首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamine synthetase (EC 6.3.1.2) activity of hepatoma tissue culture cells is elevated by cortocisteroids and depressed by glutamine (Kulka, R.G., Tomkins, G.M. and Crook, R.B. (1972) J. Cell Biol., 54, 175–179). The transfer of cells from high (1–5 mM) to low (0.2–0.4 mM) concentrations of glutamine causes a marked increase in glutamine synthetase activity. The addition of a glutamine antagonist, methionine sulfone (1 mM) to cells suspended in high (1 mM) concentrations of glutamine also causes an increase of glutamine synthetase activity which is greater than that elicited by the transfer of cells to low concentrations of glutamine. Rates of synthesis of glutamine synthetase have been measured by radioimunoprecipitation in hepatoma tissue culture cells incubated under various conditions. Incubation of cells with the synthetic corticosteroid hormone, dexamethasone, markedly stimulates the relative rate of glutamine synthetase biosynthesis. Glutamine, or its analogue, methionine sulfone, have no effect on the relative rate of synthesis of the enzyme. However, total protein and RNA synthesis increase markedly with increasing external glutamine concentration in the range 0–1 mM. Methionine sulfone (1 mM) inhibits the degradation of glutamine synthetase in the presence of 1 mM glutamine. The data are consistent with the conclusion that the corticosteroid, dexamethasone, elevates glutamine synthetase activity by stimulating its rate of synthesis, whereas methionine sulfone elevates glutamine synthetase activity by inhibiting the glutamine-stimulated degradation of preformed enzyme.  相似文献   

2.
We report the isolation of a complimentary DNA (cDNA) clone encoding glutamine synthetase, derived from a population of methionine sulfoxime-resistant mouse GF1 fibroblasts. When GF1 cells are incubated for 48 h in the presence of the glucocorticoid hormone dexamethasone, the specific activity of glutamine synthetase (GS), assayed as glutamyltransferase activity, increases by threefold. Based on dot hybridization analysis, hormonal treatment also produces a similar increase in the level of GS mRNA. When GF1 cells or mouse Neuro 2A neuroblastoma cells are transferred from medium containing 4 mM glutamine to glutamine-free medium, glutamyltransferase activity increases by at least fivefold. However, the presence or absence or glutamine in the medium does not affect the relative level of glutamine synthetase mRNA in either cell line. With both GF1 and Neuro 2A cells, the half-time for the decline in glutamine synthetase enzyme activity on addition of glutamine to the medium is approximately 1.5 h. This rapid decline, coupled with the lack of effect of glutamine on the level of GS messenger RNA in Neuro 2A cells, renders it unlikely that neural cells alter glutamine synthetase levels in response to glutamine by a biosynthetic mechanism, as suggested by previous authors [L. Lacoste, K.D. Chaudhary, and J. Lapointe (1982) J. Neurochem. 39, 78-85].  相似文献   

3.
Confluent 3T3-L1 Swiss mouse fibroblasts acquired morphological and biochemical characteristics of adipocytes when maintained in medium containing 10% calf serum and added insulin. Identical cultures maintained in the absence of added insulin did not differentiate into adipocytes. Incubation of confluent cultures for 48 h with 0.25 μm dexamethasone and 0.5 mm 1-methyl-3-isobutylxanthine yielded subsequent adipocyte differentiation when the culture medium contained 10% fetal calf serum. In contrast, differentiation did not occur when similarly treated cultures were maintained in medium containing 10% calf serum. The increase in glutamine synthetase which occurred during adipocyte differentiation was closely associated with an increased rate of triglyceride synthesis from acetate, with increased protein, and with increases in the activities of glycerol-3-P dehydrogenase and glucose-6-P dehydrogenase. Glutamine synthetase activity remained undetectable in insulin-treated confluent 3T3-C2 cells maintained under conditions which yielded high glutamine synthetase activity in 3T3-L1 cells. (3T3-C2 cells did not differentiate into adipocytes.) Glutamine accumulated in the culture medium of 3T3-L1 adipocytes, but it did not accumulate in the medium from identically treated 3T3-C2 cells. A half-maximal increase in glutamine synthetase specific activity occurred at a culture medium insulin concentration of 10 ng/ml. Neither adipocyte differentiation nor the rise in glutamine synthetase activity were substantially altered by maintaining confluent cultures in medium lacking added glutamine. Incubation of confluent 3T3-L1 cultures with 3 mml-methionine sulfone, a reversible inhibitor of glutamine synthetase, increased by two-fold both the activity and the cellular content of glutamine synthetase. Incubation of confluent 3T3-L1 cultures with 4 mml-glutamine and l-methionine-dl-sulfoximine, an irreversible inhibitor of glutamine synthetase activity, decreased glutamine synthetase activity to less than 5% of the activity in control cultures; however, neither cellular content of the enzyme nor synthesis rate of the enzyme were substantially altered. In the presence of added glutamine, neither methionine sulfone nor methionine sulfoximine had a significant effect on phenotypic adipocyte conversion. By contrast, when confluent cultures were incubated with methionine sulfoximine and no added glutamine, glutamine synthetase remained absent and there was no evidence of adipocyte conversion. Our data indicate (1) that added insulin is required for adipocyte differentiation of 3T3-L1 cells maintained in medium containing calf serum, (2) that glutamine synthetase activity increases during adipocyte conversion regardless of the culture conditions employed to achieve differentiation, and (3) that glutamine synthetase activity may be required for adipocyte differentiation when cultures are maintained in medium lacking added glutamine.  相似文献   

