首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human prostacyclin receptor (hIP) undergoes agonist-induced internalization and subsequent recyclization in slowly recycling endosomes involving its direct physical interaction with Rab11a. Moreover, interaction with Rab11a localizes to a 22-residue putative Rab11 binding domain (RBD) within the carboxyl-terminal tail of the hIP, proximal to the transmembrane 7 (TM7) domain. Because the proposed RBD contains Cys308 and Cys311, in addition to Cys309, that are known to undergo palmitoylation, we sought to identify the structure/function determinants of the RBD, including the influence of palmitoylation, on agonist-induced trafficking of the hIP. Through complementary approaches in yeast and mammalian cells along with computational structural studies, the RBD was localized to a 14-residue domain, between Val299 and Leu312, and proposed to be organized into an eighth α-helical domain (α-helix 8), comprising Val299–Val307, adjacent to the palmitoylated residues at Cys308–Cys311. From mutational and [3H]palmitate metabolic labeling studies, it is proposed that palmitoylation at Cys311 in addition to agonist-regulated deacylation at Cys309 > Cys308 may dynamically position α-helix 8 in proximity to Rab11a, to regulate agonist-induced intracellular trafficking of the hIP. Moreover, Ala-scanning mutagenesis identified several hydrophobic residues within α-helix 8 as necessary for the interaction with Rab11a. Given the diverse membership of the G protein-coupled receptor superfamily, of which many members are also predicted to contain an α-helical 8 domain proximal to TM7 and, often, adjacent to palmitoylable cysteine(s), the identification of a functional role for α-helix 8, as exemplified as an RBD for the hIP, is likely to have broader significance for certain members of the superfamily.  相似文献   

2.
Autophagy, the process for recycling cytoplasm in the lysosome, depends on membrane trafficking. We previously identified Drosophila Sbf as a Rab21 guanine nucleotide exchange factor (GEF) that acts with Rab21 in endosomal trafficking. Here, we show that Sbf/MTMR13 and Rab21 have conserved functions required for starvation‐induced autophagy. Depletion of Sbf/MTMR13 or Rab21 blocked endolysosomal trafficking of VAMP8, a SNARE required for autophagosome–lysosome fusion. We show that starvation induces Sbf/MTMR13 GEF and RAB21 activity, as well as their induced binding to VAMP8 (or closest Drosophila homolog, Vamp7). MTMR13 is required for RAB21 activation, VAMP8 interaction and VAMP8 endolysosomal trafficking, defining a novel GEF‐Rab‐effector pathway. These results identify starvation‐responsive endosomal regulators and trafficking that tunes membrane demands with changing autophagy status.  相似文献   

3.
Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson''s disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson''s disease.  相似文献   

4.
Primary cilia are microtubule-based solitary membrane projections on the cell surface that play important roles in signaling and development. Recent studies have demonstrated that polarized vesicular trafficking involving the small GTPase Rab8 and its guanine nucleotide exchange factor Rabin8 is essential for primary ciliogenesis. In this study, we show that a highly conserved region of Rabin8 is pivotal for its activation as a guanine nucleotide exchange factor for Rab8. In addition, in its activated conformation, Rabin8 interacts with Sec15, a subunit of the exocyst and downstream effector of Rab8. Expression of constitutively activated Rab8 promotes the association of Sec15 with Rabin8. Using immunofluorescence microscopy, we found that Sec15 co-localized with Rab8 along the primary cilium. Inhibition of Sec15 function in cells led to defects in primary ciliogenesis. The Rabin8-Rab8-Sec15 interaction may couple the activation of Rab8 to the recruitment of the Rab8 effector and is involved in the regulation of vesicular trafficking for primary cilium formation.  相似文献   

