首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Inhibition of amyloid β-peptide (Aβ) production by blocking γ-secretase activity is at present one of the most promising therapeutic strategies to slow progression of Alzheimer’s disease pathology. γ-secretase inhibitors apparently block Aβ generation via interference with presenilin (PS) function. Besides being an essential component of the γ-secretase complex, PS itself may be an aspartyl protease with γ-secretase activity, which is not only required for Aβ production but also for a similar proteolytic process involved in Notch signaling. Here we demonstrate that treatment of zebrafish embryos with a known γ-secretase inhibitor affects embryonic development in a manner indistinguishable from Notch signaling deficiencies at morphological, molecular and biochemical levels. This indicates severe side-effects of γ-secretase inhibitors in any Notch-dependent cell fate decision and demonstrates that the zebrafish is an ideal vertebrate system to validate compounds that selectively affect Aβ production, but not Notch signaling, under in vivo conditions.  相似文献   

2.

Background

We describe molecular processes that can facilitate pathogenesis of Alzheimer''s disease (AD) by analyzing the catalytic cycle of a membrane-imbedded protease γ-secretase, from the initial interaction with its C99 substrate to the final release of toxic Aβ peptides.

Results

The C-terminal AICD fragment is cleaved first in a pre-steady-state burst. The lowest Aβ42/Aβ40 ratio is observed in pre-steady-state when Aβ40 is the dominant product. Aβ42 is produced after Aβ40, and therefore Aβ42 is not a precursor for Aβ40. The longer more hydrophobic Aβ products gradually accumulate with multiple catalytic turnovers as a result of interrupted catalytic cycles. Saturation of γ-secretase with its C99 substrate leads to 30% decrease in Aβ40 with concomitant increase in the longer Aβ products and Aβ42/Aβ40 ratio. To different degree the same changes in Aβ products can be observed with two mutations that lead to an early onset of AD, ΔE9 and G384A. Four different lines of evidence show that γ-secretase can bind and cleave multiple substrate molecules in one catalytic turnover. Consequently depending on its concentration, NotchΔE substrate can activate or inhibit γ-secretase activity on C99 substrate. Multiple C99 molecules bound to γ-secretase can affect processive cleavages of the nascent Aβ catalytic intermediates and facilitate their premature release as the toxic membrane-imbedded Aβ-bundles.

Conclusions

Gradual saturation of γ-secretase with its substrate can be the pathogenic process in different alleged causes of AD. Thus, competitive inhibitors of γ-secretase offer the best chance for a successful therapy, while the noncompetitive inhibitors could even facilitate development of the disease by inducing enzyme saturation at otherwise sub-saturating substrate. Membrane-imbedded Aβ-bundles generated by γ-secretase could be neurotoxic and thus crucial for our understanding of the amyloid hypothesis and AD pathogenesis.  相似文献   

3.

Background

Alzheimer''s disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ), which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex)-mediated sequential cleavage. Induced pluripotent stem (iPS) cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease.

Methodology/Principal Findings

We differentiated human iPS (hiPS) cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI), and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge) and drastic decline of Aβ production.

Conclusions/Significance

These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation.  相似文献   

4.
Amyloid-β (Aβ) is produced by the consecutive cleavage of amyloid precursor protein (APP) first by β-secretase, generating C99, and then by γ-secretase. APP is also cleaved by α-secretase. It is hypothesized that reducing the production of Aβ in the brain may slow the progression of Alzheimer disease. Therefore, different γ-secretase inhibitors have been developed to reduce Aβ production. Paradoxically, it has been shown that low to moderate inhibitor concentrations cause a rise in Aβ production in different cell lines, in different animal models, and also in humans. A mechanistic understanding of the Aβ rise remains elusive. Here, a minimal mathematical model has been developed that quantitatively describes the Aβ dynamics in cell lines that exhibit the rise as well as in cell lines that do not. The model includes steps of APP processing through both the so-called amyloidogenic pathway and the so-called non-amyloidogenic pathway. It is shown that the cross-talk between these two pathways accounts for the increase in Aβ production in response to inhibitor, i.e. an increase in C99 will inhibit the non-amyloidogenic pathway, redirecting APP to be cleaved by β-secretase, leading to an additional increase in C99 that overcomes the loss in γ-secretase activity. With a minor extension, the model also describes plasma Aβ profiles observed in humans upon dosing with a γ-secretase inhibitor. In conclusion, this mechanistic model rationalizes a series of experimental results that spans from in vitro to in vivo and to humans. This has important implications for the development of drugs targeting Aβ production in Alzheimer disease.  相似文献   

