首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Cytokine production has been implicated in the pathogenic mechanisms of infections caused by the staphylococci, since these bacteria may act as strong cytokine inducers. To gain deeper insight into the Th1 immune response activated by these bacteria, we have analyzed the interferon (IFN), interleukin-12 (IL-12) and IL-18-inducing activities of different Staphylococcus aureus (S. aureus), S. epidermidis and S. saprophyticus strains in human monocytes and murine bone marrow macrophages. A large majority of the S. aureus strains elicited the simultaneous production of IL-12 p70 and IFN-alpha in the human monocytes, while the S. epidermidis and S. saprophyticus strains induced only a low level of production, if any, of these cytokines. Furthermore, a majority of the S. aureus strains induced significantly higher IL-12 p70 and IL-18 titers in the murine bone marrow macrophages than did the S. epidermidis and S. saprophyticus strains. As IL-12, IL-18 and IFN-alpha stimulate Th1 differentiation synergistically, we suggest that S. aureus strains bias the immune response toward a Th1 phenotype, whereas S. epidermidis and S. saprophyticus strains provide a weaker stimulus for the production of Th1-inducing cytokines, and accordingly possibly elicit a less extensive Th1-associated adaptive immunity.  相似文献   

6.
IL-12 is a key inducer of Th1-associated inflammatory responses, protective against intracellular infections and cancer, but also involved in autoimmune tissue destruction. We report that human Th2 cells interacting with monocyte-derived dendritic cells (DC) effectively induce bioactive IL-12p70 and revert to Th0/Th1 phenotype. In contrast, the interaction with B cells preserves polarized Th2 phenotype. The induction of IL-12p70 in Th2 cell-DC cocultures is prevented by IL-4-neutralizing mAb, indicating that IL-4 acts as a Th2 cell-specific cofactor of IL-12p70 induction. Like IFN-gamma, IL-4 strongly enhances the production of bioactive IL-12p70 heterodimer in CD40 ligand-stimulated DC and macrophages and synergizes with IFN-gamma at low concentrations of both cytokines. However, in contrast to IFN-gamma, IL-4 inhibits the CD40 ligand-induced production of inactive IL-12p40 and the production of either form of IL-12 induced by LPS, which may explain the view of IL-4 as an IL-12 inhibitor. The presently described ability of IL-4 to act as a cofactor of Th cell-mediated IL-12p70 induction may allow Th2 cells to support cell-mediated immunity in chronic inflammatory states, including cancer, autoimmunity, and atopic dermatitis.  相似文献   

7.
Tolerance in T lymphocytes can result from clonal anergy, or paralysis, of Ag-specific T cells. To investigate the molecular mechanisms responsible for anergy, a system in which tolerance can be induced in vitro was employed. Anergy, as defined by long-lived nonresponsiveness to normal antigenic stimulation for IL-2 production, was produced in cloned murine CD4+ Th1 cells. Here we report that such anergic Th1 cells express constitutively reduced amounts of the protein tyrosine kinase p56lck and constitutively elevated levels of the protein tyrosine kinase p59fyn. Because protein tyrosine phosphorylation is known to be important for the normal induction of IL-2 synthesis, these results suggest that T cell anergy may be maintained, at least in part, by alterations in tyrosine phosphorylation signaling events.  相似文献   

8.
Improper homeostasis of Th1 and Th2 cell differentiation can promote pathological immune responses such as autoimmunity and asthma. A number of factors govern the development of these cells including TCR ligation, costimulation, death effector expression, and activation-induced cell death (AICD). Although chronic morphine administration has been shown to selectively promote Th2 development in unpurified T cell populations, the direct effects of chronic morphine on Th cell skewing and cytokine production by CD4(+) T cells have not been elucidated. We previously showed that morphine enhances Fas death receptor expression in a T cell hybridoma and human PBL. In addition, we have demonstrated a role for Fas, Fas ligand (FasL), and TRAIL in promoting Th2 development via killing of Th1 cells. Therefore, we analyzed whether the ability of morphine to affect Th2 cytokine production was mediated by regulation of Fas, FasL, and TRAIL expression and AICD directly in purified Th cells. We found that morphine significantly promoted IL-4 and IL-13 production but did not alter IL-5 or IFN-gamma. Furthermore, morphine enhanced the mRNA expression of Fas, FasL and TRAIL and promoted Fas-mediated AICD of CD4(+) T cells. Additionally, blockade of Fas/FasL interaction by anti-FasL inhibited the morphine-induced production of IL-4 and IL-13 and AICD of CD4(+) T cells. These results suggest that morphine preferentially enhances Th2 cell differentiation via killing of Th1 cells in a Fas/FasL-dependent manner.  相似文献   