5.
Co-ordination of Rab GTPase function has emerged as a crucial mechanism in the control of intracellular trafficking processes in eukaryotic cells. Here, we show that GRAB/Rab3IL1 [guanine nucleotide exchange factor for Rab3A; RAB3A interacting protein (rabin3)-like 1], a protein that has previously be shown to act as a GEF (guanine nucleotide exchange factor) for Rab3a, Rab8a and Rab8b, is also a binding partner for Rab11a and Rab11b, but not the closely related Rab25 GTPase. We demonstrate that exogenous expression of Rab11a and Rab11b shift GRAB’s distribution from the cytoplasm onto membranes. We find that the Rab11a/Rab11b-binding region of GRAB lies within its carboxy-terminus, a region distinct from its GEF domain and Rab3a-binding region. Finally, we describe a GRAB deletion mutant (GRABΔ223–228) that is deficient in Rab11-binding ability. These data identify GRAB as a dual Rab-binding protein that could potentially link Rab3 and Rab11 and/or Rab8 and Rab11-mediated intracellular trafficking processes.  相似文献   

6.
Rab GTPases are essential for vesicular transport, whereas adenosine triphosphate (ATP) is the most important and versatile of the activated carriers in the cell. But there are little reports to clarify the connection between ATP and Rab GTPases. A cDNA clone (Rab14) from Bombyx mori was expressed in Escherichia coli as a glutathione S-transferase fusion protein and purified. The protein bound to [3H]-GDP and [35S]-GTPγS. Binding of [35S]-GTPγS was inhibited by guanosine diphosphate (GDP), guanosine triphosphate (GTP) and ATP. Rab14 showed GTP- and ATP-hydrolysis activity. The Km value of Rab14 for ATP was lower than that for GTP. Human Rab14 also showed an ATPase activity. Furthermore, bound [3H]-GDP was exchanged efficiently with GTP and ATP. These results suggest that Rab14 is an ATPase as well as GTPase and gives Rab14 an exciting integrative function between cell metabolic status and membrane trafficking.  相似文献   

7.
《Proteins》2018,86(4):405-413
Rab GTPases and their effectors, activators and guanine nucleotide exchange factors (GEFs) are essential for vesicular transport. Rab8 and its GEF Rabin8 function in formation of the cilium organelle important for developmental signaling and sensory reception. Here, we show by size exclusion chromatography and analytical ultracentrifugation that Rabin8 exists in equilibrium between dimers and tetramers. The crystal structure of tetrameric Rabin8 GEF domain reveals an occluded Rab8 binding site suggesting that this oligomer is enzymatically inactive, a notion we verify experimentally using Rabin8/Rab8 GEF assays. We outline a procedure for the purification of active dimeric Rabin8 GEF‐domain for in vitro activity assays.  相似文献   

8.
The human prostacyclin receptor (hIP) undergoes agonist-induced internalization but the mechanisms regulating its intracellular trafficking and/or recycling to the plasma membrane are poorly understood. Herein, we conducted a yeast-two-hybrid screen to identify proteins interacting with the carboxyl-terminal (C)-tail domain of the hIP and discovered a novel interaction with Rab11a. This interaction was confirmed by co-immunoprecipitations in mammalian HEK293 and was augmented by cicaprost stimulation. The hIP co-localized to Rab11-containing recycling endosomes in both HEK293 and endothelial EA.hy 926 cells in a time-dependent manner following cicaprost stimulation. Moreover, over-expression of Rab11a significantly increased recycling of the hIP, while the dominant negative Rab11S25N impaired that recycling. Conversely, while the hIP co-localized to Rab4-positive endosomes in response to cicaprost, ectopic expression of Rab4a did not substantially affect overall recycling nor did Rab4a directly interact with the hIP. The specific interaction between the hIP and Rab11a was dependent on a 22 amino acid (Val299–Gln320) sequence within its C-tail domain and was independent of isoprenylation of the hIP. This study elucidates a critical role for Rab11a in regulating trafficking of the hIP and has identified a novel Rab11 binding domain (RBD) within its C-tail domain that is both necessary and sufficient to mediate interaction with Rab11a.  相似文献   

