首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-glucose stimulates insulin release from islets exposed to both diazoxide, to activate ATP-responsive K+ channels, and a high concentration of K+, to cause depolarization of the B-cell plasma membrane. Under these conditions, the insulinotropic action of D-glucose is claimed to occur despite unaltered cytosolic Ca2+ concentration, but no information is so far available on the changes in Ca2+ fluxes possibly caused by the hexose. In the present experiments, we investigated the effect of D-glucose upon 45Ca efflux from islets exposed to both diazoxide and high K+ concentrations. In the presence of diazoxide and at normal extracellular Ca2+ concentration, D-glucose (16.7 mmol/l) inhibited insulin release at 5 mmol/l K+, but stimulated insulin release of 90 mmol/l K+. In both cases, the hexose inhibited 45Ca outflow. In the presence of diazoxide, but absence of Ca2+, D-glucose (8.3 to 25.0 mmol/l) first caused a rapid decrease in insulin output followed by a progressive increase in secretory rate. This phenomenon was observed both at 5 mmol/l or higher concentrations (30, 60 and 90 mmol/l) of extracellular K+. It coincided with a monophasic decrease in 45Ca efflux and either a transient (at 5 mmol/l K+) or sustained (at 90 mmol/l K+) decrease in overall cytosolic Ca2+ concentration. The decrease in 45Ca efflux could be due to inhibition of Na(+)-Ca2+ countertransport with resulting localized Ca2+ accumulation in the cell web of insulin-producing cells. A comparable process may be involved in the secretory response to D-glucose in islets exposed to diazoxide and a high concentration of K+ in the presence of extracellular Ca2+.  相似文献   

2.
Studies were undertaken to determine whether factors which affect insulin secretion may exert their effects by altering the activity of an islet-cell plasma membrane Ca2+ extrusion pump. The insulin secretagogue, D-glucose, and a variety of phosphorylated hexoses, glucose 6-P, glucose 1,6-P, fructose 6-P, and fructose 2,6-P, were evaluated for their effect on an islet-cell plasma membrane (Ca2+ + Mg2+)-ATPase and were found to be ineffective in altering enzyme activity. D-Glucose also did not alter the rate of ATP-dependent Ca2+ uptake into plasma membrane vesicles. Similarly, cAMP, the catalytic subunit of cAMP-dependent protein kinase, arachidonic acid, or prostaglandin E2 did not affect either the plasma membrane (Ca2+ + Mg2+)-ATPase or the rate of ATP-dependent Ca2+ uptake into plasma membrane vesicles. Whereas previous studies have suggested that D-glucose and/or cAMP may inhibit ATPase activities in islets, these results indicate that the agents, i.e., D-glucose and cAMP, which stimulate and/or potentiate insulin secretion from the islet cell, do not modify Ca2+ fluxes by directly regulating the islet-cell plasma membrane (Ca2+ + Mg2+)-ATPase. In contrast, the acidic phospholipids, phosphatidic acid and phosphatidylserine, stimulated the enzyme activity in a concentration-dependent manner whereas phosphatidylcholine had only a minimal effect. The diacylglycerol, dilinolein, stimulated the (Ca2+ + Mg2+)-ATPase activity in the presence of phosphatidylserine, but not in the absence of phospholipids. These effects were independent of phospholipid-stimulated protein phosphorylation in the islet-cell plasma membrane under the conditions of the ATPase assay.  相似文献   

