9 mmol/l). Individualized doses of insulin were infused to maintain euglycemia during pancreatic clamps by use of somatostatin (250 microg/h), glucagon (1.0 ng. kg(-1). min(-1)), and growth hormone (GH) (3.0 ng. kg(-1). min(-1)) infusions without need for exogenous glucose. Then, to achieve physiological hyperinsulinemia (HIns), insulin infusions were fixed at 20% above the rate previously determined for each subject. In nondiabetic subjects, PG was reduced from 5.4 +/- 0.1 mmol/l to 3.9 +/- 0.1 mmol/l in the experimental protocol, whereas it was held constant (5. 3 +/- 0.2 mmol/l and 5.5 mmol/l) in control studies. In the latter, EGP (estimated by [3-(3)H]glucose) fell to values 40% of basal (P < 0.01). In contrast, in the experimental protocol, at comparable HIns but with PG at 3.9 +/- 0.1 mmol/l, EGP was activated to values about twofold higher than in the euglycemic control (P < 0.01). In DM1 subjects, EGP failed to increase in the face of HIns and PG = 3.9 +/- 0.1 mmol/l. The decrease from basal EGP in DM1 subjects (4.4 +/- 1.0 micromol. kg(-1). min(-1)) was nearly twofold that in nondiabetics (2.5 +/- 0.8 micromol. kg(-1). min(-1), P < 0.02). When PG was lowered further to frank hypoglycemia ( approximately 3.1 mmol/l), the failure of EGP activation in DM1 subjects was even more profound but associated with a 50% lower plasma Epi response (P < 0. 02) compared with nondiabetics. We conclude that glucagon- or epinephrine-independent activation of EGP may accompany other counterregulatory mechanisms during mild hypoglycemia in humans and is impaired or absent in DM1.  相似文献   

10.
Summary In several animal species, galanin occurs in pancreatic nerves and inhibits insulin secretion. However, the presence and action of galanin in the human pancreas have not been established. Therefore, we examined the presence and nature of human pancreatic galanin-like immunoreactive material (GLIR) and the effects of galanin on glucose-stimulated insulin secretion from isolated human islets. Immunofluorescent staining of human pancreas revealed GLIR in fine varicose fibers in both islets and exocrine parenchyma. Furthermore, acid extracts of pancreas (n=3) and isolated islets (n=3) contained 0.17±0.06 and 0.23±0.11 pmol GLIR/mg protein. Human pancreatic GLIR coeluted with synthetic porcine galanin from Sephadex G-50. Moreover, synthetic porcine galanin inhibited glucose-stimulated insulin secretion from collagenase-isolated human islets at dose rates >10-8 M. Thus, (1) human pancreas is innervated by galanin-containing nerves, (2) human pancreatic GLIR is of similar size as synthetic porcine galanin, and (3) porcine galanin inhibits glucose-stimulated insulin secretion from human islets. Therefore, galanin could be an important local regulator of insulin secretion in man.  相似文献   

11.
Our laboratory has investigated the role of the neuropeptide galanin in the sympathetic neural control of both the canine endocrine pancreas and liver. Galanin mRNA and peptide were found in the neuronal cell bodies of the celiac ganglion, which projects fibers to both organs. Galanin fibers formed dense networks around the islets. Galanin was released from these nerves and the amount released appeared sufficient to markedly inhibit basal insulin secretion. We therefore propose that galanin is a sympathetic neurotransmitter in canine endocrine pancreas. Galanin was also found in hepatic nerves usually co-localized with tyrosine hydroxylase, a sympathetic marker. Further, intraportal administration of the sympathetic neurotoxin, 6-hydroxydopamine, abolished galanin staining in the hepatic parenchyma. We evaluated the role of galanin in mediating the actions of sympathetic nerves to increase hepatic glucose production and decrease hepatic arterial conductance. Local infusion of synthetic galanin had little effect by itself, but it did potentiate the action of norepinephrine to stimulate hepatic glucose production, demonstrating a neuromodulatory action. In contrast, galanin had no effect on hepatic arterial blood flow. We therefore propose that in the liver galanin functions as a neuromodulator of norepinephrine's metabolic action.  相似文献   

