首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzymatic method was developed to collect intact follicles at different stages of development from cyclic hamsters to study ovarian folliculogenesis under various circumstances. Ovaries from 6 adult hamsters on each day of the cycle (Day 1 = ovulation) were collected, corpora lutea and large preantral and antral follicles were dissected, and follicles saved. Minced ovaries were then incubated with a mixture of collagenase, DNAse and pronase at 37 degrees C for 20 min to disperse intact follicles. Histological studies with 2191 isolated follicles revealed 10 different stages of follicular development (depending on the number of granulosa cell layers surrounding the oocyte and development of the antrum). Of the total follicular population, 14% showed signs of atresia, with 50% of those having 1-3 layers of granulosa cells (Stages 1-3); a second peak of 18% was observed in antral follicles (Stages 8-10). No signs of thecal cells were evident until the follicles reached Stage 6 (7-8 layers of granulosa cells), which possibly accounts for reduced atresia in this class and beyond. Ultrastructural study revealed that there were no signs of morphological damage to the basement membrane or to other subcellular organelles in the small preantral follicles. The presence of subnuclear lipid droplets in follicles with 3 layers of granulosa cells provided evidence for potential steroidogenesis by small follicles. The number of Stage 1-10 follicles was remarkably constant throughout the estrous cycle (460 +/- 34 per animal on Day 1 vs. 492 +/- 66 on Day 4). The usefulness of this method in analyzing follicular kinetics is illustrated in experiments involving hypophysectomy and the effects of unilateral ovariectomy. This procedure offers an improved method to study the factors responsible for the growth and the differentiation of small preantral follicles in the mammalian ovary.  相似文献   

2.
The ovarian follicle in mammals is a functional syncytium, with the oocyte being coupled with the surrounding cumulus granulosa cells, and the cumulus cells being coupled with each other and with the mural granulosa cells, via gap junctions. The gap junctions coupling granulosa cells in mature follicles contain several different connexins (gap junction channel proteins), including connexins 32, 43, and 45. Connexin43 immunoreactivity can be detected from the onset of folliculogenesis just after birth and persists through ovulation. In order to assess the importance of connexin43 gap junctions for postnatal folliculogenesis, we grafted ovaries from late gestation mouse fetuses or newborn pups lacking connexin43 (Gja1(-)/Gja1(-)) into the kidney capsules of adult females and allowed them to develop for up to 3 weeks (this was necessitated by the neonatal lethality caused by the mutation). By the end of the graft period, tertiary (antral) follicles had developed in grafted normal (wild-type or heterozygote) ovaries. Most follicles in Gja1(-)/Gja1(-) ovaries, however, failed to become multilaminar, with the severity of the effect depending on strain background. Dye transfer experiments indicated that intercellular coupling between granulosa cells is reduced, but not abolished, in the absence of connexin43, consistent with the presence of additional connexins. These results suggest that coupling between granulosa cells mediated specifically by connexin43 channels is required for continued follicular growth. Measurements of oocyte diameters revealed that oocyte growth in mutant follicles is retarded, but not arrested, despite the arrest of folliculogenesis. The mutant follicles are morphologically abnormal: the zona pellucida is poorly developed, the cytoplasm of both granulosa cells and oocytes is vacuolated, and cortical granules are absent from the oocytes. Correspondingly, the mutant oocytes obtained from 3-week grafts failed to undergo meiotic maturation and could not be fertilized, although half of the wild-type oocytes from 3-week grafted ovaries could be fertilized. We conclude that connexin43-containing gap junction channels are required for expansion of the granulosa cell population during the early stages of follicular development and that failure of the granulosa cell layers to develop properly has severe consequences for the oocyte.  相似文献   

3.
Of all the stages of mammalian folliculogenesis, the primordial to primary follicle transition is the least understood. In order to gain new insights into this process, we have conducted a comprehensive morphological, morphometric and molecular study of ovarian organisation and early follicle development in the rabbit. The structure of ovaries collected from rabbits aged from 2–12 weeks (a period encompassing primordial follicle formation, activation and the first wave of folliculogenesis in this species) has been analysed by light microscopy and the follicles present have been measured and scored for their developmental stage. To establish useful molecular markers of activation, we have further classified follicles according to their expression of the proliferative marker, proliferating cell nuclear antigen, and the zona pellucida protein, ZPB. The activation of primordial follicles is initiated immediately following their formation in the rabbit ovary and is characterised by oocyte growth, granulosa cell morphogenesis and increased granulosa cell mitosis. Enhanced ZPB protein expression at the oolemma is also associated with follicle activation and development. Few primordial follicles in the juvenile rabbit ovary are lost by atresia, as assessed by the TUNEL assay. The appearance of apoptotic granulosa cells is however coincident with the development of antral follicles. This study thus describes the temporal and spatial regulation of early follicular development in the post-natal rabbit ovary and, for the first time, shows that the primordial to primary transition in the juvenile rabbit is a highly ordered process occurring within quantifiable parameters.K.J.H. was supported by the Pest Animal Control CRC and Post Graduate scholarships from the Australian National University.  相似文献   

