首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two wild strains of Zymomonas mobilis were isolated (named as ML1 and ML2) from sugar cane molasses obtained from different farms of Santander, Colombia. Initially, selection of the best ethanol-producer strains was carried out using ethanol production parameters obtained with a commercial strain Z. mobilis DSM 3580. Three isolated strains were cultivated in a culture medium containing yeast extract, peptone, glucose and salts, at pH 6 and 32°C with stirring rate of 65 rpm during 62 h. The best results of ethanol production were obtained with the native strain ML1, reaching a maximum ethanol concentration of 79.78 g l−1. ML1 and ML2 strains were identified as Z. mobilis, according to the morphology, biochemical tests and molecular characterization by PCR of specific DNA sequences from Z. mobilis. Subsequently, the effect of different nitrogen sources on production of ethanol was evaluated. The best results were obtained using urea at a 0.73 g/l. In this case, maximum concentration of ethanol was 83.81 g l−1, with kinetic parameters of yield of ethanol on biomass (YP/X) = 69.01(g g−1), maximum volumetric productivity of ethanol (Qpmax) = 2.28 (g l−1 h−1), specific productivity of ethanol (qP) = 3.54 (h−1) and specific growth rate (μ) = 0.12 h−1. Finally, we studied the effect of different culture conditions (pH, temperature, stirring, C/N ratio) with a Placket-Burman′s experimental design. This optimization indicated that the most significant variables were temperature and stirring. In the best culture conditions a significant increase in all variables of response was achieved, reaching a maximum ethanol concentration of 93.55 g l−1.  相似文献   

2.
Patle S  Lal B 《Biotechnology letters》2007,29(12):1839-1843
Acid, alkaline and enzymatic hydrolysis of agricultural crop wastes were compared for yields of total reducing sugars with the hydrolysates being evaluated for ethanol production using a mixed culture of Zymomonas mobilis and Candida tropicalis. Acid hydrolysis of fruit and vegetable residues gave 49–84 g reducing sugars l−1 and 29–32 g ethanol l−1 was then obtained. Alkaline hydrolysis did not give significant amount of reducing sugars. Enzymatic hydrolysis of fruit and vegetable residues yielded 36–123 g reducing sugars l−1 and 11–54 g ethanol l−1.  相似文献   

3.
In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett–Burman (P–B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g−1 initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g−1 initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.  相似文献   

4.
Gao Z  Li Z  Zhang Y  Huang H  Li M  Zhou L  Tang Y  Yao B  Zhang W 《Biotechnology letters》2012,34(3):507-514
The glucose oxidase (GOD) gene from Penicillium notatum was expressed in Pichia pastoris. The 1,815 bp gene, god-w, encodes 604 amino acids. Recombinant GOD-w had optimal activity at 35–40°C and pH 6.2 and was stable, from pH 3 to 7 maintaining >75% maximum activity after incubation at 50°C for 1 h. GOD-w worked as well as commercial GODs to improve bread making. To achieve high-level expression of recombinant GOD in P. pastoris, 272 nucleotides involving 228 residues were mutated, consistent with the codon bias of P. pastoris. The optimized recombinant GOD-m yielded 615 U ml−1 (2.5 g protein l−1) in a 3 l fermentor—410% higher than GOD-w (148 U ml−1), and thus is a low-cost alternative for the bread baking industry.  相似文献   

5.
Two experiments were performed to determine how application of the cytokinin benzyladenine (BA) influenced flowering in Doritaenopsis and Phalaenopsis orchid clones. In the first experiment, two vegetative orchid clones growing in 15-cm pots were transferred from a 28°C greenhouse that inhibited flowering to a 23°C greenhouse for flower induction (day 0). A foliar spray (0.2 L m−2) containing BA at 100, 200, or 400 mg L−1 or 25, 50, or 100 mg L−1 each of BA and gibberellins A4 + A7 (BA+GA) was applied on days 0, 7, and 14. Plants treated with BA alone at 200 or 400 mg L−1 had a visible inflorescence 3–9 days earlier and had a mean of 0.7–3.5 more inflorescences and 3–8 more flowers per plant than nontreated plants. The application of BA+GA had no effect on inflorescence number and total flower number at the rates tested. In the second experiment, three orchid clones received a single foliar spray of BA at 200 mg L−1 at six time points relative to time of transfer from 29°C to 23°C (−1, 0, +1, +2, +4, or +6 weeks). A separate group of plants received a BA application at week 0 but was maintained at 29°C. Inflorescence number was greatest in all three orchid clones when plants were treated with BA 1 week after the temperature transfer. Plants that were sprayed with BA and maintained at 29°C did not initiate inflorescences. The promotion of flowering by the application of BA suggests that cytokinins at least partially regulate inflorescence initiation of Doritaenopsis and Phalaenopsis, but its promotion is conditional and BA application cannot completely substitute for an inductive low temperature.  相似文献   