4.
The specific activity of glutamine synthetase in cultured Chinese hamster cells is inversely related to the concentration of glutamine in the surrounding solution. Enzyme specific activity increases 8- to 10-fold when glutamine is removed from serum-free F12 growth media. The induction of glutamine synthetase activity occurs only after glutamine removal and not after the removal of other amino acids (methionine, leucine, or isoleucine). The analysis of the glutamine-mediated decrease in glutamine synthetase activity has been simplified by the finding that depression proceeds in nutrient-free buffered saline solution (141 mM NaCl, 5.4 mM KCl and 30 mM Tricine (pH 7.4). Under these conditions, 0.1 mM cyanide blocks glutamine-mediated depression. The cyanide inhibition is reversed by the addition of 1.0 mM glucose which suggests that ATP is required for depression. Glutamine-mediated depression is temperature-dependent, occurring between 25 and 45 degrees with an optimum rate at 37 degrees. Studies of the time course of induction and depression as a function of glutamine concentration suggest that glutamine regulates the rate at which the enzyme is either modified or degraded. We have employed an antibody prepared against homogeneous Chinese hamster liver glutamine synthetase to measure the amount of glutamine synthetase protein in extracts of cells containing induced or depressed levels of enzyme activity. A highly sensitive immunoprecipitation procedure enables quantitation of nanogram amounts of glutamine synthetase protein. Glutamine synthetase in cell extracts containing induced levels of enzyme activity possesses the same molecular specific activity (ratio of activity to antigenicity) as homogeneous Chinese hamster liver glutamine synthetase. The molecular specific activity of glutamine synthetase is almost the same in extracts of cells with depressed levels of enzyme obtained by growth for short (2 hours) and long (24 hours) times in the presence of glutamine. These data suggest that glutamine-mediated depression of glutamine synthetase results from degradation of enzyme molecules.  相似文献   

5.
Glutamine synthetase specific activity increases greater than 100-fold during the insulin-mediated differentiation of confluent 3T3-L1 cells into adipocytes. Incubation of the adipocytes for 22 h with 0.5 mM dibutyryl cyclic AMP plus 0.5 mM theophylline, 0.2 mM 8-bromo-cyclic AMP, 10 micro M epinephrine, or 1 microgram of alpha 1-24 adrenocorticotropic hormone/ml decreased glutamine synthetase by greater than 60%. During the same incubation period, there was no effect of these compounds on protein or on the specific activities of glucose-6-P dehydrogenase or hexokinase. In the presence of 0.5 mM theophylline, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase activity was half-maximal at 50 micro M dibutyryl cyclic AMP. Furthermore, between 10 micro M and 5 mM dibutyryl cyclic AMP, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase was similar in the absence or presence of 1 microgram of insulin/ml. Immunotitration of glutamine synthetase activity from 3T3 adipocytes indicates that the dibutyryl cyclic AMP-mediated decrease in the activity is due to a decrease in the cellular content of glutamine synthetase molecules. We studied the effects of dibutyryl cyclic AMP on the synthesis and degradation of glutamine synthetase. Synthesis rate was estimated from the incorporation of L-[35S]methionine into glutamine synthetase during a 60-min incubation period. Degradation rate was estimated from the first order disappearance of radioactivity from glutamine synthetase in 3T3 adipocytes previously incubated with L-[35S]methionine. Glutamine synthetase was isolated by immunoprecipitation followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Incubation of 3T3 adipocytes with dibutyrl cyclic AMP resulted in a rapid decline in the apparent synthesis rate of glutamine synthetase. In addition, dibutyryl cyclic AMP treatment increased the initial rate of glutamine synthetase degradation. The half-life of glutamine synthetase was 24.5 h in control cultures and 16 h in dibutyryl cyclic AMP-treated cultures. In contrast, dibutyryl cyclic AMP had little effect on the synthesis or degradation of soluble protein. Our data indicate that the dibutyryl cyclic AMP-mediated decrease in 3T3 adipocyte glutamine synthetase activity results from a decrease in the synthesis rate and an increase in the initial degradation rate of the enzyme.  相似文献   