9.
The GTPase Rab1 is a master regulator of the early secretory pathway and is critical for autophagy. Rab1 activation is controlled by its guanine nucleotide exchange factor, the multisubunit TRAPPIII complex. Here, we report the 3.7 Å cryo‐EM structure of the Saccharomyces cerevisiae TRAPPIII complex bound to its substrate Rab1/Ypt1. The structure reveals the binding site for the Rab1/Ypt1 hypervariable domain, leading to a model for how the complex interacts with membranes during the activation reaction. We determined that stable membrane binding by the TRAPPIII complex is required for robust activation of Rab1/Ypt1 in vitro and in vivo, and is mediated by a conserved amphipathic α‐helix within the regulatory Trs85 subunit. Our results show that the Trs85 subunit serves as a membrane anchor, via its amphipathic helix, for the entire TRAPPIII complex. These findings provide a structural understanding of Rab activation on organelle and vesicle membranes.  相似文献   

10.
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the α2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative α2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the α3 and α4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B α2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B α2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the α2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.  相似文献   

11.
生长抑制因子(GIF)与G蛋白Rab3a直接相互作用   总被引:6,自引:1,他引:5  
生长抑制因子(growth inhibitory factor, GIF), 又称金属硫蛋白-3, 为68个氨基酸组成的脑特异性金属硫蛋白, 具有广泛的生理功能; GIF可能与阿尔茨海默氏症(Alzheimer's)病理相关, 在Alzheimer's脑提取物存在下, 还对神经细胞具有特异的生长抑制活性.然而, 对其发挥生长抑制作用的分子机制并不清楚.运用酵母双杂交系统从人脑cDNA文库中筛选与GIF相互作用因子,从4.1×106个人脑cDNA文库转化子中,首次筛选到Ras家族G蛋白Rab3a C端,包含87个氨基酸的片段能与GIF相互作用;用PCR自人胎盘总cDNA中获得包含完整Rab3a编码序列的cDNA;通过酵母双杂交实验表明,全长Rab3a蛋白亦能与GIF相互作用.免疫共沉淀和蛋白质印迹实验进一步验证了GIF与Rab3a在哺乳动物细胞中可以相互作用; 而且, Rab3a是以GTP结合形式(GTP-Rab3a)与GIF发生相互作用.  相似文献   

12.
The molecular mechanism underlying the post-Golgi transport of G protein-coupled receptors (GPCRs) remains poorly understood. Here we determine the role of Rab8 GTPase, which modulates vesicular protein transport between the trans-Golgi network (TGN) and the plasma membrane, in the cell surface targeting of α2B- and β2-adrenergic receptors (AR). Transient expression of GDP- and GTP-bound Rab8 mutants and short hairpin RNA-mediated knockdown of Rab8 more potently inhibited the cell surface expression of α2B-AR than β2-AR. The GDP-bound Rab8(T22N) mutant attenuated ERK1/2 activation by α2B-AR, but not β2-AR, and arrested α2B-AR in the TGN compartment. Co-immunoprecipitation revealed that both α2B-AR and β2-AR physically interacted with Rab8 and glutathione S-transferase fusion protein pulldown assays demonstrated that Rab8 interacted with the C termini of both receptors. Interestingly, mutation of the highly conserved membrane-proximal C terminus dileucine motif selectively blocked β2-AR interaction with Rab8, whereas mutation of residues Val431-Phe432-Asn433-Gln434, Pro447-Trp448, Gln450-Thr451, and Trp453 in the C terminus impaired α2B-AR interaction with Rab8. Furthermore, transport inhibition by Rab8(T22N) of a chimeric β2-AR carrying the α2B-AR C terminus was similar to α2B-AR. These data provide strong evidence indicating that Rab8 GTPase interacts with distinct motifs in the C termini of α2B-AR and β2-AR and differentially modulates their traffic from the TGN to the cell surface.  相似文献   

13.
Leishmania donovani is a primitive trypanosomatid pathogen of humans. This protozoan is apically polarized such that the flagellar reservoir, the exclusive site of endocytosis and exocytosis, is situated at the anterior end. Recent evidence for the existence of an endocytic pathway in Leishmania has prompted us to investigate candidate temporal markers for endocytosis. In this study we identify the L. donovani Rab5b gene, and demonstrate the localization of a Rab5b chimera to early endosomes. A full-length Rab5b protein was fused to green fluorescent protein (GFP) to generate a chimeric protein GFP::Rab5b. Transfected L. donovani promastigotes carrying this chimeric construct displayed GFP::Rab5b localization. Additionally, incubation of transfected promastigotes with the fluid-phase marker Texas Red dextran demonstrated anterior co-localization of GFP::Rab5b and dye. This suggests Rab5b may act as a marker for early endosomes in L. donovani. Note. Nucleotide sequence data reported in this paper are available in the GenBankTM, EMBL and DDBJ databases under the accession numbers AY357217, AL359774, AF007547, BC032740.  相似文献   

