首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, relationships among three genera Acontias, Acontophiops, and Typhlosaurus, that comprise the South African limbless lizard subfamily Acontinae, were assessed with partial sequences of the 16S rRNA mitochondrial DNA gene. In addition, relationships within Acontias were further investigated using sequence data from the cytochrome oxidase I gene (COI). Maximum likelihood and maximum parsimony analyses of the 16S rRNA mtDNA data revealed that within this subfamily, Typhlosaurus is basal while Acontophiops and Acontias are sister taxa. Based on the 16S rRNA mtDNA data, the relationships within Acontias placed A. meleagris orientalis as the sister taxon of A. percivali tasmani, with A. m. orientalis lineacauda morph and A. m. meleagrus being the sister taxa to this group. The small-bodied skinks A. lineatus lineatus and A. l. tristis formed a monophyletic group, with the medium-bodied species A. gracilicauda gracilicauda being their sister taxon. Analyses of the COI gene for Acontias place A. m. orientalis as the sister taxon of A. p. tasmani with both A. meleagris meleagris and A. m. orientalis lineacauda being distinct. In contrast to the 16S rRNA mtDNA data, the COI data placed A. g. gracilicauda as the sister taxon to these medium-bodied species; while the subspecies status of the small-bodied taxa A. l. lineatus and A. l. tristis is reaffirmed. Combined analysis of both gene fragments for Acontias taxa recovered the same clades as found using only COI data. Systematic affinities in Acontias are discussed. These results indicate that Acontias is more species rich than previously thought.  相似文献   

2.
Compared with other ciliated protozoa, molecular studies of phylogenetic relationships within the subclass Suctoria are rare. In this work, phylogenetic analyses focusing on this group were performed based on all data available. In addition, the small subunit ribosomal RNA (SSU rRNA) genes of three suctorian ciliates (Acineta compressa, Acineta tuberosa and Paracineta limbata) were newly sequenced. Furthermore, the putative secondary structures of the variable region 2 of the SSU rRNA gene were predicted and compared within the Suctoria. Our results show that (i) there is support for the monophyly of the subclass Suctoria, which is a sister clade to the cyrtophorids; (ii) based on combined morphologic and molecular features, we propose the following evolutionary routine within the Suctoria: Exogenina – Evaginogenina – Endogenina; (iii) the similarities of the secondary structures of the V2 region and the SSU rRNA gene sequences within the subclass Suctoria are consistent with the branching of the phylogenetic lineages.  相似文献   

3.
Arenicolids comprise a group of four genera in which about 30 nominal species are described. Whereas the biology of many arenicolids is well known, the phylogenetic relationships of these worms are inadequately studied. A close relationship of Arenicolidae and Maldanidae is generally accepted. The phylogenetic relationships of arenicolid taxa were reconstructed based on sequence data of the mitochondrial 16S rRNA gene, the nuclear 18S rRNA gene, and a small fraction of the nuclear 28S rRNA gene. Members of all described arenicolid genera are included in the data set. Phylogenetic analyses were conducted using Maximum Likelihood, Bayesian inference, and Maximum Parsimony. The monophyly of the Maldanidae, as well as of the Arenicolidae is supported by all conducted analyses. Two well supported major clades are highest ranked sister taxa in the Arenicolidae: one containing all Abarenicola species and one containing Arenicola, Arenicolides, and Branchiomaldane. Evidence is given for a closer relationship between the two investigated Branchiomaldane species and Arenicolides ecaudata in the combined analysis. In the light of the molecular data the best explanation for structural and morphological observations is that Branchiomaldane evolved by progenesis.  相似文献   