6.
Abstract: Regulation of the biosynthesis of glutamine synthetase was studied in neuroblastoma cells (Neuro-2A) by use of a recently developed, sensitive radioisotopic assay. The removal of glutamine from the culture medium of these cells for 24 h resulted in a 10-fold increase in glutamine synthetase specific activity (15-fold after 2 weeks) compared with the basal level found in cells grown in the presence of 2 m M glutamine. Following the growth of these cells for 2 weeks in the presence of various concentrations of glutamine, a negative linear correlation was observed between the specific activity of glutamine synthetase (from 1.7 to 0.14 unit/mg) and the concentration of glutamine in the growth medium (from 0.5 to 2 m M ). Cycloheximide or actinomycin D blocked the increase in glutamine synthetase activity observed in the absence of glutamine. These results suggest that the removal of glutamine led to the induction of glutamine synthetase by stimulating new enzyme synthesis. The enzyme was not degraded, but only diluted, by growth upon readdition of glutamine to the medium. The influence of glutamine depletion is also reported for C-6 glioma cells and glial cells in primary cultures.  相似文献   

7.
Nitrogen-starved purple non-sulphur bacteria have an active unregulated form of nitrogenase (nitrogenase A); however, the nitrogenase of a glutamine synthetase-negative mutant of Rhodopseudomonas capsulata, when nitrogen-starved, was predominantly inactive and required activation by Mn2+ and activating-factor protein. This regulatory form of nitrogenase has been called nitrogenase R. Treatment of wild-type cells (containing nitrogenase A) with methionine sulphoximine, an inhibitor of glutamine synthetase, converted the enzyme into nitrogenase R. Glutamine synthetase thus appears to control the intracellular concentrations of nitrogenase A and R and in this way regulates nitrogenase activity in the photosynthetic bacterium.  相似文献   

8.
Derivatives of methionine sulfoximine (MSO) and phosphinothrycin (PPT), which are analogues of glutamate, exhibit selective herbicidal activity. This effect is accounted for by impairments of nitrogen metabolism, resulting from inhibition of its key enzyme in plants, glutamine synthetase (EC 6.3.1.2). Inhibition of the enzyme causes ammoniac nitrogen to accumulate and terminates the synthesis of glutamine. Changes in the content of these two metabolites (excess ammonium and glutamine deficiency) act in a concert to cause plant death. However, low concentrations of MSO, PPT, and their metabolites produce an opposite effect: glutamine synthetase is activated, with concomitant stimulation of plant growth and productivity. The mechanisms whereby MSO and PPT affect glutamine synthetase activity are discussed in the context of nitrogen metabolism in plants.  相似文献   

9.
Urease and glutamine synthetase activities in Selenomonas ruminantium strain D were highest in cells grown in ammonia-limited, linear-growth cultures or when certain compounds other than ammonia served as the nitrogen source and limited the growth rate in batch cultures. Glutamate dehydrogenase activity was highest during glucose (energy)-limited growth or when ammonia was not growth limiting. A positive correlation (R = 0.96) between glutamine synthetase and urease activities was observed for a variety of growth conditions, and both enzyme activities were simultaneously repressed when excess ammonia was added to ammonia-limited, linear-growth cultures. The glutamate analog methionine sulfoximine (MSX), inhibited glutamine synthetase activity in vitro, but glutamate dehydrogenase, glutamate synthase, and urease activities were not affected. The addition of MSX (0.1 to 100 mM) to cultures growing with 20 mM ammonia resulted in growth rate inhibition that was dependent upon the concentration of MSX and was overcome by glutamine addition. Urease activity in MSX-inhibited cultures was increased significantly, suggesting that ammonia was not the direct repressor of urease activity. In ammonia-limited, linear-growth cultures, MSX addition resulted in growth inhibition, a decrease in GS activity, and an increase in urease activity. These results are discussed with respect to the importance of glutamine synthetase and glutamate dehydrogenase for ammonia assimilation under different growth conditions and the relationship of these enzymes to urease.  相似文献   