6.
7.
8.
The present paper reports a protocol for minimum growth conservation of Drosophyllum lusitanicum (L.) Link. in vitro. Double-node cuttings were maintained for 4, 8 and 12 months at 5 or 25 °C in the dark. The effects of sucrose either alone at 5, 20, 30, 40 and 60 g dm−3 or at 20, 40 and 60 g dm−3 in combination with 20 g dm−3 mannitol, on survival and post-storage shoot multiplication efficiency were investigated. The cultures could effectively be conserved under minimum growth at 5 °C for 8 months on Murashige and Skoog’s medium supplemented with 60 g dm−3 sucrose, 20 g dm−3 mannitol and 0.91 μM zeatin. Following extended conservation, the cultures could be successfully regenerated into new shoots, and they were morphologically similar to those of non-stored controls.  相似文献   

9.
The aim of this study was to investigate the secondary fermentation of alcoholic green cider by Lactobacillus brevis and Oenococcus oeni in a membrane bioreactor so as to compare the performance of the two organisms to rapidly carry out the malolactic fermentation (MLF), an important step in reducing acidity and enhancing the flavor characteristics of the beverages. First, the growth of both organisms was intensified by using perfusion culture in a membrane bioreactor (MBR). O. oeni and L. brevis were grown up to 12.8 g dry cell weight (DCW) l−1 and 15.5 g DCW l−1 in the MBR. Secondly, the resultant cells were then used for the malolactic transformation of green cider in the MBR. The influences of the residence time in the MBR and the ethanol concentration of the green cider on the organic acid transformation were investigated. Both organisms showed a good tolerance against the acidic conditions (pH 3.0–4.0) and ethanol (90 g l−1). Good levels of malate removal in the MBR were achieved by both organisms but O. oeni was more tolerant to high ethanol concentrations and was capable of growth and malate removal in 130 g ethanol l−1 green cider. L. brevis malate removal was significantly inhibited above 110 g ethanol l−1. The MBR allowed the development of high concentrations of active cells capable of rapid MLF and could be achieved over a prolonged period and over a wide range of conditions thus allowing the control of malate transformation rate. Organism selection for the transformation will be governed by the desired beverage characteristics. There is considerable scope to optimize the process further both with the choice of organisms and the design and operation of the reactor. Rapid beverage maturation on a commercial scale may be possible using MBR and pure cultures of MLF lactic acid bacteria.  相似文献   

10.
A recombinant d-lyxose isomerase from Providencia stuartii was immobilized on Duolite A568 beads which gave the highest conversion of d-fructose to d-mannose among the various immobilization beads evaluated. Maximum activities of both the free and immobilized enzymes for fructose isomerization were at pH 7.5 and 45°C in the presence of 1 mM Mn2+. Enzyme half-lives were 14 and 30 h at 35°C and 3.4 and 5.1 h at 45°C, respectively. The immobilized enzyme in 300 g fructose/l (replaced hourly), produced 75 g mannose/l at 35°C = 25% (w/w) yield with a productivity of 75 g mannose l−1 h−1 after 23 cycles.  相似文献   

11.
Two 60-day experiments were conducted to study the influence of photon flux density (PFD) and temperature on the attachment and development of Gloiopeltis tenax and Gloiopeltis furcata tetraspores. In the first experiment, tetraspores of the two Gloiopeltis species were incubated at five temperature ranges (8°C, 12°C, 16°C, 20°C, 24°C) under a constant PFD of 80 μmol photons m−2 s−1 with a photoperiod of 12:12. In a second experiment, tetraspores were incubated under five PFD gradients (30, 55, 80, 105, 130 μmol photons m−2 s−1) at a constant temperature of 16°C with a photoperiod of 12:12. Maximum density of attached tetraspores was observed at 16°C for both species. Maximum per cent of spore germinating into disc was recorded at 12–16°C for G. tenax and 8–12°C for G. furcata. Maximum per cent of discs producing erect axes for G. tenax and G. furcata were recorded at 24°C and 20°C, respectively. Light had no significant effect on tetraspore attachment and developing into disc, but it affected the growth, sprouting and survival of its discs. Under 30–55 μmol photons m−2 s−1, the discs of the two species of Gloiopeltis did not form thallus until the end of the experiment. Optimum PFD range for G. tenax discs was 80–105 μmol photons m−2 s−1, whilst it was 80–130 μmol photons m−2 s−1 for G. furcata. Results presented in this study are expected to assist the progress of artificial seeding of Gloiopeltis.  相似文献   

12.
In this study, the methanol extract of Arthrospira (Spirulina) platensis was examined for acute and subchronic toxicities. The extract did not produce any sign of toxicity within 7 days after feeding it at a single high dose of 6 g kg−1 body weight to female and male Swiss mice. For the subchronic toxicity test, the extract at doses of 6, 12, and 24 mg kg−1 body weight was orally administered to six male and six female Wistar rats daily for 12 weeks. Throughout the study period, we did not observe any abnormalities on behavior, food and water intakes, and health status among the treated animals. The hematology and clinical chemistry parameters of treated groups did not significantly differ from those of the controls in both sexes. Postmortem examination of the test groups also showed no abnormalities in both gross and histological findings. These results thus suggest that the methanol extract of A. platensis did not cause acute or subchronic toxicity in our experimental animals.  相似文献   

