首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G-protein-coupled receptors are a major target for potential therapeutics; yet, a large number of these receptors couple to the Gi pathway, generating signals that are difficult to detect. We have combined chimeric G proteins, automated sample handling, and simultaneous 96-well fluorometric imaging to develop a high-throughput assay system for Gi signaling. The chimeric G proteins alter receptor coupling so that signaling can occur through Gq and result in mobilization of intracellular calcium stores. An automated signaling assay device, the fluorometric imaging plate reader (FLIPR), can simultaneously measure this response in real time in 96-well microplates, allowing two people to process more than 10,000 points per day. We used the chimeric G protein/FLIPR system to characterize signaling by the Gi-coupled human opioid receptors. We show that the mu, delta, and kappa opioid receptors and the related nociceptin receptor, ORL1, each couple to Galphaqi5, Galphaqo5, and Galpha16 (Galphaqi5 and Galphaqo5 refer to Galphaq proteins containing the five carboxyl-terminal amino acids from Galphai and Galphao, respectively) and that different receptor/G protein combinations show different levels of maximal activation. We tested 31 opioid ligands for agonist activity at the opioid receptors (124 ligand-receptor combinations); all 31 activated at least one receptor type, and several activated multiple receptors with differing potencies. This high-throughput assay could be useful for dissecting the complex ligand-receptor relationships that are common in nature.  相似文献   

2.
3.
4.
The aim of this work was to sample the diversity of G protein alpha subunits in lepidopteran insect cell lines. Here we report the amplification by degenerate PCR of partial sequences representing six G protein alpha subunits from three different lepidopteran insect cell lines. Sequence comparisons with known G protein alpha subunits indicate that the Sf9, Ld and High Five cell lines each contain (at least) one Galpha(q)-like and one Galpha(i)-like Galpha subunit. All six PCR products are unique at the nucleotide level, but the translation products of the three Galpha q-like partial clones (Sf9-Galpha 1, Ld-Galpha 1, and Hi5-Galpha 1) are identical, as are the translation products of the three Galpha i-like partial clones (Sf9-Galpha 2, Ld-Galpha 2, and Hi5-Galpha 2). Both the Galpha(q)-like and Galpha(i)-like translation products are identical to known Galpha subunits from other Lepidoptera, are highly similar (88-98%) to Galpha subunits from other invertebrates including mosquitoes, fruit flies, lobsters, crabs, and snails, and are also highly similar (88-90%) to known mammalian Galpha subunits. Identification of G protein alpha subunits in lepidopteran cell lines will assist in host cell line selection when insect cell lines are used for the pharmacological analysis of human GPCRs.  相似文献   

5.
Although only 16 genes have been identified in mammals, several Galpha subunits can be simultaneously activated by G protein-coupled receptors (GPCRs) to modulate their complicated functions. Current GPCR assays are limited in the evaluation of selective Galpha activation, thus not allowing a comprehensive pathway screening. Because adenylyl cyclases are directly activated by G(s)alpha and the carboxyl termini of the various Galpha proteins determine their receptor coupling specificity, we proposed a set of chimeric G(s)alpha where the COOH-terminal five amino acids are replaced by those of other Galpha proteins and used these to dissect the potential Galpha linked to a given GPCR. Unlike G(q)alpha, G(12)alpha, and G(i)alpha outputs, compounding the signals from several Galpha members, the chimeric G(s)alpha proteins provide a superior molecular approach that reflects the previously uncharacterized pathways of GPCRs under the same cAMP platform. This is, to our knowledge, the first time allowing verification of the whole spectrum of Galpha coupling preference of adenosine A1 receptor, reported to couple to multiple G proteins and modulate many physiological processes. Furthermore, we were able to distinguish the uncharacterized pathways between the two neuromedin U receptors (NMURs), which distribute differently but are stimulated by a common agonist. In contrast to the G(q) signals mainly conducted by NMUR1, NMUR2 routed preferentially to the G(i) pathways. Dissecting the potential Galpha coupling to these GPCRs will promote an understanding of their physiological roles and benefit the pharmaceutical development of agonists/antagonists by exploiting the selective affinity toward a certain Galpha subclass.  相似文献   

