首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ventilatory response to high-frequency airway oscillation in humans   总被引:1,自引:0,他引:1  
To investigate respiratory control during high-frequency oscillation (HFO), ventilation was monitored in conscious humans by respiratory inductive plethysmography during application at the mouth of high-frequency pressure oscillations. Studies were conducted before and after airway and pharyngeal anesthesia. During HFO, breathing became slow and deep with an increase in tidal volume (VT) of 37% (P less than 0.01) and inspiratory duration (TI) of 34% (P less than 0.01). Timing ratio (TI/TT) increased 14% (P less than 0.05) and respiratory frequency (f) decreased 12% (P less than 0.01). Mean inspiratory flow (VT/TI) did not change during HFO. Following airway anesthesia, VT increased only 26% during HFO (P less than 0.01), whereas significant changes in TI, TI/TT, and f were not observed. Pharyngeal anesthesia failed to diminish the effect of HFO on TI, TT, or f, although the increase in VT was reduced. These results indicate that 1) HFO presented in this manner alters inspiratory timing without affecting the level of inspiratory activity, and 2) receptors in the larynx and/or lower airways may in part mediate the response.  相似文献   

2.
Allen et al. (J. Clin. Invest. 76: 620-629, 1985) reported that regional phasic lung distension during high-frequency oscillations (HFO) is substantially and systemically heterogeneous when both frequency (f) and tidal volume (VT) are large. They hypothesized that this phenomenon was attributable to central airway geometry and preferential axial flow induced therein by the momentum flux of the inspiratory gas stream. According to that hypothesis, the observed distribution of phasic lung distension would depend on the ratio VT/VD* (where VD* is an index of anatomic dead space), independent of gas density (rho), when f is scaled in proportion to lung resonant frequency, fo. To test this hypothesis, we used the methods of Allen et al. (ibid.) to study six excised dog lungs during HFO (f = 2-32 Hz; VT = 5-80 ml) using gases of different densities. Alveolar pressure excursions (PA) were measured as rho spanned a 12-fold range using He, air, and SF6. The apex-to-base and right-to-left ratios of PA were used as indexes of regional heterogeneity of phasic lung distension. For each gas at low f, distension of the lung base was favored slightly independent of VT, but at higher f distension of the lung apex was favored when VT was small, whereas distension of the lung base was favored when VT was large. In addition, we observed substantial right-to-left differences in apical lobes during oscillation at high f not seen before.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
CO2 elimination (VCO2) was monitored during high-frequency oscillation (HFO) over a frequency (f) range of 2-30 Hz in anesthetized and paralyzed rabbits to determine whether effective gas exchange could be achieved in this species, to determine the f and tidal volume (VT) dependence of gas exchange in this species, and to compare these results with those from dog and human studies. We were able to produce VCO2 levels during HFO that exceeded normal steady-state levels of CO2 production with VT's less than the total dead space volume. VCO2 was related to f in a curvilinear fashion, whereas in some rabbits VCO2 became independent of f at higher frequencies. This curvilinear relationship between f and VCO2 is similar to data from humans but contrasts with the linear relationship found in dogs. Evidence is presented indicating frequency-dependent behavior of gas exchange is correlated with a frequency-dependent decrease in respiratory system resistance. We propose that the frequency-dependent mechanical properties of the rabbit lung may also account for the species differences in HFO gas exchange.  相似文献   