4.
Connexin43 (Cx43) forms gap junctions that couple the granulosa cells of ovarian follicles. In Cx43 knockout mice, follicle growth is restricted as a result of impaired granulosa cell proliferation. We have used these mice to examine the importance of specific Cx43 phosphorylation sites in follicle growth. Serines at residues 255, 262, 279, and 282 are MAP kinase substrates that, when phosphorylated, reduce junctional conductance. Mutant forms of Cx43 were constructed with these serines replaced with amino acids that cannot be phosphorylated. These mutants were transduced into Cx43 knockout ovarian somatic cells that were combined with wild-type oocytes and grafted into immunocompromised female mice permitting follicle growth in vivo. Despite residues 255 or 262 being mutated to prevent their being phosphorylated, recombinant ovaries constructed with these mutants were able to rescue the null phenotype, restoring complete folliculogenesis. In contrast, Cx43 with serine to alanine mutations at both residues 279 and 282 or at all four residues failed to rescue folliculogenesis; the mutant molecules were largely confined to intracellular sites, with few gap junctions. Using an in vitro proliferation assay, we confirmed a decrease in proliferation of granulosa cells expressing the double mutant construct. These results indicate that Cx43 phosphorylation by MAP kinase at serines 279 and 282 occurs in granulosa cells of early follicles and that this is involved in regulating follicle development.  相似文献   

5.
The localization of galectin-3, a β-galactoside-binding animal lectin, was immunohistochemically studied in the ovaries of pigs to determine its expression in ovarian folliculogenesis. Various stages of ovarian follicles were identified in the ovaries of adult pigs. Galectin-3 was immunostained in the squamous follicular cells surrounding oocytes in primordial follicles and in the unilaminar granulosa cells of primary follicles, but not in oocytes of multilaminar follicles (including primary, secondary, and tertiary Graafian follicles). As in adult ovaries, galectin-3 immunoreactivity was prominent in the unilaminar follicles in neonatal ovaries. Galectin-3 was also immunolocalized in the luteal cells in the corpus luteum and granulosa cells of atretic follicles as well as in interstitial macrophages in porcine ovaries. Collectively, these results suggest that galectin-3 is transiently expressed in follicular cells in the unilaminar ovarian follicles (primordial and primary) but not in multilaminar ovarian follicles (primary to tertiary), implying that galectin-3 is embryologically involved in ovum generation.  相似文献   

6.
7.
Characterization of integrin expression in the mouse ovary   总被引:7,自引:0,他引:7  
Integrin alpha:beta heterodimers mediate cell contacts to the extracellular matrix and initiate intracellular signaling cascades in response to a variety of factors. Integrins interact with many determinants of cellular phenotypes and play roles in controlling the development, structural integrity, and function of every type of tissue. Despite their importance, little is known about the regulation of integrin subunits in the mammalian ovary and how they function in folliculogenesis. To determine their relevance to ovarian physiology, we have studied the expression of integrin subunit mRNAs by Northern blot analysis and in situ hybridization in ovaries of wild-type, growth differentiation factor 9 (Gdf 9) knockout, FSHbeta (Fshb) knockout, and inhibin alpha (Inha) knockout mice. Integrin alpha6 mRNA is expressed in oocytes and granulosa cells of single-layer follicles and in oocytes and theca cells of multilayer follicles. Integrin alpha6 is highly expressed in Gdf 9 knockout ovaries, which are enriched in oocytes and primary (single layer) follicles because of a block at this stage of follicular development. Integrin alpha(v) mRNA is most highly expressed in the granulosa cells of multilayer growing follicles, and therefore only low levels of expression are detectable in the Gdf 9 knockout ovaries. Integrin beta1 mRNA exhibits a broad expression pattern in ovaries, including oocytes, granulosa cells, theca cells, and corpora lutea. Integrin beta3 mRNA is expressed in theca and interstitial cells and is upregulated in corpora lutea. It is nearly undetectable in ovaries of Fshb knockout mice, which develop preantral follicles but have no luteal cells. Integrin beta5 mRNA is predominantly expressed in granulosa cells of multilayer follicles. It is expressed at high levels in the Fshb knockout mice and in a compartmentalized manner in the granulosa cell/Sertoli cell tumors that develop in the Inha knockout mice. Specific integrins are associated with ovarian cellular phenotypes in mice, which raises intriguing possibilities as to integrin functions in oocyte competence, follicular development, luteinization, and granulosa cell proliferation.  相似文献   