13.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

14.
d-Arabitol production from lactose by Kluyveromyces lactis NBRC 1903 has been studied by following the time courses of concentrations of cell mass, lactose, d-arabitol, ethanol, and glycerol at different temperatures. It was found that temperature is a key factor in d-arabitol production. Within temperatures ranging from 25 to 39°C, the highest d-arabitol concentration of 99.2 mmol l−1 was obtained from 555 mmol l−1 of lactose after 120 h of batch cultivation at 37°C. The yield of d-arabitol production on cell mass growth increased drastically at temperatures higher than 35°C, and the yield reached 1.07 at 39°C. Increasing the cell mass concentration two-fold after 24 h of culture growth at 37°C, the d-arabitol concentration further increased to 168 mmol l−1. According to the distribution of the metabolic products, metabolic changes related to growth phase were also discussed. The stationary-phase K. lactis cells in the batch culture that is started with exposing the precultured inoculum to high osmotic stress, high oxidative stress, and high heat stress are found to be preferable for d-arabitol production.  相似文献   

15.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

16.
Sweet sorghum juice supplemented with 0.5% ammonium sulphate was used as a substrate for ethanol production by Saccharomyces cerevisiae TISTR 5048. In batch fermentation, kinetic parameters for ethanol production depended on initial cell and sugar concentrations. The optimum initial cell and sugar concentrations in the batch fermentation were 1 × 108 cells ml−1 and 24 °Bx respectively. At these conditions, ethanol concentration produced (P), yield (Y ps) and productivity (Q p ) were 100 g l−1, 0.42 g g−1 and 1.67 g l−1 h−1 respectively. In fed-batch fermentation, the optimum substrate feeding strategy for ethanol production at the initial sugar concentration of 24 °Bx was one-time substrate feeding, where P, Y ps and Q p were 120 g l−1, 0.48 g g−1 and 1.11 g l−1 h−1 respectively. These findings suggest that fed-batch fermentation improves the efficiency of ethanol production in terms of ethanol concentration and product yield.  相似文献   

17.
Seagrasses are well known ecosystem engineers that can significantly influence local hydrodynamics and the abundance and biodiversity of macrobenthic organisms. This study focuses on the potential role of the seagrass canopy structure in altering the abundance of filter-feeding organisms by modifying the hydrodynamic driven food supply. We quantified the effect of two ecosystem engineers with contrasting canopy properties (i.e. Zostera noltii and Cymodocea nodosa) on the food intake rate of a suspension-feeding bivalve Cerastoderma edule living in these seagrass meadows. Field experiments were carried out in two seagrass beds (Z. noltii and C. nodosa) and bare sediment, located on sandflat characterised by a relatively high hydrodynamic energy from waves and currents. Results demonstrated that the filter-feeding rate was almost twofold increased when C. edule was inhabiting Z. noltii meadows (1.10 ± 0.24 μg Chl g Fresh Weight−1) when compared to cockles living on the bare sediment (0.65 ± 0.14 μg Chl g FW−1). Intermediate values were found within C. nodosa canopy (0.97 ± 0.24 μg Chl g FW−1), but filter feeding rate showed no significant differences with values for Z. noltii meadows. There were no apparent correlations between canopy properties and filter-feeding rates. Our results imply that food refreshment within the seagrass canopies was enough to avoid food depletion. We therefore expect that the ameliorated environmental conditions within vegetated areas (i.e. lower hydrodynamic conditions, higher sediment stability, lower predation pressure…) in combination with sufficient food supply to prevent depletion within both canopies are the main factors underlying our observations.  相似文献   

18.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

19.
Filtrates from crushed Moringa oleifera seeds were tested for their effects on growth and Photosystem II efficiency of the common bloom-forming cyanobacterium Microcystis aeruginosa. M. aeruginosa populations exhibited good growth in controls and treatments with 4- and 8-mg crushed Moringa seeds per liter, having similar growth rates of 0.50 (±0.01) per day. In exposures of 20- to 160-mg crushed Moringa seeds L−1, growth rates were negative and on average −0.23 (±0.05) .day−1. Presumably, in the higher doses of 20- to 160-mg crushed seeds per liter, the cyanobacteria died, which was supported by a rapid drop in the Photosystem II efficiency (ΦPSII), while the ΦPSII was high and unaffected in 0, 4, and 8 mg L−1. High-density populations of M. aeruginosa (chlorophyll-a concentrations of ∼270 μg L−1) were reduced to very low levels within 2 weeks of exposure to ≥80-mg crushed seeds per liter. At the highest dosage of 160 mg L−1, the ΦPSII dropped to zero rapidly and remained nil during the course of the experiment (14 days). Hence, under laboratory conditions, a complete wipeout of the bloom could be achieved. This is the first study that yielded evidence for cyanobactericidal activity of filtrate from crushed Moringa seeds, suggesting that Moringa seed extracts might have a potential as an effect-oriented measure lessening cyanobacterial nuisance.  相似文献   

20.
The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号