4.
Mean alveolar pressure may exceed mean airway pressure during high-frequency oscillations (HFO). To assess the magnitude of this effect and its regional heterogeneity, we studied six excised dog lungs during HFO [frequency (f) 2-32 Hz; tidal volume (VT) 5-80 ml] at transpulmonary pressures (PL) of 6, 10, and 25 cmH2O. We measured mean pressure at the airway opening (Pao), trachea (Ptr), and four alveolar locations (PA) using alveolar capsules. Pao was measured at the oscillator pump, wherein the peak dynamic head was less than 0.2 cmH2O. Since the dynamic head was negligible here, and since these were excised lungs, Pao thus represented true applied transpulmonary pressure. Ptr increasingly underestimated Pao as f and VT increased, with Pao - Ptr approaching 8 cmH2O. PA (averaged over all locations) and Pao were nearly equal at all PL's, f's, and VT's, except at PL of 6, f 32 Hz, and VT 80 ml, where (PA - Pao) was 3 cmH2O. Remarkably, mean pressure in the base exceeded that in the apex increasingly as f and VT increased, the difference approaching 3 cmH2O at high f and VT. We conclude that, although global alveolar overdistension assessed by PA - Pao is small during HFO under these conditions, larger regional heterogeneity in PA's exists that may be a consequence of airway branching angle asymmetry and/or regional flow distribution.  相似文献   

5.
We examined the effects of oscillatory frequency (f), tidal volume (VT), and mean airway pressure (Paw) on respiratory gas exchange during high-frequency oscillatory ventilation of healthy anesthetized rabbits. Frequencies from 3 to 30 Hz, VT from 0.4 to 2.0 ml/kg body wt (approximately 20-100% of dead space volume), and Paw from 5 to 20 cmH2O were studied. As expected, both arterial partial pressure of O2 and CO2 (PaO2 and PaCO2, respectively) were found to be related to f and VT. Changing Paw had little effect on blood gas tensions. Similar values of PaO2 and PaCO2 were obtained at many different combinations of f and VT. These relationships collapsed onto a single curve when blood gas tensions were plotted as functions of f multiplied by the square of VT (f. VT2). Simultaneous tracheal and alveolar gas samples showed that the gradient for PO2 and PCO2 increased as f. VT2 decreased, indicating alveolar hypoventilation. However, venous admixture also increased as f. VT2 decreased, suggesting that ventilation-perfusion inequality must also have increased.  相似文献   

6.
The efficiency of axial gas dispersion during ventilation with high-frequency oscillation (HFO) is improved by manipulating the oscillatory flow waveform such that intermittent oscillatory flow occurs. We therefore measured the velocity profiles and effective axial gas diffusivity during intermittent oscillatory flow in a straight tube to verify the intermittency augmentation effect on axial gas transfer. The effective diffusivity was dependent on the flow patterns and significantly increased with an increase in the duration of the stationary phase. It was also found that the ratio of effective diffusivity to molecular diffusivity is two times greater than that in sinusoidal oscillatory flow. Moreover, turbulence during deceleration or at the beginning of the stationary phase further augments axial dispersion, with the effective diffusivity being over three times as large, thereby proving that the use of intermittent oscillatory flow effectively augments axial dispersion for ventilation with HFO.  相似文献   

7.
It has been suggested that the increase in inspiratory flow rate caused by a decrease in the inspiratory-to-expiratory time ratio (I:E) at a constant tidal volume (VT) could increase the efficiency of ventilation in high-frequency ventilation (HFV). To test this hypothesis, we studied the effect of changing I:E from 1:1 to 1:4 on steady-state alveolar ventilation (VA) at a given VT and frequency (f) and at a constant mean lung volume (VL). In nine anesthetized, paralyzed, supine dogs, HFV was performed at 3, 6, and 9 Hz with a ventilator that delivered constant inspiratory and expiratory flow rates. Mean airway pressure was adjusted so that VL was maintained at a level equivalent to that of resting FRC. At each f and one of the I:E chosen at random, VT was adjusted to obtain a eucapnic steady state [arterial pressure of CO2 (PaCO2) = 37 +/- 3 Torr]. After 10 min of each HFV, PaCO2, arterial pressure of O2 (PaO2), and CO2 production (VCO2) were measured, and I:E was changed before repeating the run with the same f and VT. VA was calculated from the ratio of VCO2 and PaCO2. We found that the change of I:E from 1:1 to 1:4 had no significant effects on PaCO2, PaO2, and VA at any of the frequencies studied. We conclude, therefore, that the mechanism or mechanisms responsible for gas transport during HFV must be insensitive to the changes in inspiratory and expiratory flow rates over the VT-f range covered in our experiments.  相似文献   