4.
Phylogeny of the Neuropterida: a first molecular approach   总被引:4,自引:1,他引:3  
Abstract. In a first molecular approach specially dedicated to examining the phylogeny of the Neuropterida, two nuclear and two mitochondrial genes were tested: 18S rRNA, translation elongation factor‐1α, cytochrome c oxidase subunit 3 and 16S rRNA. Molecular results are discussed in the light of a previous holomorphological cladistic analysis. The hypothesis of a sister‐group relationship Raphidioptera + (Neuroptera + Megaloptera) put forward in recent morphological analyses is supported by our data, which is in contrast to the traditional view (Raphidioptera + Megaloptera) + Neuroptera. Furthermore, the Nevrorthidae (constituting the suborder Nevrorthiformia) as a sister group of all other Neuroptera is confirmed. The disruption of the suborder Hemerobiiformia is the most conflicting result of the molecular analysis. Sisyridae and Osmylidae do not cluster within Hemerobiiformia, but represent two distinct and widely separated branches. The remaining Hemerobiiformia emerge as the sister group of the suborder Myrmeleontiformia, which is once more confirmed as monophyletic. Among the genes tested, cytochrome c oxidase subunit 3 proved to be most potent for resolving the phylogenetic relationships among Neuropterida. The nuclear gene for the ribosomal 18S rRNA is too conserved within the alignable regions, whereas the variable sections are too divergent to be applicable within this evolutionary time frame. The elongation factor‐1α gene proved to exist in more than one copy in Neuropterida, and thus is not applicable in the present state of knowledge. With respect to the mitochondrial sequences (cytochrome c oxidase subunit 3, 16S rRNA), saturation impedes the unambiguous resolution of deeper nodes. Apparently, due to early diversification of the heterogeneous Neuroptera, phylogenetic analysis of this group remains a challenge with respect to selection of the proper genes and mutatis mutandis the morphological approach.  相似文献   

5.
Producing a robust phylogenetic reconstruction for Polychaeta using either morphological or molecular data sets has proven very difficult. There remain many conflicts between morphological analyses and hypotheses based on DNA data, the latter principally derived from 18S rRNA sequences. For the present study a data set covering a broad range of polychaete diversity was assembled, including 38 new sequences from 21 species. Besides available 18S rRNA data, five additional gene segments were examined: the D1 and D9-10 expansion regions of 28S rRNA, histone H3, snU2 RNA and cytochrome c oxidase subunit I. Maximum parsimony, maximum likelihood and Bayesian analyses were conducted.Annelida and Mollusca were reciprocally monophyletic in maximum likelihood analyses, but Polychaeta included a cephalopod in maximum parsimony analyses, and a patellogastropod in Bayesian analyses. When rooted on the Mollusca, optimal topologies from maximum likelihood analyses showed a recognisable basal group of taxa, including Oweniidae, Chaetopteridae and Amphinomidae. The six studied phyllodocidan families plus Orbiniidae (as the sister group of the scale-worms) formed the next most basal group. All analyses support the inclusion of Echiura, Clitellata and Siboglinidae within polychaetes. Bayesian analyses show Echiura as the sister group of Capitellidae, in agreement with previous 18S rRNA results, In contrast, Echiura formed the sister group to Trichobranchidae in maximum likelihood and maximum parsimony analyses.Supra-familial groupings consistently recovered within Polychaeta in the analyses are: (i) Terebellida without Ampharetidae; (ii) Scolecida (excepting Orbiniidae); (iii) Eunicidae, Lumbrineridae and Clitellata; and (iv) “Cirratuliformia” (including Sternaspidae) plus Sabellidae, Serpulidae and Spionidae.  相似文献   

6.
ABSTRACT. The microsporidian species Enterocytozoon bieneusi, Septata intestinalis and Ameson michaelis were compared by using sequence data of their rRNA gene segments, which were amplified by polymerized chain reaction and directly sequenced. The forward primer 530f (5'-GTGCCATCCAGCCGCGG-3') was in the small subunit rRNA (SSU-rRNA) and the reverse primer 580r (5'-GGTCCGTGTTTCAAGACGG-3') was in the large subunit rRNA (LSU-rRNA). We have utilized these sequence data, the published data on Encephalitozoon cuniculi and Encephalitozoon hellem and our cloned SSU-rRNA genes from E. bieneusi and S. intestinalis to develop a phylogenetic tree for the microsporidia involved in human infection. The higher sequence similarities demonstrated between S. intestinalis and E. cuniculi support the placement of S. intestinalis in the family Encephalitozoonidae. This method of polymerized chain reaction rRNA phylogeny allows the establishment of phylogenetic relationships on limiting material where culture and electron microscopy are difficult or impossible and can be applied to archival material to expand the molecular phylogenetic analysis of the phylum Microspora. In addition, the highly variable region (E. coli numbering 590–650) and intergenic spacer regions in the microsporidia were noted to have structural correspondence, suggesting the possibility that they are coevolving.  相似文献   

