首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, regulates the hypertonicity-induced expression of a battery of genes crucial for the adaptation of mammalian cells to extracellular hypertonic stress. The activity of OREBP/TonEBP is regulated at multiple levels, including nucleocytoplasmic trafficking. OREBP/TonEBP protein can be detected in both the cytoplasm and nucleus under isotonic conditions, although it accumulates exclusively in the nucleus or cytoplasm when subjected to hypertonic or hypotonic challenges, respectively. Using immunocytochemistry and green fluorescent protein fusions, the protein domains that determine its subcellular localization were identified and characterized. We found that OREBP/TonEBP nuclear import is regulated by a nuclear localization signal. However, under isotonic conditions, nuclear export of OREBP/TonEBP is mediated by a CRM1-dependent, leucine-rich canonical nuclear export sequence (NES) located in the N terminus. Disruption of NES by site-directed mutagenesis yielded a mutant OREBP/TonEBP protein that accumulated in the nucleus under isotonic conditions but remained a target for hypotonicity-induced nuclear export. More importantly, a putative auxiliary export domain distal to the NES was identified. Disruption of the auxiliary export domain alone is sufficient to abolish the nuclear export of OREBP/TonEBP induced by hypotonicity. By using bimolecular fluorescence complementation assay, we showed that CRM1 interacts with OREBP/TonEBP, but not with a mutant protein deficient in NES. Our findings provide insight into how nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by changes in extracellular tonicity.  相似文献   

9.
10.
Madin-Darby canine kidney (MDCK) cells accumulate glycinebetaine via Na(+)-dependent transport in response to hypertonic stress. When extracellular tonicity is increased by the addition of NaCl, Vmax for glycinebetaine transport increases without an associated change in Km, consistent with an increase in the number of functioning transporters. To test whether increased transport activity results from increased gene expression, we injected poly(A)+ RNA (mRNA) from MDCK cells into Xenopus oocytes and assayed for glycinebetaine uptake in ovo. RNA-induced Na(+)-dependent uptake is observed in oocytes injected with mRNA from cells exposed to high extracellular NaCl, but not in oocytes injected with either water or mRNA from cells maintained in isotonic medium. Unfractionated mRNA induces glycinebetaine uptake in ovo at a rate which is approximately 3-fold higher than in water-injected controls. Size-fractionated mRNA (median size 2.8 kilobases) induces uptake at a rate which is approximately 7-fold higher than controls. Such RNA-induced transport activity in ovo is consistent with heterologous expression of Na(+)/glucinebetaine cotransporters encoded by renal mRNA. Increased transporter mRNA in cells exposed to hypertonicity probably underlies the pattern of expression observed in ovo. This can account for the observed rise in MDCK cell glycinebetaine transport during hypertonic stress.  相似文献   

11.
We expressed the mouse gamma-aminobutyric acid (GABA) transporter GAT4 (homologous to rat/ human GAT-3) in Xenopus laevis oocytes and examined its functional and pharmacological properties by using electrophysiological and tracer uptake methods. In the coupled mode of transport (Na+/ Cl-/GABA cotransport), there was tight coupling between charge flux and GABA flux across the plasma membrane (2 charges/GABA). Transport was highly temperature-dependent with a temperature coefficient (Q10) of 4.3. The GAT4 turnover rate (1.5 s(-l); -50 mV, 21 degrees C) and temperature dependence suggest physiological turnover rates of 15-20 s(-1). No uncoupled current was observed in the presence of Na+. In the absence of external Na+, GAT4 exhibited two distinct uncoupled currents. (i) A Cl- leak current (ICl(leak)) was observed when Na+ was replaced with choline or tetraethylammonium. The reversal potential of (ICl(leak)) followed the Cl- Nernst potential. (ii) A Li+ leak current (ILi(leak)) was observed when Na+ was replaced with Li+. Both leak currents were inhibited by Na+, and both were temperature-independent (Q10 approximately 1). The two leak modes appeared not to coexist, as Li+ inhibited (ICl(leak)). The results suggest the existence of cation- and anion-selective channel-like pathways in GAT4. Flufenamic acid inhibited GAT4 Na+/Cl-/GABA cotransport, ILi(leak), and ICl(leak), (Ki approximately 30 microM), and the voltage-induced presteady-state charge movements (Ki approximately 440 microM). Flufenamic acid exhibited little or no selectivity for GAT1, GAT2, or GAT3. Sodium and GABA concentration jicroumps revealed that slow Na+ binding to the transporter is followed by rapid GABA-induced translocation of the ligands across the plasma membrane. Thus, Na+ binding and associated conformational changes constitute the rate-limiting steps in the transport cycle.  相似文献   