3.
Sener  A.  Scruel  O.  Louchami  K.  Jijakli  H.  Malaisse  W.J. 《Molecular and cellular biochemistry》1999,194(1-2):133-145
The analog of D-glucose, 3-O-methyl-D-glucose, is thought to delay the equilibration of D-glucose concentration across the plasma membrane of pancreatic islet B-cells, but not to exert any marked inhibitory action upon the late phase of glucose-stimulated insulin release. In this study, however, 3-O-methyl-D-glucose, when tested in high concentrations (30-80 mM) was found to cause a rapid, sustained and not rapidly reversible inhibition of glucose-induced insulin release in rat pancreatic islets. In relative terms, the inhibitory action of 3-O-methyl-D-glucose was more marked at low than high concentrations of D-glucose. It could not be attributed to hyperosmolarity and appeared specific for the insulinotropic action of D-glucose, as distinct from non-glucidic nutrient secretagogues. Although 3-O-methyl-D-glucose and D-glucose failed to exert any reciprocal effect upon the steady-state value for the net uptake of these monosaccharides by the islets, the glucose analog inhibited D-[5-3H]glucose utilization and D-[U-14C]glucose oxidation. This coincided with increased 86Rb outflow and decreased 45Ca outflow from prelabelled islets, as well as decreased 45Ca net uptake. A preferential effect of 3-O-methyl-D-glucose upon the first phase of glucose-stimulated insulin release was judged compatible with an altered initial rate of D-glucose entry into islet B-cells. The long-term inhibitory action of the glucose analog upon the metabolic and secretory response to D-glucose, however, may be due, in part at least, to an impaired rate of D-glucose phosphorylation. The phosphorylation of the hexose by beef heart hexokinase and human B-cell glucokinase, as well as by parotid and islet homogenates, was indeed inhibited by 3-O-methyl-D-glucose. The relationship between insulin release and D-glucose utilization or oxidation in the presence of 3-O-methyl-D-glucose was not different from that otherwise observed at increasing concentrations of either D-glucose or D-mannoheptulose. It is concluded, therefore, that 3-O-methyl-D-glucose adversely affects the metabolism and insulinotropic action of D-glucose by a mechanism largely unrelated to changes in the intracellular concentration of the latter hexose.  相似文献   

4.
La3+ was used to study the involvement of Ca2+ in insulin secretion in beta-cell-rich pancreatic islets micro-dissected from non-inbred ob/ob mice. Ultrastructural studies revealed that the localization of La3+ was entirely restricted to the exterior of the cells. Consistent with a membrane action, exposure to La3+ failed to affect glucose oxidation and either the sucrose space or the general ultrastructure of the islets. In contrast, La3+ had marked effects on insulin release and 45Ca fluxes. Exposure to La3+ resulted in pronounced inhibition of insulin release irrespective of the presence or absence of Ca2+, 3-isobutyl-1-methylxanthine or glucose. Perifusion experiments revealed that the inhibitory action was prompt, sustained and readily reversible. Removal of La3+ was associated with a subsequent prolonged stimulatory phase of insulin release even in medium deficient in Ca2+. This action could not be attributed to an increase in cyclic AMP, but was potentiated by 3-isobutyl-1-methylxanthine and abolished by L-adrenaline. La3+ displaced 45Ca from superficially located binding sites and inhibited the uptake and efflux of 45Ca. The stimulatory and inhibitory actions of glucose on 45Ca efflux were also abolished in the presence of 2 mM-La3+ Removal of La3+ was associated with the preferential mobilization of 45Ca incorporated in response to glucose. The results indicate that binding of La3+ to superficial sites in the plasma membrane leads to inhibition of insulin release by suppression of transmembrane Ca2+ fluxes. It is suggested that accumulation of Ca2+ in the cytoplasm accounts for the stimulation of insulin release seen after removal of La3+ from inhibitory binding sites in the beta-cell plasma membrane.  相似文献   