7.
This study represents the first phylogenetic analysis of the molluscan class Polyplacophora using DNA sequence data. We employed DNA from a nuclear protein-coding gene (histone H3), two nuclear ribosomal genes (18S rRNA and the D3 expansion fragment of 28S rRNA), one mitochondrial protein-coding gene (cytochrome c oxidase subunit I), and one mitochondrial ribosomal gene (16S rRNA). A series of analyses were performed on independent and combined data sets. All these analyses were executed using direct optimization with parsimony as the optimality criterion, and analyses were repeated for nine combinations of parameters affecting indel and transversion/transition cost ratios. Maximum likelihood was also explored for the combined molecular data set, also using the direct optimization method, with a model equivalent to GTR + I + Γ that accommodates gaps. The results of all nine parameter sets for the combined parsimony analysis of all molecular data (as well as ribosomal data) and the maximum-likelihood analysis of all molecular data support monophyly of Polyplacophora. The resulting topologies mostly agree with a division of Polyplacophora into two major lineages: Lepidopleuridae and Chitonida (sensu Sirenko 1993). In our analyses the genus Callochiton is positioned as the sister group to Lepidopleuridae, and not as sister group to the remaining Chitonida (sensu Buckland-Nicks & Hodgson 2000), nor as the sister group to the remaining Chitonina (sensu Buckland-Nicks 1995). Chitonida (excluding Callochiton) is monophyletic, but conventional subgroupings of Chitonida are not supported. Acanthochitonina (sensu Sirenko 1993) is paraphyletic, or alternatively monophyletic, and is split into two clades, both with abanal gills only and cupules in the egg hull, but one has simple cupules whereas the other has more strongly hexagonal cupules. Sister to the Acanthochitonina clades is Chitonina, including taxa with adanal gills and a spiny egg hull. Schizochiton, the only genus with adanal gills that has an egg hull with cupules, is the sister-taxon to one of the Acanthochitonina clades plus Chitonina, or alternatively basal to Chitonina. Support values for either position are low, leaving this relationship unsettled. Our results refute several aspects of conventional classifications of chitons that are based primarily on shell characters, reinforcing the idea that chiton classification should be revised using additional characters.  相似文献   

8.
The pseudofilamentous condition in green algae has been characterized as the formation of a linear array of autospores. Although it is likely that this characterization will be found to be an over-simplification, it serves as a logical starting point for a study of diversity among pseudofilamentous taxa. Therefore, given that molecular phylogenetic analyses have revealed that coccoid, autospore-formers are found in a number of independent green algal lineages, it is reasonable to expect that pseudofilamentous taxa are likely to be found in a number of distinct lineages. In order to test this hypothesis, data from the nuclear-encoded 18S r   RNA gene were collected from several pseudofilamentous, green algal genera ( Geminella , Gloeotila , Hazenia , Interfilum , Microspora , and Sphaeroplea ) and incorporated into an 18S rRNA database of chlorobiont taxa. Results from phylogenetic analyses of these data support (1) an alliance of Interfilum , two Geminella isolates, and Klebsormidium within the streptophyte lineage, (2) an alliance of two Geminella isolates and Microspora as a sister group to the ulvophycean/chlorophycean/trebouxiophycean clade or as a sister group to trebouxiophycean taxa, (3) an alliance of Hazenia with ulotrichalean taxa, (4) of Gloeotila with trebouxiophycean taxa and (5) an alliance of Sphaeroplea with chlorophycean taxa. These data confirm that the filamentous condition has evolved in a number of independent lineages. Moreover, these data further illustrate that the extent of molecular variability within the green algae is far from fully appreciated.  相似文献   