5.
The amyloid-β (Aβ) peptide, widely known as the causative molecule of Alzheimer disease (AD), is generated by the sequential cleavage of amyloid precursor protein (APP) by the aspartyl proteases BACE1/β-secretase and presenilin/γ-secretase. Inhibition of BACE1, therefore, is a promising strategy for preventing the progression of AD. However, β-secretase inhibitors (BSIs) exhibit unexpectedly low potency in cells expressing “Swedish mutant” APP (APPswe) and in the transgenic mouse Tg2576, an AD model overexpressing APPswe. The Swedish mutation dramatically accelerates β-cleavage of APP and hence the generation of Aβ; this acceleration has been assumed to underlie the poor inhibitory activity of BSI against APPswe processing. Here, we studied the mechanism by which the Swedish mutation causes this BSI potency decrease. Surprisingly, decreased BSI potency was not observed in an in vitro assay using purified BACE1 and substrates, indicating that the accelerated β-cleavage resulting from the Swedish mutation is not its underlying cause. By focusing on differences between the cell-based and in vitro assays, we have demonstrated here that the potency decrease is caused by the aberrant subcellular localization of APPswe processing and not by accelerated β-cleavage or the accumulation of the C-terminal fragment of β-cleaved APP. Because most patients with sporadic AD express wild type APP, our findings suggest that the wild type mouse is superior to the Tg2576 mouse as a model for determining the effective dose of BSI for AD patients. This work provides novel insights into the potency decrease of BSI and valuable suggestions for its development as a disease-modifying agent.  相似文献   

6.
7.
Abstract

Cyclin-dependent kinase 2 (CDK2) is the family of Ser/Thr protein kinases that has emerged as a highly selective with low toxic cancer therapy target. A multistage virtual screening method combined by SVM, protein-ligand interaction fingerprints (PLIF) pharmacophore and docking was utilised for screening the CDK2 inhibitors. The evaluation of the validation set indicated that this method can be used to screen large chemical databases because it has a high hit-rate and enrichment factor (80.1% and 332.83 respectively). Six compounds were screened out from NCI, Enamine and Pubchem database. After molecular dynamics and binding free energy calculation, two compounds had great potential as novel CDK2 inhibitors and they also showed selective inhibition against CDK2 in the kinase activity assay.  相似文献   

8.

Background

Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs β-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for β-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs.

Methodology/Principal Findings

Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains.

Conclusions

We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.  相似文献   

9.
17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC50-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics.  相似文献   

10.
T-type calcium channels are involved in the generation of rhythmical firing patterns in the mammalian central nervous system and in various pathological alterations of neuronal excitability such as in epilepsy or neuropathic pain. In the search for new T-type calcium channel blockers that would help to treat these disorders, we have followed a bi-dimensional pharmacophore-based virtual screening approach to identify new inhibitors. Nineteen molecules extracted from AurSCOPE Ion Channels knowledgebase were used as query molecules to screen an external database. This in silico approach was then validated using electrophysiology. Interestingly, 16 compounds out of 38 distinct molecules tested showed more than 50% blockade of the CaV3.2 mediated T-type current. Two series of compounds show chemical originality compared with known T-type calcium channel blockers.  相似文献   