10.
Derivatives of methionine sulfoximine (MSO) and phosphinothrycin (PPT), which are analogues of glutamate, exhibit selective herbicidal activity. This effect is accounted for by impairment of nitrogen metabolism, resulting from inhibition of its key enzyme in plants, glutamine synthetase (EC 6.3.1.2). Inhibition of the enzyme causes ammoniac nitrogen to accumulate and terminates the synthesis of glutamine. Changes in the content of these two metabolites (excess ammonium and glutamine deficiency) act in concert to cause plant death. However, low concentrations of MSO, PPT, and their metabolites produce an opposite effect: glutamine synthetase is activated, with concomitant stimulation of plant growth and productivity. The mechanisms whereby MSO and PPT affect glutamine synthetase activity are discussed in the context of nitrogen metabolism in plants.  相似文献   

11.
Glutamine synthetase was found to be increased in C-6 glioma cells as a result of increasing culture passage and N-6,2'-O-dibutyryl cyclic AMP (dbcAMP) treatment. At low passage dbcAMP produced a 2.5-fold increase in glutamine synthetase activity per unit of cellular protein. At high passage control glutamine synthetase was approximately double that seen at low passage, but dbcAMP produced an additional 65% increase. Lactate dehydrogenase activity was also increased by dbcAMP treatment at both low and high passage, but culture passage produced no change in the lactate dehydrogenase. With increasing culture passage, the ratio of cellular protein to DNA doubled. Therefore, expression of data per unit of protein tended to minimize the apparent changes in activity. The maximum increase in glutamine synthetase activity produced by both dbcAMP and increasing culture passage and expressed on a DNA basis was 5.6-fold. The increase in glutamine synthetase activity was generally linear during the first 20 h of drug treatment, after which enzyme activity remained nearly constant up to 72 h. Ninety percent or more of the dbcAMP remained in the medium at the end of 48-h exposure of cells to dbcAMP. 8-br-Cyclic AMP also increased glutamine synthetase activity of C-6-cels, but n-butyrate did not. Isoproterenol, which increases cyclic AMP in C-6-cells, increased glutamine synthetase activity. The effect of isoproterenol on glutamine synthetase was inhibited by the beta-adrenergic blocking agent sotalol. Cycloheximide (10 micrograms/ml) inhibited the dbcAMP effect on glutamine synthetase activity and also decreased the control enzyme activity by 60%.  相似文献   

12.
A mutational leading to glutamine auxotrophy was located near a 5-fluorouracil resistance marker in the citB-thyA region of the Bacillus subtilis chromosome. This mutation resulted in a glutamine synthetase with altered kinetic and feedback properties. The specific activity of manganese-stimulated glutamine synthetase activity in crude extracts was 18-fold higher, and the magnesium-stimulated activity was about 30% that of the wild type. Quantitation of the enzyme by precipitation with antibody prepared against pure enzyme confirmed the presence of high enzyme levels in the mutant. This mutation is very closely linked (recombination index of 0.03) to another glutamine auxotroph containing enzyme with altered electrophoretic and heat sensitivity properties. Mutations in the structural gene for glutamine synthetase may result not only in altered catalytic and regulatory properties but also in altered production of the enzyme.  相似文献   

13.
Although glutamine synthetase from Escherichia coli is composed of 12 identical subunits, there is no evidence that homologous subunit interactions occur in fully unadenylylated or fully adenylylated enzyme. Meister and co-workers (Manning, J. M., Moore, S., Rowe, W. B., and Meister, A. (1969) Biochemistry 8, 2681-2685) have shown that L-methionine-S-sulfoximine, one of the four diastereomers of methionine sulfoximine, preferentially inhibits glutamine synthetase irreversibly in the presence of ATP, due to the formation of tightly bound products, ADP, and methionine sulfoximine phosphate. Using highly purified unadenylylated glutamine synthetase and the two resolved diastereomers of L-methionine-S,R-sulfoximine, we have studied both the kinetics of glutamine synthetase inactivation in the presence of excess methionine sulfoximine and ATP, and the binding of methionine sulfoximine to the enzyme. The results reveal that (a) the apparent first order rate constant of irreversible inactivation by the S isomer decreases progressively from the expected first order rate, indicating that an inactivated subunit retards the reactivity of its neighboring subunits toward methionine sulfoximine and ATP; (b) the R isomer does not inactivate glutamine synthetase irreversibly in the presence of ATP; however, the R isomer is capable of protecting the enzyme temporarily from the irreversible inhibition by the S isomer; and (c) the binding of the S isomer monitored by changes in protein fluorescence exhibits an apparent negative cooperative binding isotherm, whereas the R isomer yields an apparent positive cooperative pattern.  相似文献   