12.
Glucose-free perfusion preconditions myocardium against the consequences of subsequent ischemia. We investigated whether mitochondrial ATP-sensitive potassium (mK (ATP)) channels are involved in preconditioning by glucose deprivation, and whether moderate glucose deprivation also preconditions myocardium. Isolated rat hearts underwent 30 min of no-flow ischemia followed by 1 h reperfusion. Controls were not further treated. Three groups were preconditioned by perfusion with 0, 40 or 80 mg/dl (0, 2.22, 4.44 mmol/l) glucose (correction of osmotic pressure by addition of urea) for 10 min followed by 10 min perfusion with normal buffer (150 mg/dl, or 8.33 mmol/l glucose) before the ischemia reperfusion protocol. In one group, 100 micromol/l of the mK (ATP) channel blocker 5-HD was added to the glucose-free perfusate. Two groups were treated with 5-HD or urea before ischemia without preconditioning. Left ventricular developed pressure and maximum ischemic contracture (82 +/- 21 mmHg) were similar in all groups. Mean left ventricular developed pressure was 100 +/- 16 mm Hg under baseline conditions, and poorly recovered to 8 +/- 11 mm Hg during reperfusion. Preconditioning with 0 and 40 mg/dl glucose containing buffer reduced infarct size from 41 +/- 10% (control) to 23 +/- 12% (p = 0.02) and 26 +/- 8% (p = 0.011). The 5-HD blocked preconditioning by glucose deprivation (38 +/- 9%, p = 0.04) while 80 mg/dl glucose, 5-HD and urea had no effect on infarct size (39 +/- 9%; 38 +/- 13%; 37 +/- 8%; p = 1.0 each). We conclude that transient severe glucose deprivation and moderate glucose deprivation preconditions the isolated rat heart. Preconditioning by complete glucose deprivation depends on the opening of mK (ATP) channels.  相似文献   

13.
Galanin modulates gastrointestinal motility by inhibiting the release of ACh from enteric neurons. It is, however, not known whether galanin also inhibits neuronal cholinergic transmission postsynaptically and whether galanin also reduces the action of other excitatory neurotransmitters. The aim of the present study was thus to investigate the effect of galanin on the evoked intracellular Ca(2+) concentration ([Ca(2+)](i)) responses in myenteric neurons. Cultured myenteric neurons from small intestine of adult guinea pigs were loaded with the Ca(2+) indicator fluo-3 AM, and the [Ca(2+)](i) responses following the application of different stimuli were quantified by confocal microscopy and expressed as a percentage of the response to high-K(+) solution (75 mM). Trains of electrical pulses (2 s, 10 Hz) were applied to stimulate the neuronal fibers before and after a 30-s superfusion with galanin (10(-6) M). Substance P (SP), 5-HT, 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP), and carbachol were used as direct postsynaptic stimuli (10(-5) M, 30 s) and were applied alone or after galanin perfusion. Galanin significantly reduced the responses induced by electrical fiber stimulation (43 +/- 2 to 35 +/- 3%, P = 0.01), SP (15.4 +/- 1 to 8.0 +/- 0.3%, P < 0.01), and 5-HT (26 +/- 2 to 21.4 +/- 1.5%, P < 0.05). On the contrary, galanin did not affect the responses induced by local application of DMPP and carbachol. We conclude that in cultured myenteric neurons, galanin inhibits the excitatory responses induced by electrical stimulation, SP, and 5-HT. Finally, the inhibitory effect of galanin on electrical stimulation, but not on DMPP- and carbachol-induced responses, suggests that, at least for the cholinergic component, galanin acts at the presynaptic level.  相似文献   

14.
李超英  李之望 《生理学报》1990,42(5):437-445
在离体灌流的蟾蜍背根神经节(DRG)标本上,用微电极进行胞内记录。在73个神经元中,依神经纤维的传导速度将神经元分为 A 型及 C 型,其中 A 型细胞67个,C 型6个,静息膜电位为-67.5±1.3mV((?)±SE)。当加4×10~(-4)—6×10~(-4)mol/L 乙酰胆碱(ACh),可观察到如下四种膜电位变化:1.超极化:幅值9.1±3.0mV((?)±SE,n=23);(2)去极化:幅值12.9±2.2mV((?)+SE,n=20);(3)双相反应(n=24):先超极化,后去极化,超极化幅值8.0±2.4mV((?)+SE),去极化幅值10.9±3.1mV((?)±SE);(4)无反应(n=6)。用阿托品(1.3×10~(-5)mol/L,n=23),或同时应用筒箭毒与六甲双铵(浓度均为1.4×10~(-5)mol/L,n=8)灌流,能分别阻断 ACh 引起的膜的超极化或去极化。ACh 引起超极化反应时膜电导平均增加13.8%,翻转电位值大约-96mV。四乙铵(TEA,20mmol/L)能使 ACh 的去极化幅值增加48.2±3.2%((?)±SE,n=6),超极化幅值减小79.4±4.3%((?)±SE,n=8)。MnCl_2(4mmol/L)使 ACh 的去极化及超极化幅值分别减小54.2±7.2%((?)±SE,n=5)及69.2±6.4%((?)±SE,n=14)。以上结果提示:ACh 引起的 DRG 神经细胞膜去极化反应由 N 型乙酰胆碱受体介导,而超极化反应由 Μ 型乙酰胆碱受体介导,前者可能包含了多种离子电导的改变,后者则可能与钾电导增加有关。  相似文献   