8.
The regional effects of tidal volume (VT), respiratory frequency, and expiratory-to-inspiratory time ratio (TE/TI) during high-frequency ventilation (HFV) were studied in anesthetized and paralyzed dogs. Regional ventilation per unit of lung volume (spVr) was assessed with a positron camera during the washout of the tracer isotope 13NN from the lungs of 12 supine dogs. From the washout data, functional images of the mean residence time (MRT) of 13NN were produced and spVr was estimated as the inverse of the regional MRT. We found that at a constant VT X f product (where f represents frequency), increasing VT resulted in higher overall lung spV through the local enhancement of the basal spVr and with little effect in the apical spVr. In contrast, increasing VT X f at constant VT increased overall ventilation without significantly affecting the distribution of spVr values. TE/TI had no substantial effect in regional spVr distribution. These findings suggest that the dependency of gas transport during HFV of the form VT2 X f is the result of a progressive regional transition in gas transport mechanism. It appears, therefore, that as VT increases, the gas transport mechanism changes from a relative inefficient dispersive mechanism, dependent on VT X f, to the more efficient mechanism of direct fresh gas convection to alveoli with high regional tidal volume-to-dead-space ratio. A mathematical model of gas transport in a nonhomogeneous lung that exhibits such behavior is presented.  相似文献   

9.
The effects of electrical stimulation of the vagi on gas transport mediated by high-frequency, low tidal volume ventilation (HFV) was examined in 10 anesthetized, paralyzed, propranolol-treated dogs. Gas transport efficiency was estimated by measuring the rate of CO2 removed from the lungs (Vco2) achieved during 45-s bursts of HFV applied before (control 1), during, and after (control 2) electrical stimulation of the transected vagi. During vagal stimulation the heart rate was maintained by electrical pacing. During the 15-s phase of vagal stimulation pulmonary impedance increased from 3.6 +/- 0.7 to 6.2 +/- 2.2 cmH2O X l-1 X s, and Vco2 increased. When the electrical stimulation of the vagi was stopped, impedance and Vco2 returned to prestimulation values. Vco2 was always higher during electrical stimulation of the vagi when HFV of a fixed volume was applied over a range of frequencies or when a fixed oscillation frequency was used over a range of tidal volumes. The effects of vagal stimulation on HFV-mediated gas transport were quite similar to the effects of moving the locations of the bias flow inlet and outlet into the lung such that tracheal volume was decreased by 20 ml, an amount equivalent to estimated change in control airway volume thought to occur during vagal stimulation. We simulated the effects of vagal stimulation and decreased tracheal volume on Vco2 by using a previously described model of HFV-mediated gas transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The efficiency of ventilation by high-frequency oscillation (HFO) applied to the thorax (external HFO) has been compared with that of HFO applied through a tracheal cannula (internal HFO) in a group of normal rats. Anesthetized, paralyzed, tracheotomized rats were placed in a whole-body plethysmograph. External HFO was achieved by varying the pressure surrounding the animal by means of a piston pump connected to the body plethysmograph; internal HFO was obtained in the same animals by connecting the pump to the tracheal cannula. Arterial CO2 and O2 partial pressures were measured in blood sampled from a carotid artery and were compared for external and internal HFO applied at 20 Hz with matched tidal volumes of 0.8, 1.4, 1.9, and 2.4 ml/kg. With increasing tidal volume, the mean arterial CO2 partial pressure decreased progressively from 68 to 30 Torr and was identical in the two modes of HFO; no difference was noted for the CO2 elimination or for the arterial O2 partial pressure. These results indicate that, in terms of gas exchange, external and internal HFO are equally efficient in normal rats.  相似文献   