9.
10.
Human anaplasmosis is an emerging infectious disease transmitted by ticks that can be potentially fatal in the immunocompromised and the elderly. The mechanisms of defense against the causative agent, Anaplasma phagocytophilum, are not completely understood; however, interferon (IFN)-gamma plays an important role in pathogen clearance. Here, we show that IFN-gamma is regulated through an early IL-12/23p40-dependent mechanism. Interleukin (IL)-12/23p40 is regulated in macrophages and dendritic cells after activation by microbial agonists and cytokines and constitutes a subunit of IL-12 and IL-23. IL-12/23p40-deficient mice displayed an increased A. phagocytophilum burden, accelerated thrombocytopenia and increased neutrophil numbers in the spleen at day 6 postinfection. Infection of MyD88- and mitogen-activated kinase kinase 3 (MKK3)-deficient mice suggested that the early susceptibility due to IL-12/23p40 deficiency was not dependent on signaling through MyD88 or MKK3. The lack of IL-12/23p40 reduced IFN-gamma production in both CD4(+) and CD8(+) T cells although the effect was more pronounced in CD4(+) T cells. Our data suggest that the immune response against A. phagocytophilum is a multifactorial and cooperative process. The IL-12/23p40 subunit drives the CD4(+) Th1 immune response in the early phase of infection and IL-12/23p40-independent mechanisms ultimately contribute to pathogen elimination from the host.  相似文献   

11.
12.
We have explored the phenotype and regulation of Th1 cell activation by the cytokines IL-12 and IL-18. We demonstrate that these two cytokines selectively induce IFN-gamma in a differentiated Th1 cell population through the previously described p38 mitogen-activated protein (MAP) kinase pathway. Using a highly selective p38 MAP kinase inhibitor, we demonstrate that it is possible to block IFN-gamma induction from activated, differentiated Th1 cells via p38 MAP kinase without disrupting the activation and differentiation of naive T cells or the proliferation of naive or differentiated T cells. In addition, IL-12 and IL-18 provide an Ag and IL-2-independent survival signal to this uniquely differentiated Th1 cell population. We hypothesize that this Ag-independent survival of Th1 cells may participate in an innate inflammatory loop with monocytes at the sites of chronic inflammation. In addition, p38 MAP kinase inhibition of this cytokine-regulated pathway may be a unique mechanism to inhibit chronic inflammation without disruption of Ag-driven activation and function of naive T cells.  相似文献   

13.
The IL-12 family of cytokines, which include IL-12, IL-23, and IL-27, play critical roles in the differentiation of Th1 cells and are believed to contribute to the development of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Relatively little is known concerning the expression of IL-12 family cytokines by cells of the CNS, the affected tissue in MS. Previously, we and others demonstrated that peroxisome proliferator-activated receptor (PPAR)-gamma agonists suppress the development of EAE, alter T cell proliferation and phenotype, and suppress the activation of APCs. The present studies demonstrated that PPAR-gamma agonists, including the naturally occurring 15-deoxy-Delta(12,14)-PGJ(2) and the synthetic thiazoladinedione rosiglitazone, inhibited the induction of IL-12p40, IL-12p70 (p35/p40), IL-23 (p19/p40), and IL-27p28 proteins by LPS-stimulated primary microglia. In primary astrocytes, LPS induced the production of IL-12p40, IL-23, and IL-27p28 proteins. However, IL-12p70 production was not detected in these cells. The 15-deoxy-Delta(12,14)-PGJ(2) potently suppressed IL-12p40, IL-23, and IL-27p28 production by primary astrocytes, whereas rosiglitazone suppressed IL-23 and IL-27p28, but not IL-12p40 in these cells. These novel observations suggest that PPAR-gamma agonists modulate the development of EAE, at least in part, by inhibiting the production of IL-12 family cytokines by CNS glia. In addition, we demonstrate that PPAR-gamma agonists inhibit TLR2, MyD88, and CD14 expression in glia, suggesting a possible mechanism by which these agonists modulate IL-12 family cytokine expression. Collectively, these studies suggest that PPAR-gamma agonists may be beneficial in the treatment of MS.  相似文献   