5.
Studies on the mode of action of galanin to inhibit insulin release in RINm5F cells have shown that basal and glyceraldehyde-stimulated release were both inhibited. Galanin was inhibitory at concentrations in the low nanomolar range. Binding studies with 125I-labeled galanin indicated that the RINm5F cells exhibit a single set of sites estimated to be of the order of 30,000 sites/cell. Displacement of 125I-galanin by galanin from the receptor sites occurred over a similar concentration range to that which inhibited insulin release. Half-displacement was achieved with 2 nM galanin. Measurements of bis-(1,3-diethylthiobarbiturate) trimethineoxonol (bis-oxonol) fluorescence showed that galanin hyperpolarized the RINm5F cell plasma membrane. Measurements of intracellular free calcium, [Ca2+]i by means of the fluorescent indicator fura-2 showed that galanin decreased [Ca2+]i. As galanin did not inhibit either basal or glyceraldehyde-stimulated insulin release in the presence of the Ca2+ channel blocker nitrendipine, the hyperpolarization and reduction of Ca2+ entry appear to be a possible explanation for the galanin effects. However, quantitatively, the effects on membrane potential and [Ca2+]i appear to be insufficient to account for the potent inhibition of insulin release. Furthermore, evidence for an additional mechanism of action was obtained from experiments with 12-O-tetradecanoylphorbol-13-acetate (TPA), a phorbol ester which stimulates insulin secretion by at least two mechanisms, one Ca2+ dependent and one Ca2+ independent. TPA-stimulated insulin release was inhibited by galanin over the same concentration range as for the inhibition of glyceraldehyde-stimulated release. Galanin inhibited TPA-stimulated release in the presence of maximally effective concentrations of nitrendipine and in the absence of extracellular Ca2+. These effects cannot be explained by hyperpolarization of the plasma membrane and consequent reduction of Ca2+ entry via the voltage-dependent Ca2+ channels. One suggested mechanism for the action of galanin is inhibition of adenylate cyclase. However, it was found that galanin inhibits insulin release even in the presence of 8-Br-cAMP, an agent which effectively bypasses adenylate cyclase. Therefore, an additional mechanism for the inhibitory effect of galanin must be present. All of the effects of galanin were sensitive to pertussis toxin. These data suggest two G-protein-dependent actions of galanin, one to hyperpolarize the plasma membrane and one at a distal point in stimulus-secretion coupling, close to the exocytotic event.  相似文献   

6.
The effects of galanin and somatostatin on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration [( Ca2+]i) were investigated using beta-cells isolated from obese hyperglycemic mice. Whereas insulin release was measured in a column perifusion system, membrane potential and [Ca2+]i were measured with the fluorescent indicators bisoxonol (bis-(1,3-diethylthiobarbiturate)trimethineoxonol) and quin 2, in cell suspensions in a cuvette. Galanin (16 nM) and somatostatin (400 nM) suppressed glucose-stimulated insulin release in parallel to promoting repolarization and a reduction in [Ca2+]i. The reduction in [Ca2+]i comprised an initial nadir followed by a slow rise and the establishment of a new steady state level. The slow rise in [Ca2+]i was abolished by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. Both peptides suppressed insulin release even when [Ca2+]i was raised by 25 mM K+. Under these conditions the inhibition of insulin release was partly reversed by an increase in the glucose concentration. Addition of 5 mM Ca2+ to a cell suspension, incubated in the presence of 20 mM glucose and either galanin, somatostatin, or the alpha 2-adrenergic agonist clonidine (10 nM), induced oscillations in [Ca2+]i, this effect disappearing subsequent to the addition of D-600. The effects of galanin, somatostatin, and clonidine on [Ca2+]i were abolished in beta-cells treated with pertussis toxin. In accordance with measurements of [Ca2+]i, treatment with pertussis toxin reversed the inhibitory effect of galanin on insulin release. The inhibitory action of galanin and somatostatin on insulin release is probably accounted for by not only a repolarization-induced reduction in [Ca2+]i and a decreased sensitivity of the secretory machinery to Ca2+, but also by a direct interaction with the exocytotic process. It is proposed that these effects are mediated by a pertussis toxin-sensitive GTP-binding protein.  相似文献   