12.
The Na/K/2Cl cotransport system in the avian erythrocyte can be activated by agents that raise intracellular cAMP suggesting the involvement of cAMP-dependent protein kinase (cAMP-PK) in its regulation. Another group of stimuli including fluoride and hypertonicity stimulate cotransport via cAMP-independent means. To further investigate the role of phosphorylation in these processes, we examined the effects of protein kinase inhibitors of 8 (p-Cl-phenylthio)-cAMP (cpt-cAMP), fluoride and hypertonic activation of cotransport in duck red cells, and [3H]bumetanide binding to isolated membranes. Preincubation of cells with the kinase inhibitors K-252a (Ki approximately 1.6 microM) and H-9 (Ki approximately 100 microM) blocked cpt-cAMP activation of bumetanide-sensitive 86Rb influx and bumetanide binding. These inhibitors also led to a rapid deactivation of cotransport and decrease in bumetanide binding when added to cells maximally stimulated by cpt-cAMP. K-252a and H-9 inhibited cotransport activation by cAMP-independent stimuli, but 10-fold higher concentrations were required, implying the involvement of a cAMP-independent phosphorylation process in the mechanism of action of these agents. Removal of stimuli that elevate cAMP leads to a rapid reversal of cotransport indicating the presence of active protein phosphatases in these cells. The protein phosphatase inhibitor okadaic acid (OA, EC50: 630 nM) stimulated both Na/K/2Cl cotransport and bumetanide binding to membranes. As with fluoride and hypertonic stimulation, the OA effect was inhibited only at relatively high concentrations of K-252a. Phosphorylation of the membrane skeletal protein goblin (Mr 230,000) at specific cAMP-dependent sites was used as an in situ marker for the state of activation of cAMP-PK. Goblin phosphorylation at these sites was increased by norepinephrine and cpt-cAMP and rapidly reversed by K-252a and H-9, confirming that both inhibitors do block cAMP-PK activity. While OA markedly increased overall phosphorylation of many erythrocyte membrane proteins, including goblin, it did not affect goblin phosphorylation at specific cAMP-dependent sites. These results implicate a cAMP-independent protein kinase in the mediation of the OA effect on cotransport and bumetanide binding. The bumetanide-binding component of the avian erythrocyte cotransporter, an Mr approximately 150,000 protein that can be photolabeled with the bumetanide analog [3H]4-benzoyl-5-sulfamoyl-3-(3-thenyloxy)-benzoic acid was found to be a phosphoprotein. These results strongly support the hypothesis that phosphorylation and dephosphorylation, possibly of the Na/K/2Cl cotransporter itself, regulates the activity of  相似文献   

13.
14.
In response to ambient hypertonicity, TonEBP (tonicity-responsive enhancer binding protein) stimulates certain genes including those encoding cytokines, transporters for organic solutes, and a molecular chaperone. TonEBP is regulated in a bidirectional manner, upregulated by an increase in ambient tonicity while downregulated by a decrease. To investigate the role of intracellular ionic strength in the activity of TonEBP, we subjected Madin-Darby canine kidney cells to a variety of conditions. Electron microprobe analysis was performed to measure intracellular electrolytes. Under conditions in which changes in cell volume were similar, TonEBP activity correlated with the intracellular ionic strength regardless of the external tonicity. On the other hand, inhibition of the Na+/K+-ATPase and high external K+ concentration led to a decreased activity of TonEBP despite a marked increase in the intracellular ionic strength. Because isotonic swelling is known to occur under these conditions, these data suggest that dilution of the cytoplasmic constituents inhibits the activity of TonEBP. We conclude that intracellular ionic strength and water content are major factors that determine the activity of TonEBP.  相似文献   