8.
9.
Follicle histogenesis, in which follicles arise from fragmenting ovigerous cords, is a poorly understood mechanism that is strictly dependent upon the presence of germ cells. Our previous studies have shown that severely germ cell-depleted rat ovaries after fetal gamma-irradiation display modifications of follicular endowment and dynamics during the immature period. The primordial follicle stock was absent and the follicles with primary appearance remained quiescent longer than in control ovaries during the neonatal period. The aim of the present work was to analyze the initial steps of follicle histogenesis, and to investigate the etiology of the alterations observed in the development of irradiated ovaries. Just after birth, we observed, in addition to sterile ovigerous cords, the emergence of the first follicles which exhibited several abnormal features as compared to those of control ovaries. Most of the follicles appeared as primary follicles, as they were composed of a layer of cuboidal-shaped granulosa cells surrounding an enlarged oocyte. Interestingly, the granulosa cells of these primary-like follicles did not proliferate and did not express the genes for anti-Müllerian hormone (Amh) or bone morphogenetic protein receptor type II (Bmpr2), both of which are normally expressed from the primary stage onwards. In contrast, the oocytes strongly expressed the gene for growth and differentiation factor 9 (Gdf9), which is normally upregulated from the primary follicle stage onwards, which suggests an uncoupling of granulosa cell development from oocyte development. In addition, irradiated ovaries displayed a higher frequency of follicles that contained 2 or 3 oocytes, which are also referred to as multi-oocyte follicles (MOFs). Examination at the time of follicle histogenesis indicated that MOFs arise from incomplete ovigerous cord breakdown. Taken together, the results of this study indicate that severe perturbations of follicular histogenesis take place following irradiation and massive germ cell depletion during fetal life. In addition to the classically described sterile cords, we have pointed out the differentiation of MOFs and primary-like quiescent follicles, which finally evolve into growing follicles and participate in ovarian function. We propose that these phenotypes are closely correlated to the proportion of granulosa cells to oocytes at the time of neonatal follicle histogenesis.  相似文献   

10.
11.
In the ovary, primordial follicles have to pass different stages in order to become preovulatory follicles. In the past few years, new genes and therefore new proteins have been recognized as major players in folliculogenesis. Atm, kit ligand and its receptor c-kit are necessary for the maintenance of ovarian follicle pool. GDF-9, BMP15, originating from the oocyte play a major role in early folliculogenesis. Pro and antiapoptotic proteins such as Bax and Bcl2 complete in granulosa cells, in order to maintain or not the follicle alive. FSH receptor is necessary for final follicular maturation, from the preantral stage and beyond. LH receptor is necessary for follicle ovulation. However, new genes and their regulation need to be identified as many ovarian diseases such as premature ovarian failure are not yet clarified.  相似文献   

12.
Within the ovary, Estrogen Receptor β (ERβ) is localized to the granulosa cells of growing follicles. 17β-estradiol (E2) acting via ERβ augments the actions of follicle stimulating hormone in granulosa cells, leading to granulosa cell differentiation and formation of a preovulatory follicle. Adult ERβ-null females are subfertile and possess ovaries with reduced numbers of growing follicles and corpora lutea. Because the majority of E2 production by granulosa cells occurs once puberty is reached, a role for ERβ in the ovary prior to puberty has not been well examined. We now provide evidence that lack of ERβ disrupts gene expression as early as post-natal day (PND) 13, and in particular, we identify a number of genes of the extracellular matrix (ECM) that are significantly higher in ERβ-null follicles than in wildtype (WT) follicles. Considerable changes occur to the ECM occur during normal folliculogenesis to allow for the dramatic growth, cellular differentiation, and reorganization of the follicle from the primary to preovulatory stage. Using quantitative PCR and immunofluorescence, we now show that several ECM genes are aberrantly overexpressed in ERβ-null follicles. We find that Collagen11a1, a protein highly expressed in cartilage, is significantly higher in ERβ-null follicles than WT follicles as early as PND 13, and this heightened expression continues through PND 23-29 into adulthood. Similarly, Nidogen 2, a highly conserved basement membrane glycoprotein, is elevated in ERβ-null follicles at PND 13 into adulthood, and is elevated specifically in the ERβ-null focimatrix, a basal lamina-like matrix located between granulosa cells. Focimatrix laminin and Collagen IV expression were also higher in ERβ-null ovaries than in WT ovaries at various ages. Our findings suggest two novel observations: a) that ERβ regulates granulosa cell gene expression ovary prior to puberty, and b) that ERβ regulates expression of ECM components in the mouse ovary.  相似文献   