14.
The moderately halophilic, chloride-dependent bacterium Halobacillus halophilus produces glutamate and glutamine as main compatible solutes at external salinities of 1.0 to 1.5 M NaCl. The routes for the biosynthesis of these solutes and their regulation were examined. The genome contains two genes potentially encoding glutamate dehydrogenases and two genes for the small subunit of a glutamate synthase, but only one gene for the large subunit. However, the expression of these genes was not salt dependent, nor were the corresponding enzymatic activities detectable in cell extracts of cells grown at different salinities. In contrast, glutamine synthetase activity was readily detectable in H. halophilus. Induction of glutamine synthetase activity was strictly salt dependent and reached a maximum at 3.0 M NaCl; chloride stimulated the production of active enzyme by about 300%. Two potential genes encoding a glutamine synthetase, glnA1 and glnA2, were identified. The expression of glnA2 but not of glnA1 was increased up to fourfold in cells adapted to high salt, indicating that GlnA2 is the glutamine synthetase involved in the synthesis of the solutes glutamate and glutamine. Furthermore, expression of glnA2 was stimulated twofold by the presence of chloride ions. Chloride exerted an even more pronounced effect on the enzymatic activity of preformed enzyme: in the absence of chloride in the assay buffer, glutamine synthetase activity was decreased by as much as 90%. These data demonstrate for the first time a regulatory role of a component of common salt, chloride, in the biosynthesis of compatible solutes.  相似文献   

15.
林肯链霉菌谷氨酰胺合成酶活力调节的研究   总被引:1,自引:0,他引:1  
对不同氮源生长条件下林肯链霉菌无细胞粗提液中谷氨酰胺合成酶 (GS)的研究结果表明 ,高浓度NH+4阻遏了GS的生物合成。从不同氮源生长条件下林肯链霉菌中分离纯化了GS ,其性质没有差别。以受腺苷化调节的产气克雷伯氏菌GS作对照 ,林肯链霉菌GS没有明显的氨休克作用 ,经蛇毒磷酸二酯酶处理后 ,其活力没有变化。这些结果都说明林肯链霉菌GS不存在腺苷化共价修饰这一调节方式。反馈抑制作用是林肯链霉菌GS的一种重要的调节方式 ,这种抑制作用是以累积的方式进行的 ,这表明各种抑制剂对GS作用位点不同 ,各种抑制剂对GS的抑制作用是相互独立的。由此推测 ,林肯链霉菌GS是一种变构酶。  相似文献   

16.
Glutamine synthetase (GS) is the major glutamine-forming enzyme of vertebrates and is accepted to be a marker of astroglial cells. Maturation of astroglial cells is characterized by an increase of GS activity, and the regulation of this enzyme is the topic of many publications. Because of the fundamental role of the GS in controlling brain glutamate and glutamine level, it is essential to understand the mechanism of expression of this enzyme. To our knowledge, the effect of estrogen (17β-estradiol) on GS activity in glial cells has not been reported. We examined the effect of treatment with estrogen on glutamine synthetase enzyme activity in glial cells. C6-glioma cells in later passage have many astrocytic characteristics and provided a convenient and well-established model system. We adapted a colorimetric method to measure GS-catalyzed γ-glutamyltransferase (GT) activity in C6-glioma cells. The assay monitors GT activity of glutamine synthetase by following the absorbance of the product γ-glutamyl hydroxamate at 540 nm. We observed that, the absorbance of γ-glutamyl hydroxamate significantly increased in estrogen treated cells (0.13±0.03), as compared to untreated cells (0.058±0.015). Estrogen also significantly increased concentration of glutamine in C6-glioma cells as measured by fluorometric assay. In addition, western blot analysis showed that estrogen significantly increased the amount of glutamine synthetase compared to control. This estrogen effect could have important physiological implications on cerebral glutamate and glutamine metabolism.  相似文献   