15.
Four structurally different protein phosphatases (PPs) inhibitors - fluoride, calyculin A, okadaic acid and cantharidin--were tested for their ability to modulate unidirectional Na(+) influx in rat red blood cells. Erythrocytes were incubated at 37 degrees C in isotonic and hypertonic media containing 1 mM ouabain and (22)Na in the absence or presence of PP inhibitors. Exposure of the cells to 20 mM fluoride or 50 nM calyculin A for 1 h under isosmotic conditions caused a significant stimulation of Na(+) influx, whereas addition of 200 microM cantharidin or 100 nM okadaic acid had no effect. After 2 h of treatment, however, all these PPs blockers significantly enhanced Na(+) transport in rat erythrocytes. Selective inhibitors of PP-1 and PP-2A types, calyculin A, cantharidin and okadaic acid, produced similar ( approximately 1.2-1.4-fold) stimulatory effects on Na(+) influx in the cells. Activation of Na(+) influx was unchanged with increasing calyculin A concentration from 50 to 200 nM. No additive stimulation of Na(+) influx was observed when the cells were treated with combination of 20 mM fluoride and 50 nM calyculin A. Na(+) influx induced by PPs blockers was inhibited by 1 mM amiloride and 200 muM bumetanide approximately in the equal extent, indicating the involvement of Na(+)/H(+) exchange and Na-K-2Cl cotransport in sodium transport through rat erythrocytes membrane. Activation of Na(+) transport in the cells induced by calyculin A and fluoride was associated with increase of intracellular Na(+) content. Shrinkage of the rat erythrocytes resulted in 2-fold activation of Na(+) influx. All tested PPs inhibitors additionally activated the Na(+) influx by 70-100% above basal shrinkage-induced level. Amiloride and bumetanide have diminished both the shrinkage-induced and PPs-inhibitors-induced Na(+) influxes. Thus, our observations clearly indicate that activities of Na(+)/H(+) exchanger and Na-K-2Cl cotransporter in rat erythrocytes are regulated by protein phosphatases and stimulated when protein dephosphorylation is inhibited.  相似文献   

16.
17.
Li(+) interacts with the Na(+)/Cl(-)-dependent GABA transporter, GAT1, under two conditions: in the absence of Na(+) it induces a voltage-dependent leak current; in the presence of Na(+) and GABA, Li(+) stimulates GABA-induced steady-state currents. The amino acids directly involved in the interaction with the Na(+) and Li(+) ions at the so-called "Na2" binding site have been identified, but how Li(+) affects the kinetics of GABA cotransport has not been fully explored. We expressed GAT1 in Xenopus oocytes and applied the two-electrode voltage clamp and (22)Na uptake assays to determine coupling ratios and steady-state and presteady-state kinetics under experimental conditions in which extracellular Na(+) was partially substituted by Li(+). Three novel findings are: 1) Li(+) reduced the coupling ratio between Na(+) and net charge translocated during GABA cotransport; 2) Li(+) increased the apparent Na(+) affinity without changing its voltage dependence; 3) Li(+) altered the voltage dependence of presteady-state relaxations in the absence of GABA. We propose an ordered binding scheme for cotransport in which either a Na(+) or Li(+) ion can bind at the putative first cation binding site (Na2). This is followed by the cooperative binding of the second Na(+) ion at the second cation binding site (Na1) and then binding of GABA. With Li(+) bound to Na2, the second Na(+) ion binds more readily GAT1, and despite a lower apparent GABA affinity, the translocation rate of the fully loaded carrier is not reduced. Numerical simulations using a nonrapid equilibrium model fully recapitulated our experimental findings.  相似文献   