7.
Effects of the alpha 2-adrenergic agonist clonidine on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration ([Ca2+]i) were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Addition of 2 microM clonidine promptly inhibited glucose-stimulated insulin release, an effect accompanied by a lowering in both membrane potential and [Ca2+]i. Within minutes, the effect on Ca2+ was partly reversed, [Ca2+]i attaining a new level, although still significantly lower than in the absence of agonist. This late increase in [Ca2+]i was inhibited by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. The inhibitory effects of clonidine on membrane potential, [Ca2+]i, and insulin release were abolished by 5 microM of the alpha 2-adrenergic antagonist yohimbine. Depolarization with high K+ increased [Ca2+]i also in the presence of clonidine, conditions accompanied by only a minute release of insulin. Secretion was, however, partly restored by subsequent addition of 20 mM glucose. Addition of 5 mM Ca2+ transiently reversed the effects of clonidine on both membrane potential and [Ca2+]i. Although the clonidine-induced repolarization should be enough for closing the voltage-activated Ca2+ channels with a resulting decrease in [Ca2+]i, a direct interaction of the agonist with these channels cannot be excluded. The fact that it was possible to increase [Ca2+]i with only a minor effect on insulin release suggests that the inhibitory effect of clonidine not only is due to a reduction in [Ca2+]i, but also involves interference with some more distal step in the insulin secretory machinery.  相似文献   

8.
L-Arginine and L-ornithine stimulate insulin release from pancreatic islets exposed to D-glucose. This coincides with an increased outflow of 86Rb and 45Ca from prelabelled islets and an increased net uptake of 45Ca by the islets. In the presence of D-glucose, L-lysine stimulates insulin secretion to the same extent as L-arginine or L-ornithine, but the hormonal release is not further enhanced by combinations of these cationic amino acids. L-Arginine or L-ornithine failed to enhance insulin release evoked by either L-leucine or 2-ketoisocaproate. The inhibitor of ornithine decarboxylase D,L-alpha-difluoromethyl ornithine failed to affect the metabolism and insulinotropic action of D-glucose in pancreatic islets, and only caused a partial inhibition of the secretory response to either L-arginine or L-ornithine. The latter amino acids inhibited modestly but significantly D-glucose utilization and oxidation by pancreatic islets. These and complementary findings suggest that the secretory response to L-arginine and L-ornithine is not attributable to any major change in the overall oxidative catabolism of nutrients, but involves mainly a biophysical component, such as the depolarization of the plasma membrane by these cationic amino acids.  相似文献   

9.
B A Wolf  S M Pasquale  J Turk 《Biochemistry》1991,30(26):6372-6379
Free fatty acids in isolated pancreatic islets have been quantified by gas chromatography-mass spectrometry after stimulation with insulin secretagogues. The fuel secretagogue D-glucose has been found to induce little change in islet palmitate levels but does induce the accumulation of sufficient unesterified arachidonate by mass to achieve an increment in cellular levels of 38-75 microM. Little of this free arachidonate is released into the perifusion medium, and most remains associated with the islets. Glucose-induced hydrolysis of arachidonate from islet cell phospholipids is reflected by release of the arachidonate metabolite prostaglandin E2 (PGE2) from perifused islets. Both the depolarizing insulin secretagogue tolbutamide (which is thought to act by inducing closure of beta-cell ATP-sensitive K+ channels and the influx of extracellular Ca2+ through voltage-dependent channels) and the calcium ionophore A23187 have also been found to induce free arachidonate accumulation within and PGE2 release from islets. Surprisingly, a major fraction of glucose-induced eicosanoid release was found not to require Ca2+ influx and occurred even in Ca(2+)-free medium, in the presence of the Ca(2+)-chelating agent EGTA, and in the presence of the Ca2+ channel blockers verapamil and nifedipine. Exogenous arachidonic acid was found to amplify the insulin secretory response of perifused islets to submaximally depolarizing concentrations of KCl, and the maximally effective concentration of arachidonate was 30-40 microM. These observations suggest that glucose-induced phospholipid hydrolysis and free arachidonate accumulation in pancreatic islets are not simply epiphenomena associated with Ca2+ influx and that arachidonate accumulation may play a role in the signaling process which leads to insulin secretion.  相似文献   