6.
Neuronal G protein-coupled inwardly-rectifying potassium channels (GIRKs, Kir3.x) can be activated or inhibited by distinct classes of receptors (Galphai/o and Galphaq/11-coupled, respectively), providing dynamic regulation of neuronal excitability. In this mini-review, we highlight findings from our laboratory in which we used a mammalian heterologous expression system to address mechanisms of GIRK channel regulation by Galpha and Gbetagamma subunits. We found that, like beta1- and beta2-containing Gbetagamma dimers, GIRK channels are also activated by G protein betagamma dimers containing beta3 and beta4 subunits. By contrast, GIRK currents are inhibited by beta5-containing Gbetagamma dimers and/or by Galpha proteins of the Galphaq/11 family. The properties of Gbeta5-mediated inhibition suggest that beta5-containing Gbetagamma dimers act as competitive antagonists of other activating Gbetagamma pairs on GIRK channels. Inhibition of GIRK channels by Galpha subunits is specific to members of the Galphaq/11 family and appears to result, at least in part, from activation of phospholipase C (PLC) and the resultant decrease in membrane levels of phosphatidylinositol-4,5-bisphosphate (PIP2), an endogenous co-factor necessary for GIRK channel activity; this Galphaq/11 activated mechanism is largely responsible for receptor-mediated GIRK channel inhibition.  相似文献   

7.
8.
Regulation of G protein-mediated signal transduction by RGS proteins   总被引:2,自引:0,他引:2  
Kozasa T 《Life sciences》2001,68(19-20):2309-2317
RGS proteins form a new family of regulatory proteins of G protein signaling. They contain homologous core domains (RGS domains) of about 120 amino acids. RGS domains interact with activated Galpha subunits. Several RGS proteins have been shown biochemically to act as GTPase activating proteins (GAPs) for their interacting Galpha subunits. Other than RGS domains, RGS proteins differ significantly in size, amino acid sequences, and tissue distribution. In addition, many RGS proteins have other protein-protein interaction motifs involved in cell signaling. We have shown that p115RhoGEF, a newly identified GEF(guanine nucleotide exchange factor) for RhoGTPase, has a RGS domain at its N-terminal region and this domain acts as a specific GAP for Galpha12 and Galpha13. Furthermore, binding of activated Galpha13 to this RGS domain stimulated GEF activity of p115RhoGEF. Activated Galpha12 inhibited Galpha13-stimulated GEF activity. Thus p115RhoGEF is a direct link between heterotrimeric G protein and RhoGTPase and it functions as an effector for Galpha12 and Galpha13 in addition to acting as their GAP. We also found that RGS domain at N-terminal regions of G protein receptor kinase 2 (GRK2) specifically interacts with Galphaq/11 and inhibits Galphaq-mediated activation of PLC-beta, apparently through sequestration of activated Galphaq. However, unlike other RGS proteins, this RGS domain did not show significant GAP activity to Galphaq. These results indicate that RGS proteins have far more diverse functions than acting simply as GAPs and the characterization of function of each RGS protein is crucial to understand the G protein signaling network in cells.  相似文献   

9.
G protein-coupled receptors (GPCRs) represent a class of important therapeutic targets for drug discovery. The integration of GPCRs into contemporary high-throughput functional assays is critically dependent on the presence of appropriate G proteins. Given that different GPCRs can discriminate against distinct G proteins, a universal G protein adapter is extremely desirable. In this report, the authors evaluated two highly promiscuous Galpha(16/z) chimeras, 16z25 and 16z44, for their ability to translate GPCR activation into Ca(2+) mobilization using the fluorescence imaging plate reader (FLIPR) and aequorin. A panel of 24 G(s)- or G(i)-coupled receptors was examined for their functional association with the Galpha(16/z) chimeras. Although most of the GPCRs tested were incapable of inducing Ca(2+) mobilization upon their activation by specific agonists, the introduction of 16z25 or 16z44 allowed all of these GPCRs to mediate agonist-induced Ca(2+) mobilization. In contrast, only 16 of the GPCRs tested were capable of using Galpha(16) to mobilize intracellular Ca(2+). Analysis of dose-response curves obtained with the delta-opioid, dopamine D(1), and Xenopus melatonin Mel1c receptors revealed that the Galpha(16/z) chimeras possess better sensitivity than Galpha(16) in both the FLIPR and aequorin assays. Collectively, these studies help to validate the promiscuity of the Galpha(16/z) chimeras as well as their application in contemporary drug-screening assays that are based on ligand-induced Ca(2+) mobilization.  相似文献   