18.
Transepithelial Cl(-) secretion in polarized renal A6 cells is composed of two steps: (1) Cl(-) entry step across the basolateral membrane mediated by Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and (2) Cl(-) releasing step across the apical membrane via cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We estimated CFTR Cl(-) channel activity and transcellular Cl(-) secretion by measuring 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB, a blocker of CFTR Cl(-) channel)-sensitive transepithelial conductance (Gt) and short-circuit current (Isc), respectively. Pretreatment with 1 microM insulin for 24 h had no effects on NPPB-sensitive Gt or Isc. On the other hand, in A6 cells treated with carbobenzoxy-L-leucyl-leucyl-L-leucinal (MG132; 100 microM for 2 h) that inhibits endocytosis of proteins at the plasma membrane into the cytosolic space, insulin pretreatment increased the NPPB-sensitive Isc with no effects on NPPB-sensitive Gt. Genistein (100 microM) induced sustained increases in NPPB-sensitive Gt and Isc, which were diminished by brefeldin A (a blocker of protein translocation to Golgi apparatus from endoplasmic reticulum). Co-application of insulin and genistein synergically stimulated the NPPB-sensitive Isc without any effects on NPPB-sensitive Gt. These observations suggest that: (1) insertion and endocytosis of NKCC are stimulated by insulin, (2) the insulin-induced stimulation of NKCC insertion into the basolateral membrane is offset by the stimulatory action on NKCC endocytosis from the basolateral membrane, (3) genistein stimulates insertion of both CFTR Cl(-) channel into the apical membrane and NKCC into the basolateral membrane, and (4) insulin and genistein synergically stimulated NKCC insertion into the basolateral membrane.  相似文献   

19.
The aquaporin (AQP)2 channel mediates the reabsorption of water in renal collecting ducts in response to arginine vasopressin (AVP) and hypertonicity. Here we show that AQP2 expression is induced not only by the tonicity-responsive enhancer binding protein (TonEBP)/nuclear factor of activated T cells (NFAT)5-mediated hypertonic stress response but also by the calcium-dependent calcineurin-NFATc pathway. The induction of AQP2 expression by the calcineurin-NFATc pathway can occur in the absence of TonEBP/NFAT5. Mutational and chromatin immunoprecipitation analyses revealed the existence of functional NFAT binding sites within the proximal AQP2 promoter responsible for regulation of AQP2 by NFATc proteins and TonEBP/NFAT5. Contrary to the notion that TonEBP/NFAT5 is the only Rel/NFAT family member regulated by tonicity, we found that hypertonicity promotes the nuclear translocation of NFATc proteins for the subsequent induction of AQP2 expression. Calcineurin activity was also found to be involved in the induction of TonEBP/NFAT5 expression by hypertonicity, thus further defining the signaling mechanisms that underlie the TonEBP/NFAT5 osmotic stress response pathway. The coordinate regulation of AQP2 expression by both osmotic stress and calcium signaling appears to provide a means to integrate diverse extracellular signals into optimal cellular responses. aquaporin; nuclear factor of activated T cells; tonicity-responsive enhancer binding protein; osmotic response  相似文献   

20.
We investigated the contribution of the Na(+)/L-carnitine cotransporter in the transport of tetraethylammonium (TEA) by rat renal brush-border membrane vesicles. The transient uphill transport of L-carnitine was observed in the presence of a Na(+) gradient. The uptake of L-carnitine was of high affinity (K(m)=21 microM) and pH dependent. Various compounds such as TEA, cephaloridine, and p-chloromercuribenzene sulfonate (PCMBS) had potent inhibitory effects for L-carnitine uptake. Therefore, we confirmed the Na(+)/L-carnitine cotransport activity in rat renal brush-border membranes. Levofloxacin and PCMBS showed different inhibitory effects for TEA and L-carnitine uptake. The presence of an outward H(+) gradient induced a marked stimulation of TEA uptake, whereas it induced no stimulation of L-carnitine uptake. Furthermore, unlabeled TEA preloaded in the vesicles markedly enhanced [14C]TEA uptake, but unlabeled L-carnitine did not stimulate [14C]TEA uptake. These results suggest that transport of TEA across brush-border membranes is independent of the Na(+)/L-carnitine cotransport activity, and organic cation secretion across brush-border membranes is predominantly mediated by the H(+)/organic cation antiporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号