10.
The mechanisms whereby activation of the cyclic AMP-dependent protein kinase A or the Ca2+-phospholipid-dependent protein kinase C amplifies insulin release were studied with mouse islets. Forskolin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) were used to stimulate adenylate cyclase and protein kinase C respectively. The sulphonylurea tolbutamide was used to initiate insulin release in the presence of 3 mM-glucose. Tolbutamide alone inhibited 86Rb+ efflux, depolarized beta-cell membrane, triggered electrical activity, accelerated 45Ca2+ influx and efflux and stimulated insulin release. Forskolin alone only slightly inhibited 86Rb+ efflux, but markedly increased the effects of tolbutamide on electrical activity, 45Ca2+ influx and efflux, and insulin release. In the absence of Ca2+, only the inhibition of 86Rb+ efflux persisted. TPA (100 nM) alone slightly accelerated 45Ca2+ efflux and insulin release without affecting 45Ca2+ influx or beta-cell membrane potential. It increased the effects of tolbutamide on 45Ca2+ efflux and insulin release without changing 86Rb+ efflux, 45Ca2+ influx or electrical activity. Omission of extracellular Ca2+ suppressed all effects due to the combination of TPA and tolbutamide, but not those of TPA alone. Though ineffective alone, 10 nM-TPA amplified the releasing action of tolbutamide without affecting its ionic and electrical effects. In conclusion, the two amplification systems of insulin release involve at least partially distinct mechanisms. The cyclic AMP but not the protein kinase C system initiating signal (Ca2+ influx) triggered by the primary secretagogue.  相似文献   

11.
Pancreatic islets rich in beta-cells were isolated from non-inbred ob/ob-mice and used for studying various aspects of the function of the plasma membrane. A review is given of the authors' work along the following lines: the role of transmembrane transport or membrane binding in the recognition of insulin-releasing sugars, amino acids, sulfonylureas, and sulphydryl-blocking agents; the role of cyclic 3',5'-AMP and cations in the coupling of stimulus recognition to insulin discharge; alloxan beta-cytotoxicity in vitro and its prevention by sugars; the isolation of a subcellular fraction enriched by plasma membranes. 1. It is suggested that D-glucose is recognized as an insulin secretagogue by being metabolized in the beta-cells; the teleological purpose of the transmembrane transport system being to allow fluctuations of the extracellular glucose concentration to be rapidly transmitted to the cell interior. Insulin-releasing sulfonyluraes and sulphydryl reagents are thought to act directly on the beta-cell plasma membrane, however. 2. Although cyclic 3',5'-AMP may amplify the expression of a secretory signal induced by D-glucose, studies with cholera toxin suggest that activation of the adenylate cyclase does not per se elicit secretion. The increase of islet cyclic 3',5'-AMP observed in response to several secretagogues, including D-glucose, may be secondary to membrane depolarization. 3. The possible role of an electrodiffusional mechanism in controlling the electrical potential is emphasized; a decrease of K+ permeability, rather than an increase of Na+ permeability, is suggested to be involved in the depolarizing action of D-glucose. Studies with the lanthanum-wash technique indicated that D-glucose causes a net flux of Ca2+ from the outside to the inside of the beta-cells. Although this uptake may relate to the enhancement of insulin secretion, the detailed mechanisms are unclear. 4. Inhibition of the Na+/K+ pump may be one of the earliest events in damage to the beta-cell by alloxan, on the basis of Rb+ studies. Protective effects of glucose against alloxan toxicity appear to be close related. 5. Studies of enzyme markers, the binding of wheat germ agglutinin, and electron microscopy indicate the presence of plasma membranes in a smooth-membrane fraction obtained by fractionating islet homogenates at consecutive sucrose gradients.  相似文献   