13.
Yu N  Roy SK 《Biology of reproduction》1999,61(6):1558-1567
Fetal hamster ovaries were cultured for up to 16 days in the presence or absence of various dosages of insulin to evaluate the induction of folliculogenesis in vitro. In the absence of insulin, a few primordial follicle-like structures appeared by the 4th day, and distinct primary follicles (stage 1) appeared by the 12th day of culture. The organelles in the oocytes and adjacent granulosa cells developed along with follicular growth. Moreover, gap junctions between the oocyte and somatic cell plasma membrane also developed as early as 8 days in culture. In the presence of 0.2 microg/ml insulin, primary follicles developed after 8 days, and approximately 4% secondary follicles with 2-3 layers of granulosa cells appeared after 16 days of culture. However, higher dosages (> 0.2 microg/ml) of insulin retarded primary follicle formation and induced the formation of primordial follicles with larger oocytes. An increased number of larger oocytes with a few granulosa cells accumulated at the periphery of the ovary. The results indicate that although primordial and primary follicles can develop after 12 days in vitro in the absence of exogenous insulin, the latter is required for timely progression of follicular development through primary and secondary stages.  相似文献   

14.
15.
Culture of preantral follicles has important biotechnological implications through its potential to produce large quantities of oocytes for embryo production and transfer. A long-term culture system for bovine preantral follicles is described. Bovine preantral follicles (166 +/- 2.15 micrometer), surrounded by theca cells, were isolated from ovarian cortical slices. Follicles were cultured under conditions known to maintain granulosa cell viability in vitro. The effects of epidermal growth factor (EGF), insulin-like growth factor (IGF)-I, FSH, and coculture with bovine granulosa cells on preantral follicle growth were analyzed. Follicle and oocyte diameter increased significantly (P < 0.05) with time in culture. FSH, IGF-I, and EGF stimulated (P < 0.05) follicle growth rate but had no effect on oocyte growth. Coculture with granulosa cells inhibited FSH/IGF-I-stimulated growth. Most follicles maintained their morphology throughout culture, with the presence of a thecal layer and basement membrane surrounding the granulosa cells. Antrum formation, confirmed by confocal microscopy, occurred between Days 10 and 28 of culture. The probability of follicles reaching antrum development was 0.19 for control follicles. The addition of growth factors or FSH increased (P < 0.05) the probability of antrum development to 0.55. Follicular growth appeared to be halted by slower growth of the basement membrane, as growing follicles occasionally burst the basement membrane, extruding their granulosa cells. In conclusion, a preantral follicle culture system in which follicle morphology can be maintained for up to 28 days has been developed. In this system, FSH, EGF, and IGF-I stimulated follicle growth and enhanced antrum formation. This culture system may provide a valuable approach for studying the regulation of early follicular development and for production of oocytes for nuclear/embryo transfer, but further work is required.  相似文献   