14.
Bacterial pathogens have developed a wide range of strategies to survive within human cells. A number of pathogens multiply in a vacuolar compartment, whereas others can rupture the vacuole and replicate in the host cytosol. A common theme among many bacterial pathogens is the use of specialised secretion systems to deliver effector proteins into the host cell. These effectors can manipulate the host's membrane trafficking pathways to remodel the vacuole into a replication‐permissive niche and prevent degradation. As master regulators of eukaryotic membrane traffic, Rab GTPases are principal targets of bacterial effectors. This review highlights the manipulation of Rab GTPases that regulate host recycling endocytosis by several bacterial pathogens, including Chlamydia pneumoniae, Chlamydia trachomatis, Shigella flexneri, Salmonella enterica serovar Typhimurium, Uropathogenic Escherichia coli, and Legionella pneumophila. Recycling endocytosis plays key roles in a variety of cellular aspects such as nutrient uptake, immunity, cell division, migration, and adhesion. Though much remains to be understood about the molecular basis and the biological relevance of bacterial pathogens exploiting Rab GTPases, current knowledge supports the notion that endocytic recycling Rab GTPases are differentially targeted to avoid degradation and support bacterial replication. Thus, future studies of the interactions between bacterial pathogens and host endocytic recycling pathways are poised to deepen our understanding of bacterial survival strategies.  相似文献   

15.
N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, deaminated and lipid peroxidation-induced purine adducts. MPG from human and mouse has previously been cloned and expressed. However, due to the poor expression level in Escherichia coli (E. coli) and multi-step purification process of full-length MPG, most successful attempts have been limited by extremely poor yield and stability. Here, we have optimized the codons within the first five residues of human MPG (hMPG) to the best used codons for E. coli and expressed full-length hMPG in large amounts. This high expression level in conjunction with a strikingly high isoelectric point (9.65) of hMPG, in fact, helped purify the enzyme in a single step. A previously well-characterized monoclonal antibody having an epitope in the N-terminal tail could detect this codon-optimized hMPG protein. Surface plasmon resonance studies showed an equilibrium binding constant (KD) of 0.25 nM. Steady-state enzyme kinetics showed an apparent Km of 5.3 nM and kcat of 0.2 min−1 of MPG for the hypoxanthine (Hx) cleavage reaction. Moreover, hMPG had an optimal activity at pH 7.5 and 100 mM KCl. Unlike the previous reports by others, this newly purified full-length hMPG is appreciably stable at high temperature, such as 50 °C. Thus, this study indicates that this improved expression and purification system will facilitate large scale production and purification of a stable human MPG protein for further biochemical, biophysical and structure–function analysis.  相似文献   

16.
Escherichia coli is a symbiotic bacterium in humans and animals and an important pathogen of humans and animals. Prevention and suppression of E. coli infection is of great concern. In this study, we isolated a strain of Lactobacillus agilis 32 from pig manure and evaluated its biological characteristics, and found that its bacterial survival rate was 25% after 4 h of treatment at pH 2, and under the condition of 0·5% bile concentration, its survival rate exceeds 30%. In addition, L. agilis 32 has a cell surface hydrophobicity of 77·8%, and exhibits 67·1% auto-aggregation and 63·2% aggregation with Enterotoxigenic E. coli 10 (ETEC 10). FITC fluorescence labelling showed that the fluorescence intensity of cecum was significantly higher than that of duodenum, jejunum or colon (P < 0·05), but no significant difference from ileum. Lactobacillus agilis 32 bacterial culture and CFS showed average inhibition zone diameters of 14·2 and 15·4 mm respectively. Lactobacillus agilis 32 CFS treatment can significantly reduce the pathogenicity of ETEC 10. These results show that L. agilis 32 is an active and potential probiotic, and it has a good antibacterial effect on ETEC10, which provides basic research for probiotics to prevent and treat intestinal diarrhoea pathogen infection.  相似文献   