12.
In studying the regulation of insulin secretion by phorbol esters, we examined their effects on the cytosolic free Ca2+ concentration ([Ca2+]i), using the Ca2+ indicator fura-2 in the rat insulin-secreting beta-cell line RINm5F. [Ca2+]i was measured in parallel with the rate of insulin release. 50 nM 12-O-tetradecanoylphorbol-13-acetate (TPA), which may act via protein kinase C, stimulated insulin release and caused an increase in [Ca2+]i. Ca2+-free conditions eliminated the increase in [Ca2+]i and resulted in a reduced stimulation of insulin release by TPA. The Ca2+ channel blocker nitrendipine (300 nM) inhibited both the increase in [Ca2+]i and the increased rate of insulin secretion. Another phorbol ester, 4 beta-phorbol 12,13-didecanoate, which activates protein kinase C, also induced an increase in [Ca2+]i and in the rate of insulin release, while 4 alpha-phorbol 12,13-didecanoate, which fails to stimulate protein kinase C, was without effect. Further studies with bis-oxonol as an indicator of membrane potential showed that TPA depolarized the beta-cell plasma membrane. From these results, it is concluded that TPA depolarizes the plasma membrane, induces the opening of Ca2+ channels in the RINm5F beta-cell plasma membrane, increases [Ca2+]i, and results in insulin secretion. The action of TPA was next compared with that of a depolarizing concentration of KC1 (25 mM), which stimulates insulin secretion simply by opening Ca2+ channels. TPA consistently elicited less depolarization, a smaller rise of [Ca2+]i, but a greater release of insulin than KC1. Therefore an additional action of TPA is suggested, which potentiates the action of the elevated [Ca2+]i on insulin secretion.  相似文献   

13.
Islets microdissected from ob/ob-mice were exposed to 3mM pentobarbital in media which were normal or deficient in Ca2+. This treatment resulted in marked decrease of the islet content of cyclic AMP recorded in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Pentobarbital had a dual effect on insulin release. In addition to being a potent inhibitor of glucose-stimulated insulin release in media containing 2.56 mM Ca2+ it increased the amounts of insulin released in high glucose media deficient in Ca2+. There was a transient stimulation with ordinary concentrations of Ca2+ and 3mM glucose whtn the media also contained 3-isobutyl-1-methylxanthine. The stimulatory effect of pentobarbital persisted after replacing part of the Ca2+ in the beta-cell membrane with lanthanum ions and it could not be mimicked by lowering the oxygen tension of the incubation medium. It is suggested that pentobarbital stimulation of insulin release is the result of a specific action of the drug on the distribution of Ca2+ within the pancreatic beta-cells.  相似文献   

14.
D-Glucose was recently reported to stimulate d-fructose phosphorylation by human B-cell glucokinase. The present study aims at investigating the anomeric specificity of such a positive cooperativity. The alpha-anomer of D-glucose was found to increase much more markedly than beta-D-glucose the phosphorylation of D-fructose by human liver glucokinase. Such an anomeric preference diminished at high concentrations of the D-glucose anomers, i.e. when the effect of the aldohexose upon d-fructose phosphorylation became progressively less marked. A comparison between the effects of the two anomers of D-glucose and those of equilibrated D-glucose upon D-fructose phosphorylation by human liver glucokinase indicated that the results obtained with the equilibrated aldohexose were not significantly different from those expected from the combined effects of each anomers of D-glucose. In isolated rat islets incubated for 60 min at 4 degrees C, alpha-D-glucose (5.6 mm), but not beta-D-glucose (also 5.6 mm), augmented significantly the conversion of D-[U-(14)C]fructose (5.0 mm) to acidic radioactive metabolites. Likewise, in islets prelabeled with (45)Ca and perifused at 37 degrees C, D-fructose (20.0 mm) augmented (45)Ca efflux and provoked a biphasic stimulation of insulin release from islets exposed to alpha-D-glucose (5.6 mm), while inhibiting (45)Ca efflux and causing only a sluggish and modest increase in insulin output from islets exposed to beta-D-glucose (also 5.6 mm). The enhancing action of D-glucose upon D-fructose phosphorylation by glucokinase thus displays an obvious anomeric preference for alpha-D-glucose, and such an anomeric specificity remains operative in intact pancreatic islets.  相似文献   