16.
Ovarian follicular development, follicle selection, and the process of ovulation remain poorly understood in most species. Throughout reproductive life, follicle fate is balanced between growth and apoptosis. These opposing forces are controlled by numerous endocrine, paracrine, and autocrine factors, including the ligands represented by the transforming growth factor beta (TGFbeta) superfamily. TGFbeta, activin, inhibin, bone morphometric protein (BMP), and growth differentiation factor 9 (GDF-9) are present in the ovary of many animals; however, no comprehensive analysis of the localization of each ligand or its receptors and intracellular signaling molecules during folliculogenesis has been done. The domestic cat is an ideal model for studying ovarian follicle dynamics due to an abundance of all follicle populations, including primordial stage, and the amount of readily available tissue following routine animal spaying. Additionally, knowledge of the factors involved in feline follicular development could make an important impact on in vitro maturation/in vitro fertilization (IVM/IVF) success for endangered feline species. Thus, the presence and position of TGFbeta superfamily members within the feline ovary have been evaluated in all stages of follicular development by immunolocalization. The cat inhibin alpha subunit protein is present in all follicle stages but increases in intensity within the mural granulosa cells in large antral follicles. The inhibin betaA and betaB subunit proteins, in addition to the activin type I (ActRIB) and activin type II receptor (ActRIIB), are produced in primordial and primary follicle granulosa cells. Additionally, inhibin betaA subunit is detected in the theca cells from secondary through large antral follicle size classes. GDF-9 is restricted to the oocyte of preantral and antral follicles, whereas the type II BMP receptor (BMP-RII) protein is predominantly localized to primordial- and primary-stage follicles. TGFbeta1, 2, and 3 ligand immunoreactivity is observed in both small and large follicles, whereas the TGFbeta type II receptor (TGFbeta RII) is detected in the oocyte and granulosa cells of antral follicles. The intracellular signaling proteins Smad2 and Smad4 are present in the granulosa cell cytoplasm of all follicle size classes. Smad3 is detected in the granulosa cell nucleus, the oocyte, and the theca cell nucleus of all follicle size classes. These data suggest that the complete activin signal transduction pathway is present in small follicles and that large follicles primarily produce the inhibins. Our data also suggest that TGFbeta ligands and receptors are colocalized to large antral follicles. Taken together, the ligands, receptors, and signaling proteins for the TGFbeta superfamily are present at distinct points throughout feline folliculogenesis, suggesting discrete roles for each of these ligands during follicle maturation.  相似文献   

17.
18.
Ovarian follicle development is a process regulated by various endocrine, paracrine and autocrine factors that act coordinately to promote follicle growth. However, the vast majority of follicles does not reach the pre-ovulatory stage but instead, undergo atresia by apoptosis. We have recently described a role for the somatic hyaluronidases (Hyal-1, Hyal-2, and Hyal-3) in ovarian follicular atresia and induction of granulosa cell apoptosis. Herein, we show that Hyal-1 but not Hyal-3 null mice have decreased apoptotic granulosa cells after the induction of atresia and an increased number of retrieved oocytes after stimulation of ovulation. Furthermore, young Hyal-1 null mice had a significantly higher number of primordial follicles than age matched wild-type animals. Recruitment of these follicles at puberty resulted in an increased number of primary and healthy preantral follicles in Hyal-1 null mice. Consequently, older Hyal-1 deficient female mice have prolonged fertility. At the molecular level, immature Hyal-1 null mice have decreased mRNA expression of follistatin and higher levels of phospho-Smad3 protein, resulting in increased levels of phospho-Akt in pubertal mice. Hyal-1 null ovarian follicles did not exhibit hyaluronan accumulation. For Hyal-3 null mice, compensation by Hyal-1 or Hyal-2 might be related to the lack of an ovarian phenotype. In conclusion, our results demonstrate that Hyal-1 plays a key role in the early phases of folliculogenesis by negatively regulating ovarian follicle growth and survival. Our findings add Hyal-1 as an ovarian regulator factor for follicle development, showing for the first time an interrelationship between this enzyme and the follistatin/activin/Smad3 pathway.  相似文献   

19.
20.
The extracellular matrix (ECM) plays a prominent role in ovarian function by participating in processes such as cell migration, proliferation, growth, and development. Although some of these signaling processes have been characterized in the mouse, the relative quantity and distribution of ECM proteins within developing follicles of the ovary have not been characterized. This study uses immunohistochemistry and real-time PCR to characterize the ECM components type I collagen, type IV collagen, fibronectin, and laminin in the mouse ovary according to follicle stage and cellular compartment. Collagen I was present throughout the ovary, with higher concentrations in the ovarian surface epithelium and follicular compartments. Collagen IV was abundant in the theca cell compartment with low-level expression in the stroma and granulosa cells. The distribution of collagen was consistent throughout follicle maturation. Fibronectin staining in the stroma and theca cell compartment increased throughout follicle development, while staining in the granulosa cell compartment decreased. Heavy staining was also observed in the follicular fluid of antral follicles. Laminin was localized primarily to the theca cell compartment, with a defined ring at the exterior of the follicular granulosa cells marking the basement membrane. Low levels of laminin were also apparent in the stroma and granulosa cell compartment. Taken together, the ECM content of the mouse ovary changes during follicular development and reveals a distinct spatial and temporal pattern. This understanding of ECM composition and distribution can be used in the basic studies of ECM function during follicle development, and could aid in the development of in vitro systems for follicle growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号