10.
11.
Sphingosine 1-phosphate (S1P) is the ligand for a family of specific G protein-coupled receptors (GPCRs) that regulate a wide variety of important cellular functions, including growth, survival, cytoskeletal rearrangements, and cell motility. However, whether it also has an intracellular function is still a matter of great debate. Overexpression of sphingosine kinase type 1, which generated S1P, induced extensive stress fibers and impaired formation of the Src-focal adhesion kinase signaling complex, with consequent aberrant focal adhesion turnover, leading to inhibition of cell locomotion. We have dissected biological responses dependent on intracellular S1P from those that are receptor-mediated by specifically blocking signaling of Galphaq, Galphai, Galpha12/13, and Gbetagamma subunits, the G proteins that S1P receptors (S1PRs) couple to and signal through. We found that intracellular S1P signaled "inside out" through its cell-surface receptors linked to G12/13-mediated stress fiber formation, important for cell motility. Remarkably, cell growth stimulation and suppression of apoptosis by endogenous S1P were independent of GPCRs and inside-out signaling. Using fibroblasts from embryonic mice devoid of functional S1PRs, we also demonstrated that, in contrast to exogenous S1P, intracellular S1P formed by overexpression of sphingosine kinase type 1 promoted growth and survival independent of its GPCRs. Hence, exogenous and intracellularly generated S1Ps affect cell growth and survival by divergent pathways. Our results demonstrate a receptor-independent intracellular function of S1P, reminiscent of its action in yeast cells that lack S1PRs.  相似文献   

12.
The ubiquitously expressed heterotrimeric guanine nucleotide-binding proteins (G-proteins) G12 and G13 have been shown to activate the small GTPase Rho. Rho stimulation leads to a rapid remodeling of the actin cytoskeleton and subsequent stress fiber formation. We investigated the involvement of G12 or G13 in stress fiber formation induced through a variety of Gq/G11-coupled receptors. Using fibroblast cell lines derived from wild-type and Galphaq/Galpha11-deficient mice, we show that agonist-dependent activation of the endogenous receptors for thrombin or lysophosphatidic acid and of the heterologously expressed bradykinin B2, vasopressin V1A, endothelin ETA, and serotonin 5-HT2C receptors induced stress fiber formation in either the presence or absence of Galphaq/Galpha11. Stress fiber assembly induced through the muscarinic M1 and the metabotropic glutamate subtype 1alpha receptors was dependent on Gq/G11 proteins. The activation of the Gq/G11-coupled endothelin ETB and angiotensin AT1A receptors failed to induce stress fiber formation. Lysophosphatidic acid, B2, and 5-HT2C receptor-mediated stress fiber formation was dependent on Galpha13 and involved epidermal growth factor (EGF) receptors, whereas thrombin, ETA, and V1A receptors induced stress fiber accumulation via Galpha12 in an EGF receptor-independent manner. Our data demonstrate that many Gq/G11-coupled receptors induce stress fiber assembly in the absence of Galphaq and Galpha11 and that this involves either a Galpha12 or a Galpha13/EGF receptor-mediated pathway.  相似文献   

13.
RGS proteins act as negative regulators of G protein signaling by serving as GTPase-activating proteins (GAP) for alpha subunits of heterotrimeric G proteins (Galpha), thereby accelerating G protein inactivation. RGS proteins can also block Galpha-mediated signal production by competing with downstream effectors for Galpha binding. Little is known about the relative contribution of GAP and effector antagonism to the inhibitory effect of RGS proteins on G protein-mediated signaling. By comparing the inhibitory effect of RGS2, RGS3, RGS5, and RGS16 on Galpha(q)-mediated phospholipase Cbeta (PLCbeta) activation under conditions where GTPase activation is possible versus nonexistent, we demonstrate that members of the R4 RGS subfamily differ significantly in their dependence on GTPase acceleration. COS-7 cells were transiently transfected with either muscarinic M3 receptors, which couple to endogenous Gq protein and mediate a stimulatory effect of carbachol on PLCbeta, or constitutively active Galphaq*, which is inert to GTP hydrolysis and activates PLCbeta independent of receptor activation. In M3-expressing cells, all of the RGS proteins significantly blunted the efficacy and potency of carbachol. In contrast, Galphaq* -induced PLCbeta activation was inhibited by RGS2 and RGS3 but not RGS5 and RGS16. The observed differential effects were not due to changes in M3, Galphaq/Galphaq*, PLCbeta, or RGS expression, as shown by receptor binding assays and Western blots. We conclude that closely related R4 RGS family members differ in their mechanism of action. RGS5 and RGS16 appear to depend on G protein inactivation, whereas GAP-independent mechanisms (such as effector antagonism) are sufficient to mediate the inhibitory effect of RGS2 and RGS3.  相似文献   