15.
Using the MIN6 B-cell line, we investigated the hypothesis that miniglucagon, the C-terminal () fragment processed from glucagon and present in pancreatic A cells, modulates insulin release, and we analyzed its cellular mode of action. We show that, at concentrations ranging from 0.01 to 1000 pM, miniglucagon dose-dependently (ID50 = 1 pM) inhibited by 80-100% the insulin release triggered by glucose, glucagon, glucagon-like peptide-1-(7-36) amide (tGLP-1), or glibenclamide, but not that induced by carbachol. Miniglucagon had no significant effects on cellular cAMP levels. The increase in 45Ca2+ uptake induced by depolarizing agents (glucose or extracellular K+), by glucagon, or by the Ca2+channel agonist Bay K-8644 was blocked by miniglucagon at the doses active on insulin release. Electrophysiological experiments indicated that miniglucagon induces membrane hyperpolarization, probably by opening potassium channels, which terminated glucose-induced electrical activity. Pretreatment with pertussis toxin abolished the effects of miniglucagon on insulin release. It is concluded that miniglucagon is a highly potent and efficient inhibitor of insulin release by closing, via hyperpolarization, voltage-dependent Ca2+ channels linked to a pathway involving a pertussis toxin-sensitive G protein.  相似文献   

16.
The effects of glucose on cytoplasmic free Ca2+ concentration, [Ca2+]i, and insulin release were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Measurements of [Ca2+]i were performed in cell suspensions in a cuvette and in single cell-aggregates in a microscopic system, using fura 2 and quin 2. Insulin release was studied from indicator loaded cells in a column perifusion system. In the presence of 1.28 mM extracellular Ca2+, an increase in the glucose concentration from 0 to 20 mM had two major effects on [Ca2+]i. Initially there was a decrease, which was immediately followed by a pronounced increase. At reduced extracellular Ca2+, or when Ca2+ influx was blocked, glucose induced only a decrease in [Ca2+]i. With increasing intracellular concentrations of indicator, the effects of glucose on [Ca2+]i were markedly reduced. Changes in [Ca2+]i, similar effects being obtained in the cuvette and microfluorometric measurements, were paralleled by changes in insulin release. Insulin release from indicator loaded cells did not markedly differ from that of non-loaded controls, either with respect to rapidity or size in the response to the sugar. The addition of 20 mM glucose increased the efflux of fura 2, an effect that was not related to insulin release. Permeabilization of indicator loaded cells demonstrated a substantial amount of fura 2 bound intracellularly. Although the effects of glucose on [Ca2+]i seemed to be similar in fura 2 and quin 2 loaded cells, the demonstrated leakage and possible intracellular binding should be considered before using fura 2 for measurements in pancreatic beta-cells.  相似文献   

17.
The role of Ca2+ in the secretion of insulin and glucagon was investigated by studying the effects of Ca2+ ionophores on hormone secretion from isolated perifused islets of Langerhans. Ionophore X537A (100 muM), which binds alkaline earth cations and also complexes some univalent cations, caused a rapid transient increase in insulin and glucagon secretion which was not dependent on the presence of Ca2+ in the perifusion medium. Ionophore A23187 (100 muM), which specifically binds bivalent cations at neutral pH values, similarly increased insulin secretion in complete and Ca2+-free medium, but only stimulated glucagon release in the presence of extracellular Ca2+. Since the stimulatory effects of both ionophores were associated with an increased Ca2+ flux in the islets, these experiments support the hypothesis that Ca2+ may trigger the release of insulin and suggest that it is also involved in the secretion of glucagon. The basal rate of both insulin and glucagon release was significantly increased when Ca2+ was omitted from the perifusion medium, but it is proposed that this finding may be due to adverse effects on cell-membrane function under these conditions.  相似文献   