11.
γ-Secretase is known to play a pivotal role in the pathogenesis of Alzheimer disease through production of amyloidogenic Aβ42 peptides. Early onset familial Alzheimer disease mutations in presenilin (PS), the catalytic core of γ-secretase, invariably increase the Aβ42:Aβ40 ratio. However, the mechanism by which these mutations affect γ-secretase complex formation and cleavage specificity is poorly understood. We show that our in vitro assay system recapitulates the effect of PS1 mutations on the Aβ42:Aβ40 ratio observed in cell and animal models. We have developed a series of small molecule affinity probes that allow us to characterize active γ-secretase complexes. Furthermore we reveal that the equilibrium of PS1- and PS2-containing active complexes is dynamic and altered by overexpression of Pen2 or PS1 mutants and that formation of PS2 complexes is positively correlated with increased Aβ42:Aβ40 ratios. These data suggest that perturbations to γ-secretase complex equilibrium can have a profound effect on enzyme activity and that increased PS2 complexes along with mutated PS1 complexes contribute to an increased Aβ42:Aβ40 ratio.β-Amyloid (Aβ)5 peptides are believed to play a causative role in Alzheimer disease (AD). Aβ peptides are generated from the processing of the amyloid precursor protein (APP) by two proteases, β-secretase and γ-secretase. Although γ-secretase generates heterogenous Aβ peptides ranging from 37 to 46 amino acids in length, significant work has focused mainly on the Aβ40 and Aβ42 peptides that are the major constituents of amyloid plaques. γ-Secretase is a multisubunit membrane aspartyl protease comprised of at least four known subunits: presenilin (PS), nicastrin (Nct), anterior pharynx-defective (Aph), and presenilin enhancer 2 (Pen2). Presenilin is thought to contain the catalytic core of the complex (14), whereas Aph and Nct play critical roles in the assembly, trafficking, and stability of γ-secretase as well as substrate recognition (5, 6). Lastly Pen2 facilitates the endoproteolysis of PS into its N-terminal (NTF) and C-terminal (CTF) fragments thereby yielding a catalytically competent enzyme (5, 710). All four proteins (PS, Nct, Aph1, and Pen2) are obligatory for γ-secretase activity in cell and animal models (11, 12). There are two homologs of PS, PS1 and PS2, and three isoforms of Aph1, Aph1aS, Aph1aL, and Aph1b. At least six active γ-secretase complexes have been reported (two presenilins × three Aph1s) (13, 14). The sum of apparent molecular masses of the four proteins (PS1-NTF/CTF ≈ 53 kDa, Nct ≈ 120 kDa, Aph1 ≈ 30 kDa, and Pen2 ≈ 10kDa) is ∼200 kDa. However, active γ-secretase complexes of varying sizes, ranging from 250 to 2000 kDa, have been reported (1519). Recently a study suggested that the γ-secretase complex contains only one of each subunit (20). Collectively these studies suggest that a four-protein complex around 200–250 kDa may be the minimal functional γ-secretase unit with additional cofactors and/or varying stoichiometry of subunits existing in the high molecular weight γ-secretase complexes. CD147 and TMP21 have been found to be associated with the γ-secretase complex (21, 22); however, their role in the regulation of γ-secretase has been controversial (23, 24).Mutations of PS1 or PS2 are associated with familial early onset AD (FAD), although it is debatable whether these familial PS mutations act as “gain or loss of function” alterations in regard to γ-secretase activity (2527). Regardless the overall outcome of these mutations is an increased ratio of Aβ42:Aβ40. Clearly these mutations differentially affect γ-secretase activity for the production of Aβ40 and Aβ42. Despite intensive studies of Aβ peptides and γ-secretase, the molecular mechanism controlling the specificity of γ-secretase activity for Aβ40 and Aβ42 production has not been resolved. It has been found that PS1 mutations affect the formation of γ-secretase complexes (28). However, the precise mechanism by which individual subunits alter the dynamics of γ-secretase complex formation and activity is largely unresolved. A better mechanistic understanding of γ-secretase activity associated with FAD mutations has been hindered by the lack of suitable assays and probes that are necessary to recapitulate the effect of these mutations seen in cell models and to characterize the active γ-secretase complex.In our present studies, we have determined the overall effect of Pen2 and PS1 expression on the dynamics of PS1- and PS2-containing complexes and their association with γ-secretase activity. Using newly developed biotinylated small molecular probes and activity assays, we revealed that expression of Pen2 or PS1 FAD mutants markedly shifts the equilibrium of PS1-containing active complexes to that of PS2-containing complexes and results in an overall increase in the Aβ42:Aβ40 ratio in both stable cell lines and animal models. Our studies indicate that perturbations to the equilibrium of active γ-secretase complexes by an individual subunit can greatly affect the activity of the enzyme. Moreover they serve as further evidence that there are multiple and distinct γ-secretase complexes that can exist within the same cells and that their equilibrium is dynamic. Additionally the affinity probes developed here will facilitate further study of the expression and composition of endogenous active γ-secretase from a variety of model systems.  相似文献   

12.
T-type calcium channels are involved in the generation of rhythmical firing patterns in the mammalian central nervous system and in various pathological alterations of neuronal excitability such as in epilepsy or neuropathic pain. In the search for new T-type calcium channel blockers that would help to treat these disorders, we have followed a bi-dimensional pharmacophore-based virtual screening approach to identify new inhibitors. Nineteen molecules extracted from AurSCOPE Ion Channels knowledgebase were used as query molecules to screen an external database. This in silico approach was then validated using electrophysiology. Interestingly, 16 compounds out of 38 distinct molecules tested showed more than 50% blockade of the Ca(V)3.2 mediated T-type current. Two series of compounds show chemical originality compared with known T-type calcium channel blockers.  相似文献   