14.
Regulators of G protein signaling (RGS proteins) bind directly to activated Galpha subunits to inhibit their signaling. However, recent findings show that RGS proteins selectively regulate signaling by certain G protein-coupled receptors (GPCRs) in cells, irrespective of the coupled G protein. New studies support an emerging model that suggests RGS proteins utilize both direct and indirect mechanisms to form stable functional pairs with preferred GPCRs to selectively modulate the signaling functions of those receptors and linked G proteins. Here, we discuss these findings and their implications for established models of GPCR signaling.  相似文献   

15.
In the liver, pancreastatin exerts a glycogenolytic effect through interaction with specific receptors, followed by activation of phospholipase C and guanylate cyclase. Pancreastatin receptor seems to be coupled to two different G protein systems: a pertussis toxin-insensitive G protein that mediates activation of phospholipase C, and a pertussis toxin sensitive G protein that mediates the cyclic GMP production. The aim of this study was to identify the specific G protein subtypes coupling pancreastatin receptors in rat liver membranes. GTP binding was determined by using gamma-35S-GTP; specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Activation of G proteins was demonstrated by the incorporation of the photoreactive GTP analogue 8-azido-alpha-32P-GTP into liver membranes and into specific immunoprecipitates of different Galpha subunits from soluble rat liver membranes. Pancreastatin stimulation of rat liver membranes increases the binding of gamma-35S-GTP in a time- and dose-dependent manner. Activation of the soluble receptors still led to the pancreastatin dose-dependent stimulation of gamma-35S-GTP binding. Besides, WGA semipurified receptors also stimulates GTP binding. The binding was inhibited by treatment with anti-Galphaq/11 (85%) and anti-Galphai1,2 (15%) sera, whereas anti-Galphao,i3 serum failed to affect the binding. Finally, pancreastatin stimulates GTP photolabeling of particulate membranes. Moreover, it specifically increased the incorporation of 8-azido-alpha-32P-GTP into Galphaq/11 and Galpha, but not into Galphao,i3 from soluble rat liver membranes. In conclusion, pancreastatin stimulation of rat liver membranes led to the activation of Galphaq/11 and Galphai1,2 proteins. These results suggest that Galphaq/11 and Galphai1,2 may play a functional role in the signaling of pancreastatin receptor by mediating the production of IP3 and cGMP respectively.  相似文献   

16.
Different assay technologies are available that allow ligand occupancy of G protein coupled receptors to be converted into robust functional assay signals. Of particular interest are universal screening systems such that activation of any GPCR can be detected with a common assay end point. The promiscuous G protein Galpha16 and chimeric G proteins are broadly used tools for setting up almost universal assay systems. Many efforts focused on making G proteins more promiscuous, however no attempts have been made to make promiscuos G proteins more sensitive by interfering with their cellular protein distribution. As a model system, we used a promiscuous G protein alphaq subunit, that lacks the highly conserved six amino acid N-terminal extension and bears four residues of alphai sequence at its C-terminus replacing the corresponding alphaq sequence (referred to as delta6qi4). When expressed in COS7 cells, delta6qi4 undergoes palmitoylation at its N-terminus. Cell fractionation and immunoblotting analysis indicated localization in the particulate and cytosolic fraction. Interestingly, introduction of a consensus site for N-terminal myristoylation (the resulting mutant referred to as delta6qi4myr) created a protein that was dually acylated and exclusively located in the particulate fraction. As a measure of G protein activation delta6qi4 and delta6qi4myr were coexpressed (in CHO cells) with a series of different Gi/o coupled receptors and ligand induced increases in intracellular Ca2+ release were determined with the FLIPR technology (Fluorescence plate imaging reader from Molecular Devices Corp.). All of the receptors interacted more efficiently with delta6qi4myr as compared with delta6qi4. It could be shown that increased functional responses of agonist activated GPCRs are due to the higher content of delta6qi4myr in the plasma membrane. Our results indicate that manipulation of subcellular localization of G protein alpha subunits-moving them from the cytosol to the plasma membrane-potentiates signaling of agonist activated GPCRs. It is concluded that addition of myristoylation sites into otherwise exclusively palmitoylated G proteins is a new and sensitive approach and may be applicable when functional assays are expected to yield weak signals as is the case when screening extracts of tissues for biologically active GPCR ligands.  相似文献   