11.
To study the phenomenon of lung hyperinflation (LHI), i.e., an increase in lung volume without a concomitant rise in airway pressure, we measured lung volume changes in isolated dog lungs during high-frequency oscillation (HFO) with air, He, and SF6 and with mean tracheal pressure controlled at 2.5, 5.0, and 7.5 cmH2O. The tidal volume and frequency used were 1.5 ml/kg body wt and 20 Hz, respectively. LHI was observed during HFO in all cases except for a few trials with He. The degree of LHI was inversely related to mean tracheal pressure and varied directly with gas density. Maximum expiratory flow rate (Vmax) was measured during forced expiration induced by a vacuum source (-150 cmH2O) at the trachea. Vmax was consistently higher than the peak oscillatory flow rate (Vosc) during HFO, demonstrating that overall expiratory flow limitation did not cause LHI in isolated dog lungs. Asymmetry of inspiratory and expiratory impedances seems to be one cause of LHI, although other factors are involved.  相似文献   

12.
Tidal volumes used in high-frequency ventilation (HFV) may be smaller than anatomic dead space, but since gas exchange does take place, physiological dead space (VD) must be smaller than tidal volume (VT). We quantified changes in VD in three dogs at constant alveolar ventilation using the Bohr equation as VT was varied from 3 to 15 ml/kg and frequency (f) from 0.2 to 8 Hz, ranges that include normal as well as HFV. We found that VD was relatively constant at tidal volumes associated with normal ventilation (7-15 ml/kg) but fell sharply as VT was reduced further to tidal volumes associated with HFV (less than 7 ml/kg). The frequency required to maintain constant alveolar ventilation increased slowly as tidal volume was decreased from 15 to 7 ml/kg but rose sharply with attendant rapid increases in minute ventilation as tidal volumes were decreased to less than 7 ml/kg. At tidal volumes less than 7 ml/kg, the data deviated substantially from the conventional alveolar ventilation equation [f(VT - VD) = constant] but fit well a model derived previously for HFV. This model predicts that gas exchange with volumes smaller than dead space should vary approximately as the product of f and VT2.  相似文献   

13.
Steady-state breathing patterns on mouthpiece and noseclip (MP) and face mask (MASK) during air and chemostimulated breathing were obtained from pneumotachometer flow. On air, all 10 subjects decreased frequency (f) and increased tidal volume (VT) on MP relative to that on MASK without changing ventilation (VE), mean inspiratory flow (VT/TI), or mean expiratory flow (VT/TE). On elevated CO2 and low O2, MP exaggerated the increase in VE, f, and VT/TE due to profoundly shortened TE. On elevated CO2, MASK exaggerated VT increase with little change in f. Increased VE and VT/TI were thus due to increased VT. During low O2 on MASK, both VT and f increased. During isocapnia, shortened TE accounted for increased f; during hypocapnia, increased f was related primarily to shortened TI. Thus the choice of a mouthpiece or face mask differentially alters breathing pattern on air and all components of ventilatory responses to chemostimuli. In addition, breathing apparatus effects are not a simple consequence of a shift from oronasal to oral breathing, since a noseclip under the mask did not change breathing pattern from that on mask alone.  相似文献   