15.
Intrinsic reflexes of the lower esophageal sphincter (LES) are mediated by specific arrangements of excitatory and inhibitory nerves. We have previously described an excitatory reflex at the feline LES mediated by a bombesin-like peptide (BN) which causes release of substance P (SP) to directly contract the LES. Galanin is a neurotransmitter in the enteric nervous system which colocalizes in neurons containing vasoactive intestinal peptide (VIP). The aims of this study were to determine: (1) the distribution of galanin at the feline LES; (2) the effect of galanin on basal LES tone; (3) the effect of galanin on agonist-induced LES contractions by BN, SP and bethanechol; and (4) the effect of galanin on LES relaxation induced by esophageal distension and exogenous VIP. Galanin-like immunoreactivity (galanin-LI) was localized in neurons that were widely distributed throughout the LES and adjacent organs. Galanin-LI was most abundant in the circular muscle, muscularis mucosa and myenteric plexus of the LES. In anesthetized cats, intra-arterial galanin had no effect on basal LES pressure in a dose range of 10−11 to 10−6 g/kg. Galanin (5 10−7 g/kg) reduced the LES contractile response to SP by 65 ± 8% (P = 0.0001). This galanin-mediated inhibition of SP was not blocked by tetrodotoxin. Galanin similarly decreased the LES contractile response to BN (63 ± 7%, P = 0.005) and bethanechol (55 ± 17%, P = 0.012). Galanin had no effect on the LES relaxation induced by esophageal distension or exogenous VIP. We conclude: (1) galanin-LI is present in neurons at the feline LES; (2) galanin has no effect on basal sphincter tone, but inhibits contractions of the LES by both direct and indirect agonists; and (3) galanin does not effect the LES relaxation induced by esophageal distension or VIP.  相似文献   

16.
Naturally occurring steroids and peptide hormones, tested at supraphysiological concentrations, were without effect on basal and human (h) 1-39 ACTH (NIBSC code 74/555, 25 ng/l (5.5 X 10(-12) mol/l] stimulated cortisol production. Further, low concentrations of angiotensin II, N-pro-opiocortin (N terminal fragment 1-76) and gamma-MSH all of which have been reported to synergise with ACTH with regard to cortisol production, were without significant effect alone or in combination with ACTH over the range 2.2 X 10(-13) to 5.5 X 10(-12) mol/l. The activity of h 1-39 was compared with that of the ACTH related peptides 1-24, 1-18, 1-17, 1-16, 1-13-NH2 (alpha MSH), 1-10 and 4-10. The dose responses were parallel and the same maximal cortisol output was observed with all the peptides except the 1-10 fragment. Half maximal stimulation occurred at 3.1 X 10(-12) (1-24), 4.4 X 10(-12) (h 1-39), 1.5 X 10(-11) (1-39), 3.3 X 10(-10) (1-18), 5 X 10(-9) (1-13-NH2), 8 X 10(-9) (1-17), 2 X 10(-7) (1-16) and 1 X 10(-5) (4-10) mol/l respectively. Interference by the above ACTH-derived peptides in cortisol secretion by the cells in response to 5.5 X 10(-12) mol/l h 1-39 ACTH was minimal over the range 5.2 X 10(-12)-2.2 X 10(-6) mol/l. The sensitivity of the adrenal cells to h 1-39 ACTH was such that 2 ng/l (4.4 X 10(-13) mol/l) provoked cortisol secretion over the control (P less than 0.05, n = 17). The coefficient of variation within assay for each dose on the full standard curve (2.2 X 10(-13)-1.1 X 10(-10) mol/l) was less than 10% (n = 6). Half maximal stimulation was given by 14.5 ng/l (3.2 X 10(-12) mol/l). Between control and 1.1 X 10(-10) mol/l ACTH there was a 32 +/- 8 (mean +/- SD, n = 9) fold change in cortisol production.  相似文献   