18.
The action of testosterone on the 45Ca2+ uptake and insulin secretion was studied in short-term experiments using isolated pancreatic islets of Langerhans. Testosterone (1 microM) stimulated 45Ca2+ uptake within 60 seconds of incubation on similar proportion than tolbutamide. Also, the hormone rapidly increased insulin release (34%; 180 seconds) on the presence of non-stimulatory concentrations of glucose (3 mM). Impermeant testosterone-BSA significantly stimulated the secretion of insulin to a lower percentage (10%). The action of the hormone is specific--neither 17beta-E2 nor progesterone stimulated insulin secretion in the presence of 3 mM glucose. The action of testosterone on insulin secretion was dose-dependent, and at rat plasma physiological concentrations (25 nM), stimulus was 17% (p < 0.05). In conclusion, in isolated pancreatic islets experiments, physiological concentration of testosterone rapidly stimulate insulin secretion and 45Ca2+ uptake through a membrane bound mechanism.  相似文献   

19.
Insulin inhibition of alpha-adrenergic actions in liver.   总被引:8,自引:7,他引:1       下载免费PDF全文
The effects of insulin on alpha-agonist (phenylephrine)- and [Arg8]vasopressin-induced Ca2+ and glucose release and mitochondrial Ca2+ fluxes in isolated perfused rat livers were examined. Insulin (6 nM) inhibited the ability of phenylephrine (1 and 0.5 microM) to elicit Ca2+ and glucose release, whereas it was without effect on vasopressin (10 and 2.5 nM) actions. Correspondingly, insulin inhibited the action of phenylephrine to induce a stable increase in mitochondrial Ca2+ uptake, but it did not affect the alteration caused by vasopressin. Phenylephrine and vasopressin caused transient increases in hepatocyte respiration. Insulin inhibited the effect of phenylephrine on this parameter, but not that of vasopressin. Insulin added alone did not alter any of the above parameters. It is concluded from these data that insulin does not alter cellular Ca2+ fluxes and respiration themselves, but selectively inhibits alpha-adrenergic stimulation of these processes. It is proposed that insulin acts either to inhibit binding of alpha-agonists to their specific plasma-membrane receptors or to alter generation and/or degradation of the putative alpha-adrenergic 'second messenger'. If this latter possibility is the case, then the alpha-adrenergic 'second messenger' must be different from the 'second messenger' of vasopressin.  相似文献   

20.
In pancreatic islets removed from 48 h-fasted rats, as distinct from fed animals, the release of insulin evoked by D-glucose is more severely impaired than that evoked by 2-ketoisocaproate. This decreased secretory response to D-glucose contrasts with an unimpaired cationic response to the sugar in terms of the glucose-induced decrease in both 86Rb and 45Ca outflow from pre-labelled islets. Likewise, fasting only causes a modest decrease of the secondary rise in 45Ca outflow evoked by D-glucose in islets perifused at normal Ca2+ concentration. The latter decrease appears more marked, however, if the cationic response to glucose is expressed relative to that evoked by 2-ketoisocaproate in islets removed from rats in the same nutritional state. It is concluded that, in the process of nutrient-stimulated insulin release, neither the decrease in K+ conductance (inhibition of 86Rb outflow) nor the sequestration of Ca2+ by intracellular organelles and/or direct inhibition of Ca2+ outward transport (decrease in 45Ca outflow) represent the sole determinant(s) of the subsequent gating of Ca2+ channels (secondary rise in 45Ca efflux).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号