14.
Eight anesthetized tracheostomized cats were placed in an 8.2-liter airtight chamber with the trachea connected to the exterior. Thirty-two combinations of high-frequency oscillations (HFO) (0.5-30 Hz; 25-100 ml) were delivered for 10 min each in random order into the chamber. Arterial blood gas tensions during oscillation were compared with control measurements made after 10 min of spontaneous breathing without oscillation when the mean arterial PCO2 (PaCO2) was 30.1 Torr. Ventilation due to spontaneous breathing (Vs) and oscillation (Vo) were derived from the chamber pressure trace and a pneumotachograph, respectively. As the oscillation frequency increased, oscillated tidal volume (Vo) decreased from a mean of 39 (0.5 Hz) to 3.3 ml (30 Hz) when 100 ml was delivered to the chamber. From 6-25 Hz, apnea occurred with Vo less than estimated respiratory dead space (VD); the minimum effective Vo/VD ratio was 0.37 +/- 0.05. Although Vo was maximal at 10 Hz at each oscillation volume, the lowest PaCO2 occurred at 2-6 Hz, and arterial PO2 rose as expected during hypocapnia. Above 10 Hz, PaCO2 was determined by Vo and was independent of frequency, whereas at lower frequencies, PaCO2 was related to Vo; below 6 Hz, PaCO2 varied inversely with the calculated alveolar ventilation. As oscillations became more effective, both PaCO2 and Vs fell progressively and were highly correlated; apnea occurred when PaCO2 was reduced by a mean of 4.5 Torr. Mean chamber pressure remained near zero up to 15 Hz, indicating functional residual capacity did not change. We conclude that externally applied HFO can readily maintain gas exchange in vivo, with Vo less than VD at frequencies over 2 Hz.  相似文献   

15.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

16.
The present study evaluated whether high-frequency oscillations (HFO) with biased flow profiles applied at the airway opening are capable of altering mucus clearance. In eight anesthetized sheep, artificial mucus (100 P) was infused continuously (1 ml/min) into the left main bronchus via a cannula inserted through the dorsal wall of the left main bronchus after thoracotomy. Outcoming mucus was collected every 10 min from the end of a cuffed orotracheal tube. Animals were ventilated with a Harvard respirator at a low frequency with superimposed HFO at 14 Hz with asymmetrical waveforms generated by a digitally controlled electromagnetic piston pump (expiratory bias: peak expiratory flow 3.8 l/s, peak inspiratory flow 1.3 l/s; inspiratory bias: reverse of expiratory bias). The influence of posture and of HFO airflow bias on mucus clearance was determined. In the horizontal position, mucus clearance with expiratory biased HFO was 3.5 +/- 2 (SD) ml/10 min. Head-down tilt produced a clearance of 3.1 +/- 3 ml/10 min; addition of HFO with expiratory bias increased clearance to 11.0 +/- 2.0 ml/10 min (P less than 0.05). No clearance occurred with inspiratory biased HFO during head-down tilt. These results indicate that expiratory biased HFO at the airway opening can clear excessive airway secretions and augment clearance by postural drainage.  相似文献   

17.
High-frequency chest percussion (HFP) with constant fresh gas flow (VBF) at the tracheal carina is a variant of high-frequency ventilation (HFV) previously shown to be effective with extremely low tracheal oscillatory volumes (approximately 0.1 ml/kg). We studied the effects of VBF on gas exchange during HFP. In eight anesthetized and paralyzed dogs we measured arterial and alveolar partial pressures of CO2 (PaCO2) and O2 (PaO2) during total body vibration at a frequency of 30 Hz, amplitude of 0.17 +/- 0.019 cm, and tidal volume of 1.56 +/- 0.58 ml. VBF was incrementally varied from 0.1 to 1.2 l.kg-1.min-1. At low flows (0.1-0.4 l.kg-1.min-1), gas exchange was strongly dependent on flow rate but became essentially flow independent with higher VBF (i.e., hyperbolic pattern). At VBF greater than 0.4 l.kg-1.min-1, hyperventilatory blood gas levels were consistently sustained (i.e., PaCO2 less than 20 Torr, PaO2 greater than 90 Torr). The resistance to CO2 transport of the airways was 1.785 +/- 0.657 l-1.kg.min and was independent of VBF. The alveolar-arterial difference of O2 was also independent of the flow. In four of five additional dogs studied as a control group, where constant flow of O2 was used without oscillations, the pattern of PaCO2 vs. VBF was also hyperbolic but at substantially higher levels of PaCO2. It is concluded that, in the range of VBF used, intraairway gas exchange was limited by the 30-Hz vibration. The fresh gas flow was important only to maintain near atmospheric conditions at the tracheal carina.  相似文献   