17.
Glutamine synthetase from the unicellular cynabacterium Anacystis nidulans was found associated with the membrane fraction of cell-free extracts. The enzyme could be solubilized by treatment of the cell membranes with the detergent alkyltrimethylammoniun and was purified to electrophoretical homogeneity by using affinity chromatography on 2′,5′-ADP-Sepharose. The molecular weight of the native enzyme was approx. 575000 but only a single protein band of 47 kDa was detected after sodium dodecyl sulphate gel electrophoresis, which implies a native enzyme complex with twelve identically sized subunits. Values for apparent Michaelis constant of the purified enzyme for ammonium, glutamate and ATP were 20, 5000 and 700 μM, respectively. Alanine behaved as an inhibitor of both activities (transferase and biosynthetic) of glutamine synthetase, whereas aspartate, leucine and lysine inhibited the biosynthetic activity of the enzyme, and glycine and serine only inhibited the transferase activity. Glutamate analogs, such as hydroxylysine, methionine sulfone, methionine sulfoximine and phosphinothricin, which inhibited ammonium uptake in vivo, behaved as potent inhibitors of glutamine synthetase in vitro. A. nidulans glutamine synthetase was inhibited by p-hydroxymercuribenzoate, the effect being reversed by treatment with dithioerythritol, dithiothreitol or mercaptoethanol.  相似文献   

18.
S-Adenosylmethionine (SAM) synthetase of yeast and hyphal-phase cells of the dimorphic fungusCandida albicans was characterized by kinetic analysis and response to inhibitors. The enzyme from yeast-phase cells has a Km of 0.17 mM for methionine, 0.14 mM for ATP, and is inhibited (in vitro) by dimethyl-sulfoxide, methionine sulfone, and methionine sulfoxide. The hyphal-phase SAM synthetase has a Km of 0.06 mM for methionine, 0.02 mM for ATP, and its activity (in vitro) is enhanced by the substances that inhibit the yeast-phase enzyme. These data strongly suggest that isozymes of SAM synthetase are present inC. albicans and that they are possibly morphology specific. In vivo studies revealed that synthesis of the enzyme is repressed by the addition of methionine to the growth medium and that specific activity of the enzyme increases when intracellular SAM levels are lowered. In addition, it was shown that the increase in specific activity seen during yeast hypha morphogenesis and in yeast cells grown in a methionine-free medium involves de novo protein synthesis.  相似文献   

19.
Clearance of synaptic glutamate by glial cells is required for the normal function of excitatory synapses and for prevention of neurotoxicity. Although the regulatory role of glial glutamate transporters in glutamate clearance is well established, little is known about the influence of glial glutamate metabolism on this process. This study examines whether glutamine synthetase (GS), a glial-specific enzyme that amidates glutamate to glutamine, affects the uptake of glutamate. Retinal explants were incubated in the presence of [(14)C]glutamate and glutamate uptake was assessed by measurement of the amount of radioactively labeled molecules within the cells and the amount of [(14)C]glutamine released to the medium. An increase in GS expression in Müller glial cells, caused by induction of the endogenous gene, did not affect the amount of glutamate accumulated within the cells, but led to a dramatic increase in the amount of glutamine released. This increase, which was directly correlated with the level of GS expression, was dependent on the presence of external sodium ions, and could be completely abolished by methionine sulfoximine, a specific inhibitor of GS activity. Our results demonstrate that GS activity significantly influences the uptake of glutamate by the neural retina and suggest that this enzyme may represent an important target for neuroprotective strategies.  相似文献   

20.
A positive selection procedure has been devised for isolating mutant strains of Salmonella typhimurium with altered glutamine synthetase activity. Mutants are derived from a histidine auxotroph by selecting for ability to grow on D-histidine as the sole histidine source. We hypothesize that the phenotype may be based on a regulatory increase in the activities of the D-histidine racemizing enzymes, but this has not been established. Spontaneous glutamine-requiring mutants isolated by the above selection procedure have two types of alterations in glutamine synthetase activity. Some have less than 10% of parent activity. Others have significant glutamine synthetase activity, but the enzyme have an altered response to divalent cations. Activity in mutants of the second type mimics that of highly adenylylated wild-type enzyme, which is believed to be in-active in vivo. Glutamine synthetase from one such mutant is more heat labile than wild-type enzyme, indicating that it is structurally altered. Mutations in all strains are probably in the glutamine synthetase structural gene (glnA). They are closely linked on the Salmonella chromosome and lie at about min 125. The mutants have normal glutamate dehydrogenase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号