17.
Alpha-synuclein (a-Syn) is a presynaptic protein, the misfolding of which is associated with Parkinson’s disease. Rab GTPases are small guanine nucleotide binding proteins that play key roles in vesicle trafficking and have been associated with a-Syn function and dysfunction. a-Syn is enriched on synaptic vesicles, where it has been reported to interact with GTP-bound Rab3a, a master regulator of synaptic vesicle trafficking. a-Syn is known to bind weakly to Rab8a in solution via a positively charged patch, but the physiological implications of such interactions have not been explored. Here, we investigate direct interactions between a-Syn and Rab3a in solution and on lipid membranes using NMR spectroscopy. We find that the C terminus of a-Syn interacts with Rab3a in a manner similar to its previously reported interaction with Rab8a. While weak in solution, we demonstrate that this interaction becomes stronger when the proteins are bound to a membrane surface. The Rab3a binding site for a-Syn is similar to the surface that contacts the Rab3a effector rabphilin-3A, which modulates the enzymatic activity of Rab3a. Accordingly, we show that a-Syn inhibits GTP hydrolysis by Rab3a and that inhibition is more potent on the membrane surface, suggesting that their interaction may be functionally relevant. Finally, we show that phosphorylation of a-Syn residue Ser 129, a modification associated with Parkinson’s disease pathology, enhances its interactions with Rab3a and increases its ability to inhibit Rab3a GTP hydrolysis. These results represent the first observation of a functional role for synuclein-Rab interactions and for a-Syn Ser 129 phosphorylation.  相似文献   

18.
Engineered Escherichia coli has recently been applied to produce 1,3-propanediol (1,3-PDO) from glucose. A metabolic intermediate in the production pathway, glycerol, is partially secreted into the extracellular of E. coli through a glycerol facilitator encoded by glpF, and this secretion consequently decreases 1,3-PDO production. Therefore, we aimed to determine whether disrupting the glpF gene would improve 1,3-PDO production in E. coli. The intracellular glycerol concentration in a glpF-disruptant was 7·5 times higher than in a non-disruptant. The glpF-disrupted and non-disrupted E. coli strains produced 0·26 and 0·09 g l−1 of 1,3-PDO, respectively, from 1% glucose after 72 h of cultivation. The specific growth rate (μ) and the 1,3-PDO yield from glucose (YP/S) in the disruptant were higher than those in the non-disruptant (ΔglpF, μ = 0·08 ± 0·00 h−1, YP/S = 0·06 mol mol-glucose−1; BW25113, μ = 0·06 ± 0·00 h−1, YP/S = 0·02 mol mol-glucose−1). Disruption of the glpF gene decreased the production of the by-product, acetic acid. These results indicated that disruption of glpF increased the intracellular concentration of glycerol and consequently increased 1,3-PDO production in E. coli.  相似文献   

19.
20.
Succinate fermentation was investigated in Escherichia coli strains overexpressing cyanobacterium Anabaena sp. 7120 ecaA gene encoding carbonic anhydrase (CA). In strain BL21 (DE3) bearing ecaA, the activity of CA was 21.8 U mg−1 protein, whereas non-detectable CA activity was observed in the control strain. Meanwhile, the activity of phosphoenolpyruvate carboxylase (PEPC) increased from 0.2 U mg−1 protein to 1.13 U mg−1 protein. The recombinant bearing ecaA reached a succinate yield of 0.39 mol mol−1 glucose at the end of the fermentation. It was 2.1-fold higher than that of control strain which was just 0.19 mol mol−1 glucose. EcaA gene was also introduced into E. coli DC1515, which was deficient in glucose phosphotransferase, lactate dehydrogenase and pyruvate:formate lyase. Succinate yield can be further increased to 1.26 mol mol−1 glucose. It could be concluded that the enhancement of the supply of HCO3 in vivo by ecaA overexpression is an effective strategy for the improvement of succinate production in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号