18.
The effects of changing tidal volume (VT) and frequency (f) on the distribution of ventilation during high-frequency ventilation (HFV) were assessed from the washout of nitrogen-13 by positron emission tomography. Six dogs, anesthetized and paralyzed, were studied in the supine position during conventional ventilation (CV) and during HFV at f of 3, 6, and 9 Hz. In CV and HFV at 6 Hz, VT was selected to achieve eucapnic arterial partial pressure of CO2 (37 +/- 3 Torr). At 3 and 9 Hz, VT was proportionally changed so that the product of VT and f remained constant and equal to that at 6 Hz. Mean residence time (MRT) of nitrogen-13 during washout was calculated for apical, midheart, and basal transverse sections of the lung and further analyzed for gravity-dependent, cephalocaudal and radial gradients. An index of local alveolar ventilation per unit of lung volume, or specific ventilation (spV), was calculated as the reciprocal of MRT. During CV vertical gradients of regional spV were seen in all sections with ventral (nondependent) regions less ventilated than dorsal (dependent) regions. Regional nonuniformity in gas transport was greatest for HFV at 3 and 6 Hz and lowest at 9 Hz and during CV. During HFV, a central region at the base of the lungs was preferentially ventilated, resulting in a regional time-averaged tracer concentration equivalent to that of the main bronchi. Because the main bronchi were certainly receiving fresh gas, the presence of this preferentially ventilated area, whose ventilation increased with VT, strongly supports the hypothesis that direct convection of fresh gas is an important mechanism of gas transport during eucapnic HFV. Aside from the local effect of increasing overall lung ventilation, this central area probably served as an intermediate shuttle station for the transport of gas between mouth and deeper alveoli when VT was less than the anatomic dead space.  相似文献   

19.
Minute ventilation (VE) and breathing pattern during an abrupt increase in fractional CO2 were compared in 10 normal subjects before and after airway anesthesia. Subjects breathed 7% CO2-93% O2 for 5 min before and after inhaling aerosolized lidocaine. As a result of airway anesthesia, VE and tidal volume (VT) were greater during hypercapnia, but there was no effect on inspiratory time (TI). Therefore, airway anesthesia produced an increase in mean inspiratory flow (VT/TI) during hypercapnia. The increase in VT/TI was compatible with an increase in neuromuscular output. There was no effect of airway anesthesia on the inspiratory timing ratio or the shape and position of the curve relating VT and TI. We also compared airway resistance (Raw), thoracic gas volume, forced vital capacity, forced expired volume at 1s, and maximum midexpiratory flow rate before and after airway anesthesia. A small (0.18 cmH2O X l-1 X s) decrease in Raw occurred after airway anesthesia that did not correlate with the effect of airway anesthesia on VT/TI. We conclude that airway receptors accessible to airway anesthesia play a role in hypercapnic VE.  相似文献   

20.
Measurements of the volume of CO2 exhaled per breath (VCO2/br) are preferable to end-tidal PCO2, when the exhaled flow and CO2 waveforms may be changing during unsteady states, such as during alterations in positive end-expiratory pressure or alterations in cardiac output. We describe computer algorithms that determine VCO2/br from digital measurements of exhaled flow (including discontinuous signals common in anesthesia circuits) and CO2 concentration at the airway opening. Fractional concentration of CO2 is normally corrected for dynamic response and transport delay (TD), measured in a separate procedure. Instead, we determine an on-line adjusted TD during baseline ventilation. In six anesthetized dogs, we compared the determination of VCO2/br with a value measured in a simultaneous collection of expired gas. Over a wide range of tidal volume (180-700 ml), respiratory rate (3-30 min-1), and positive end-expiratory pressure (0-14 cmH2O), VCO2/br was more accurate with use of the adjusted TD than the measured TD (P less than 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号