17.
Pandey S  Assmann SM 《The Plant cell》2004,16(6):1616-1632
Heterotrimeric G proteins composed of alpha, beta, and gamma subunits link ligand perception by G protein-coupled receptors (GPCRs) with downstream effectors, providing a ubiquitous signaling mechanism in eukaryotes. The Arabidopsis thaliana genome encodes single prototypical Galpha (GPA1) and Gbeta (AGB1) subunits, and two probable Ggamma subunits (AGG1 and AGG2). One Arabidopsis gene, GCR1, encodes a protein with significant sequence similarity to nonplant GPCRs and a predicted 7-transmembrane domain structure characteristic of GPCRs. However, whether GCR1 actually interacts with GPA1 was unknown. We demonstrate by in vitro pull-down assays, by yeast split-ubiquitin assays, and by coimmunoprecipitation from plant tissue that GCR1 and GPA1 are indeed physically coupled. GCR1-GPA1 interaction depends on intracellular domains of GCR1. gcr1 T-DNA insertional mutants exhibit hypersensitivity to abscisic acid (ABA) in assays of root growth, gene regulation, and stomatal response. gcr1 guard cells are also hypersensitive to the lipid metabolite, sphingosine-1-phosphate (S1P), which is a transducer of the ABA signal upstream of GPA1. Because gpa1 mutants exhibit insensitivity in aspects of guard cell ABA and S1P responses, whereas gcr1 mutants exhibit hypersensitivity, GCR1 may act as a negative regulator of GPA1-mediated ABA responses in guard cells.  相似文献   

18.
A recently identified family of guanine nucleotide exchange factors for Rho that includes PDZ-RhoGEF, LARG, and p115RhoGEF exhibits a unique structural feature consisting in the presence of area of similarity to regulators of G protein signaling (RGS). This RGS-like (RGL) domain provides a structural motif by which heterotrimeric G protein alpha subunits of the Galpha(12) family can bind and regulate the activity of RhoGEFs. Hence, these newly discovered RGL domain-containing RhoGEFs provide a direct link from Galpha(12) and Galpha(13) to Rho. Recently available data suggest, however, that tyrosine kinases can regulate the ability of G protein-coupled receptors (GPCRs) to stimulate Rho, although the underlying molecular mechanisms are still unknown. Here, we found that the activation of thrombin receptors endogenously expressed in HEK-293T cells leads to a remarkable increase in the levels of GTP-bound Rho within 1 min (11-fold) and a more limited but sustained activation (4-fold) thereafter, which lasts even for several hours. Interestingly, tyrosine kinase inhibitors did not affect the early phase of Rho activation, immediately after thrombin addition, but diminished the levels of GTP-bound Rho during the delayed phase. As thrombin receptors stimulate focal adhesion kinase (FAK) potently, we explored whether this non-receptor tyrosine kinase participates in the activation of Rho by GPCRs. We obtained evidence that FAK can be activated by thrombin, Galpha(12), Galpha(13), and Galpha(q) through both Rho-dependent and Rho-independent mechanisms and that PDZ-RhoGEF and LARG can in turn be tyrosine-phosphorylated through FAK in response to thrombin, thereby enhancing the activation of Rho in vivo. These data indicate that FAK may act as a component of a positive feedback loop that results in the sustained activation of Rho by GPCRs, thus providing evidence of the existence of a novel biochemical route by which tyrosine kinases may regulate the activity of Rho through the tyrosine phosphorylation of RGL-containing RhoGEFs.  相似文献   

19.
Within any given cell many G protein-coupled receptors are expressed in the presence of multiple G proteins, yet most receptors couple to a specific subset of G proteins to elicit their programmed response. Numerous studies demonstrate that the carboxyl-terminal five amino acids of the Galpha subunits are a major determinant of specificity, however the receptor determinants of specificity are less clear. We have used a collection of 133 functional mutants of the C5a receptor obtained in a mutagenesis screen targeting the intracellular loops and the carboxyl terminus (Matsumoto, M. L., Narzinski, K., Kiser, P. D., Nikiforovich, G. V., and Baranski, T. J. (2007) J. Biol. Chem. 282, 3105-3121) to investigate how specificity is encoded. Each mutant, originally selected for its ability to signal through a nearly full-length Galpha(i) in yeast, was tested to see whether it could activate three versions of chimeric Galpha subunits consisting of Gpa1 fused to the carboxyl-terminal five amino acids of Galpha(i), Galpha(q), or Galpha(s) in yeast. Surprisingly the carboxyl-terminal tail of the C5a receptor is the most important specificity determinant in that nearly all mutants in this region showed a gain in coupling to Galpha(q) and/or Galpha(s). More than half of the receptors mutated in the second intracellular loop also demonstrated broadened G protein coupling. Given a lack of selective advantage for this broadened signaling in the initial screen, we propose a model in which the carboxyl-terminal tail acts together with the intracellular loops to generate a specificity filter for receptor-G protein interactions that functions primarily to restrict access of incorrect G proteins to the receptor.  相似文献   

20.
G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号