14.
Zhu L  Wu Y  Wei H  Yang S  Zhan N  Xing X  Peng B 《Cytokine》2012,60(1):171-178
Interleukin (IL)-23 is an essential cytokine involved in the expansion of a novel CD4(+) T helper subset known as Th17, which has been implicated in the pathogenesis of periodontitis recently. Our previous study first identified specialized human periodontal ligament fibroblasts (hPDLFs) as an important production source of IL-23. The present study was undertaken to investigate the effects of the pro-inflammatory and Th17-polarizing mediator IL-1β on hPDLFs-mediated IL-23 p19 production, and the molecular mechanism involved. IL-23 p19 expression was in situ detected in IL-1β-stimulated hPDLFs. IL-1β was capable of stimulating the expression of IL-23 p19 mRNA and protein in cultured hPDLFs, which was attenuated by IL-1 receptor antagonist (IL-1Ra) or myeloid differentiation primary response gene 88 (MyD88) inhibitor. Meanwhile, inhibitors of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), activator protein-1 (AP-1), or nuclear factor-kappaB (NF-κB) significantly suppressed IL-23 p19 production from IL-1β-stimulated hPDLFs. Moreover, IL-1β-initiated AP-1 activation was blocked by p38 MAPK, ERK 1/2, or JNK inhibition, whereas NF-κB activity remained unaltered by all the above pathway specific inhibitors. Thus, these results provide evidence that Th17-polarizing mediator IL-1β up-regulated the expression of IL-23 p19 in hPDLFs via NF-κB signaling and MAPKs-dependent AP-1 pathways. Taken together, our findings indicate that IL-1Ra may be used therapeutically to inhibit Th17-driven inflammatory diseases including periodontitis.  相似文献   

15.
IL-12 is a macrophage-derived cytokine that induces proliferation, cytokine production, and cytotoxic activity of T and NK cells. Signaling through its receptor, IL-12 induces these cellular responses by tyrosine phosphorylation and activation of Janus kinase-2 (Jak-2), Tyk-2, Stat3, and Stat4. We have used tyrphostin B42 (AG490), a Jak-2 inhibitor, to determine the role of Jak-2 kinase in IL-12 signaling and IL-12-induced T cell functions. Treatment of activated T cells with tyrphostin B42 inhibited the IL-12-induced tyrosine phosphorylation and activation of Jak-2 without affecting Tyk-2 kinase. In contrast, treatment with tyrphostin A1 inhibited the tyrosine phosphorylation of Tyk-2 but not that of Jak-2 kinase. Inhibition of either Jak-2 or Tyk-2 leads to a decrease in the IL-12-induced tyrosine phosphorylation of Stat3, but not of Stat4, protein. While inhibition of Jak-2 lead to programmed cell death, the inhibition of Jak-2 or Tyk-2 resulted a decrease in IFN-gamma production. We have further tested the in vivo effects of tyrphostin B42 in experimental allergic encephalomyelitis, a Th1 cell-mediated autoimmune disease. In vivo treatment with tyrphostin B42 decreased the proliferation and IFN-gamma production of neural Ag-specific T cells. Treatment of mice with tyrphostin B42 also reduced the incidence and severity of active and passive EAE. These results suggest that tyrphostin B42 prevents EAE by inhibiting IL-12 signaling and IL-12-mediated Th1 differentiation in vivo.  相似文献   

16.
17.
Impaired host defense mechanisms after major operative procedures and trauma are recognized as important factors in the development of infectious complication. Trauma is associated with impaired cellular immunity and CD4+ T cell Th2 differentiation. We have previously implicated morphine treatment as a possible mechanism for Th2 differentiation after injury. In this investigation we first establish that morphine treatment in vivo results in Th2 differentiation and that this effect is mediated through a naltrexone-sensitive opioid receptor. We investigated the intracellular mechanism by which morphine controls CD4+ T cell differentiation and demonstrate that morphine treatment in vitro 1) increases anti CD3/CD28 Ab-induced CD4+ T cell IL-4 protein synthesis, IL-4 mRNA, and GATA-3 mRNA accumulation through a pertussis toxin-sensitive receptor; 2) results in a dose-dependent increase in anti-CD3/CD28 Ab-induced CD4+ T cell cytoplasmic cAMP concentration; and 3) increases the forskolin-stimulated cytoplasmic cAMP level through a pertussis toxin-sensitive receptor. We also demonstrate that chronic morphine treatment increases anti-CD3/CD28 Ab-induced IL-4 promoter activity and IL-4 immunoprotein expression through a p38 MAPK-dependent, but protein kinase A- and Erk1/Erk2-independent, mechanism.  相似文献   