13.
γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD.  相似文献   

14.
15.
Heparanase is a key enzyme involved in the dissemination of metastatic cancer cells. In this study a combination of in silico techniques and experimental methods was used to identify new potential inhibitors against this target. A 3D model of heparanase was built from sequence homology and applied to the virtual screening of a library composed of 27 known heparanase inhibitors and a commercial collection of drugs and drug-like compounds. The docking results from this campaign were combined with those obtained from a pharmacophore model recently published based in the same set of chemicals. Compounds were then ranked according to their theoretical binding affinity, and the top-rated commercial drugs were selected for further experimental evaluation.Biophysical methods (NMR and SPR) were applied to assess experimentally the interaction of the selected compounds with heparanase. The binding site was evaluated via competition experiments, using a known inhibitor of heparanase. Three of the selected drugs were found to bind to the active site of the protein and their KD values were determined. Among them, the antimalarial drug amodiaquine presented affinity towards the protein in the low-micromolar range, and was singled out for a SAR study based on its chemical scaffold. A subset of fourteen 4-arylaminoquinolines from a global set of 249 analogues of amodiaquine was selected based on the application of in silico models, a QSAR solubility prediction model and a chemical diversity analysis. Some of these compounds displayed binding affinities in the micromolar range.  相似文献   

16.
γ-Secretase is a membrane embedded aspartyl protease complex with presenilin as the catalytic component. Along with β-secretase, this enzyme produces the amyloid β-protein of Alzheimer's disease (AD) from the amyloid β-protein precursor. Because of its key role in the pathogenesis of AD, γ-secretase has been a prime target for drug discovery, and many inhibitors of this protease have been developed. The therapeutic potential of these inhibitors is virtually negated by the fact that γ-secretase is an essential part of the Notch signaling pathway, rendering the compounds unacceptably toxic upon chronic exposure. However, these compounds have served as useful chemical tools for biological investigations. In contrast, γ-secretase modulators continue to be of keen interest as possible AD therapeutics. These modulators either shift amyloid β-protein production to shorter, less pathogenic peptides or inhibit the proteolysis of amyloid β-protein precursor selectively compared to that of Notch. The various chemical types of inhibitors and modulators will be discussed, along with their use as probes for basic biology and their potential as AD therapeutics.  相似文献   

17.
Using a cell-based assay, we have identified a new series of Notch-sparing γ-secretase inhibitors from HTS screening leads 2a and 2e. Lead optimization studies led to the discovery of analog 8e with improved γ-secretase inhibitory potency and Notch-sparing selectivity.  相似文献   

18.
The presenilin (PS)-dependent site 3 (S3) cleavage of Notch liberates its intracellular domain (NICD), which is required for Notch signaling. The similar γ-secretase cleavage of the β-amyloid precursor protein (βAPP) results in the secretion of amyloid β-peptide (Aβ). However, little is known about the corresponding C-terminal cleavage product (CTFγ). We have now identified CTFγ in brain tissue, in living cells, as well as in an in vitro system. Generation of CTFγ is facilitated by PSs, since a dominant-negative mutation of PS as well as a PS gene knock out prevents its production. Moreover, γ-secretase inhibitors, including one that is known to bind to PS, also block CTFγ generation. Sequence analysis revealed that CTFγ is produced by a novel γ-secretase cut, which occurs at a site corresponding to the S3 cleavage of Notch.  相似文献   

19.
Bacteria are remarkably adaptable organisms that acquire an almost limitless competence to survive under unpleasant conditions. The drastic emergence of antibiotic resistance among β-Lactamases is the most serious threat to hospitals and nosocomial settings. β-lactam inhibitors came into existence in order to overcome the problem of antibibiotic resistance in bacteria. The emergence of inhibitor resistant mutants has raised the alarms. In this study we have used structured based virtual screening approach and have screened out some inhibitors against S130G TEM mutant. All the compounds were tested in presence and absence of conserved active site water molecules. These compounds were found be showing much higher efficacy than known β-lactamase inhibitors. Amino acids G130, S70, N132, G130, Y105 and V216 were found crucial for the interaction of inhibitors within the active site.  相似文献   

20.
The recent emergence and re-emergence of alphaviruses, in particular the chikungunya virus (CHIKV), in numerous countries has invoked a worldwide threat to human health, while simultaneously generating an economic burden on affected countries. There are currently no vaccines or effective drugs available for the treatment of the CHIKV, and with few lead compounds reported, the vital medicinal chemistry is significantly more challenging. This study reports on the discovery of potential inhibitors for the nsP3 macro domain of CHIKV using molecular docking, virtual screening, and molecular dynamics simulations, as well as work done to evaluate and confirm the active site of nsP3. Virtual screening was carried out based on blind docking as well as focused docking, using the database of 1541 compounds from NCI Diversity Set II, to identify hit compounds for nsP3. The top hit compounds were further subjected to molecular dynamic simulations, yielding a greater understanding of the dynamic behavior of nsP3 and its complexes with various ligands, concurrently confirming the outcomes of docking, and establishing in silico lead compounds which target the CHIKV nsP3 enzyme.
Figure
Virtual screening identifies novel inhibitors targeting the nsP3 macro domain of chikungunya virus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号