17.
The role of preserved beta-cell function in preventing ketoacidosis in type I insulin-dependent diabetes was assessed in eight patients with and seven patients without residual beta-cell function as determined from C-peptide concentrations. After 12 hours of insulin fatty-acid, and glycerol concentrations were all significantly higher in patients without beta-cell function than in those with residual secretion. Mean blood glucose concentrations reached 17.2 +/- SE of mean 1.3 mmol/l (310 +/- 23 mg/100 ml) in the first group compared with 8.8 +/- 1.4 mmol/l (159 +/- 25 mg/100 ml) in the second (P less than 0.01), while 3-hydroxybutyrate concentrations rose to 5.5 +/- mmol/l (57 +/- 5 mg/100 ml) and 1.4 +/- 0.3 mmol/l (15 +/- 3 mg/100 ml) in the two groups respectively (P less than 0.01). Individual mean C-peptide concentrations showed a significant inverse correlation with the final blood glucose values (r = -0.91; P less than 0.02). These findings strongly suggest that even minimal residual insulin secretion is important for metabolic wellbeing in diabetes and may prevent the development of severe ketoacidosis when insulin delivery is inadequate.  相似文献   

18.
The potent inhibitory effect of galanin on basal and pentagastrin-stimulated gastric acid secretion in vivo, and the presence of galanin-containing nerves in gastrointestinal tract and pancreas, suggested that this peptide may regulate the exocrine secretion of the GI system. Male rats were anesthetized with pentobarbital and the dose-dependent inhibitory effects of galanin on basal and stimulated pancreatic protein and amylase secretions were investigated in separate experiments. Galanin was administered intravenously in the following doses: 3, 6, 10, 15 and 20 micrograms/kg/h (0.93, 1.86, 3.1, 4.65 and 6.2 nmol/kg/h), and pancreatic secretions measured. The maximal effective dose of galanin (3.1 nmol/kg/h) on basal pancreatic secretions was found, and was used for evaluating the inhibitory effect of galanin on pancreatic protein and amylase secretions stimulated by bombesin, secretin and cholecystokinin. Galanin potently inhibited basal, bombesin-, secretin- and cholecystokinin-stimulated pancreatic protein and amylase secretion. Inhibitory effect of galanin was dose-dependent and biphasic.  相似文献   

19.
Galanin is a neuropeptide having a wide range of biological actions. Recently selective galanin receptor antagonists such as M35 [galanin(1-12)-Pro-bradykinin(2-9)-amide] and C7 [galanin(1-12)-Pro-spantide-amide] have been described. These antagonists have blocked the actions of galanin on flexor reflex, glucose-induced insulin secretion, and acetyicholine release from hippocampus. Our present aim was to investigate whether M35 and C7 can affect galanin-induced inhibition of pancreatic enzyme secretion in rats. Pancreatic enzyme secretion was studied in urethane-anesthetized rats supplied with jugular vein catheter and pancreatic cannula. Amylase secretion evoked by submaximal CCK-8 stimulation was inhibited dose-dependently by galanin in anesthetized rats. Surprisingly, neither M35 nor C7 was able to inhibit the responses of the exocrine pancreas to galanin. However, both putative galanin receptor antagonists behaved as agonists in our experimental models. Our data suggest that the effects of galanin on pancreatic enzyme secretion are not mediated by M35- or C7-sensitive galanin receptors. Therefore, these galanin receptors are different from those described in the central nervous system.  相似文献   

20.
We studied the effect of synthetic porcine galanin on circular and longitudinal oriented strips of pig ileal muscle. Galanin 10(-11)-10(-6) M had no effect on resting tension in the two layers. In circular muscle precontracted with carbachol 10(-6) M, galanin dose-dependently inhibited the amplitude of contractions to a maximum of 33 +/- 8% at 10(-6) M. In longitudinal muscle the amplitude of contractions induced by carbachol 10(-7) M or transmural field stimulation increased after addition of galanin 10(-9)-10(-7) M to a maximum of 21 +/- 6%, while at higher concentrations inhibition occurred. Maximal inhibition was 36 +/- 14% at galanin 10(-6) M. Tetrodotoxin did not influence the effects of galanin in the preparations. The results indicate that in the homologous species galanin inhibits the circular muscle layer, possibly by a direct action on the smooth muscle. In the longitudinal muscle the effect of galanin is apparently excitatory. The inhibition observed with high concentration of galanin could be due to tachyphylaxis and desensitization. Alternatively, an additional population of low affinity, inhibitory receptors may exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号