18.
Adenosine (ADO) exerts potent anti-inflammatory and immunosuppressive effects. In this paper we address the possibility that these effects are partly mediated by inhibition of the secretion of IL-12, a proinflammatory cytokine and a major inducer of Th1 responses. We demonstrate that 5'-N-ethylcarboxamidoadenosine (NECA), a nonspecific ADO analogue, and 2-p-(2-carbonyl-ethyl)phenylethylamino-5'-N-ethylcarboxamidoadenos ine (CGS-21680), a specific A2a receptor agonist, dose-dependently inhibited, in whole blood ex vivo and monocyte cultures, the production of human IL-12 induced by LPS and Stapholococcus aureus Cowan strain 1. However, the A1 receptor agonist 2-Chloro-N6-cyclopentyladenosine and the A3 receptor agonists N6-Benzyl-NECA and 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-be ta-d -ribofuranuronamide expressed only weak inhibitory effects. On the other hand, NECA and CGS-21680 dose-dependently potentiated the production of IL-10. The differential effect of these drugs on monocyte IL-12 and IL-10 production implies that these effects are mediated by A2a receptor signaling rather than by intracellular toxicity of ADO analogue's metabolites. Moreover, CGS-21680 inhibited IL-12 production independently of endogenous IL-10 induction, because anti-IL-10 Abs failed to prevent its effect. The selective A2a antagonist 8-(3-Chlorostyryl) caffeine prevented the inhibitory effect of CGS-21680 on IL-12 production. The phosphodiesterase inhibitor Ro 20-1724 dose-dependently potentiated the inhibitory effect of CGS-21680 and, furthermore, Rp-cAMPS, a protein kinase A inhibitor, reversed the inhibitory effect of CGS-21680, implicating a cAMP/protein kinase A pathway in its action. Thus, ligand activation of A2a receptors simultaneously inhibits IL-12 and stimulates IL-10 production by human monocytes. Through this mechanism, ADO released in excess during inflammatory and ischemic conditions, or tissue injury, may contribute to selective suppression of Th1 responses and cellular immunity.  相似文献   

19.
Depression is one of the most frequent neuropsychiatric comorbidities associated with opiate addiction. Mitogen activated protein kinase (MAPK) and MAPK phosphatase (MKP) are involved in drug addiction and depression. However, the potential role of MAPK and MKP in depression caused by morphine withdrawal remains unclear. We utilized a mouse model of repeated morphine administration to examine the molecular mechanisms that contribute to prolonged withdrawal induced depressive-like behaviors. Depressive-like behaviors were significant at 1 week after withdrawal and worsened over time. Phospho-ERK (extracellular signal-regulated protein kinase) was decreased and MKP-1 was elevated in the hippocampus, and JNK (c-Jun N-terminal protein kinase), p38 (p38 protein kinase) and MKP-3 were unaffected. A pharmacological blockade of MKP-1 by intra-hippocampal sanguinarine (SA) infusion prevented the development of depressive-like behaviors and resulted in relatively normal levels of MKP-1 and phospho-ERK after withdrawal. Our findings support the association between hippocampal MAPK phosphorylation and prolonged morphine withdrawal-induced depression, and emphasize the MKP-1 as an negative regulator of the ERK phosphorylation that contributes to depression.  相似文献   

20.
Although c-Jun N-terminal kinase (JNK) plays an important role in cytokine expression, its function in IL-12 production is obscure. The present study uses human macrophages to examine whether the JNK pathway is required for LPS-induced IL-12 production and defines how JNK is involved in the regulation of IL-12 production by glutathione redox, which is the balance between intracellular reduced (GSH) and oxidized glutathione (GSSG). We found that LPS induced IL-12 p40 protein and mRNA in a time- and concentration-dependent manner in PMA-treated THP-1 macrophages, and that LPS activated JNK and p38 mitogen-activated protein (MAP) kinase, but not extracellular signal-regulated kinase, in PMA-treated THP-1 cells. Inhibition of p38 MAP kinase activation using SB203580 dose dependently repressed LPS-induced IL-12 p40 production, as described. Conversely, inhibition of JNK activation using SP600125 dose dependently enhanced both LPS-induced IL-12 p40 production from THP-1 cells and p70 production from human monocytes. Furthermore, JNK antisense oligonucleotides attenuated cellular levels of JNK protein and LPS-induced JNK activation, but augmented IL-12 p40 protein production and mRNA expression. Finally, the increase in the ratio of GSH/GSSG induced by glutathione reduced form ethyl ester (GSH-OEt) dose dependently enhanced LPS-induced IL-12 p40 production in PMA-treated THP-1 cells. GSH-OEt augmented p38 MAP kinase activation, but suppressed the JNK activation induced by LPS. Our findings indicate that JNK negatively affects LPS-induced IL-12 production from human macrophages, and that glutathione redox regulates LPS-induced IL-12 production through the opposite control of JNK and p38 MAP kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号