9.
Complete coding regions of the 18S rRNA gene of an enteropneust hemichordate and an echinoid and ophiuroid echinoderm were obtained and aligned with 18S rRNA gene sequences of all major chordate clades and four outgroups. Gene sequences were analyzed to test morphological character phylogenies and to assess the strength of the signal. Maximum- parsimony analysis of the sequences fails to support a monophyletic Chordata; the urochordates form the sister taxon to the hemichordates, and together this clade plus the echinoderms forms the sister taxon to the cephalochordates plus craniates. Decay, bootstrap, and tree-length distribution analyses suggest that the signal for inference of dueterostome phylogeny is weak in this molecule. Parsimony analysis of morphological plus molecular characters supports both monophyly of echinoderms plus enteropneust hemichordates and a sister group relationship of this clade to chordates. Evolutionary parsimony does not support chordate monophyly. Neighbor-joining, Fitch-Margoliash, and maximum-likelihood analyses support a chordate lineage that is the sister group to an echinoderm-plus-hemichordate lineage. The results illustrate both the limitations of the 18S rRNA molecule alone for high- level phylogeny inference and the importance of considering both molecular and morphological data in phylogeny reconstruction.   相似文献   

10.
Jondeung A  Sangthong P  Zardoya R 《Gene》2007,387(1-2):49-57
The Mekong giant catfish (Pangasianodon gigas) is the largest scale-less freshwater fish of the world, and a critically endangered species. We determined the complete nucleotide sequence (16,533 bp) of the mitochondrial genome of the Mekong giant catfish, and conducted phylogenetic analyses based on mitochondrial protein (the combined amino acid sequences of all 13 mitochondrial protein coding genes) and rRNA (the combined nucleotide sequences of mitochondrial 12S and 16S rRNA genes) data sets in order to further clarify the relative phylogenetic position of P. gigas, and to recover phylogenetic relationships among 15 out of the 33 families of Siluriformes. Phylogenetic analyses (maximum parsimony, minimum evolution, maximum likelihood, Bayesian inference) of the protein data set were congruent with a basal split of the order into Loricarioidei and Siluroidei, and supported a closer relationship of the Mekong giant catfish (family Pangasiidae) to Siluridae than to Bagridae. The rRNA-based Bayesian phylogeny recovered Callichthyidae as the sister group of all other analyzed non-diplomystid catfish families, rendering Loricarioidei paraphyletic. In addition, Loricariidae were recovered as paraphyletic due to the inclusion of Astroblepidae. However, none of the two relationships received bootstrap support in the maximum parsimony, minimum evolution, and maximum likelihood analyses, and should be interpreted with caution. The derived position of Cetopsidae within Siluroidei, the sister group relationship of Pseudopimelodidae and Pimelodidae, and a close relationship of Doradidae and Auchenipteridae to the exclusion of Mochokidae were strongly supported. Pangasiidae was placed as a single lineage without clear affinities.  相似文献   

11.
Reconstructing the phylogeny of the Sipuncula   总被引:9,自引:0,他引:9  
Sipunculans are marine spiralian worms with possible close affinities to the Mollusca or Annelida. Currently 147 species, 17 genera, 6 families, 4 orders and 2 classes are recognized. In this paper we review sipunculan morphology, anatomy, paleontological data and historical affiliations. We have conducted cladistic analyses for two data sets to elucidate the phylogenetic relationships among sipunculan species. We first analyzed the relationships among the 45 species of Phascolosomatidea with representatives of the Sipunculidea as outgroups, using 35 morphological characters. The resulting consensus tree has low resolution and branch support is low for most branches. The second analysis was based on DNA sequence data from two nuclear ribosomal genes (18S rRNA and 28S rRNA) and one nuclear protein-coding gene, histone H3. Outgroups were chosen among representative spiralians. In a third analysis, the molecular data were combined with the morphological data. Data were analyzed using parsimony as the optimality criterion and branch support evaluated with jackknifing and Bremer support values. Branch support for outgroup relationships is low but the monophyly of the Sipuncula is well supported. Within Sipuncula, the monophyly of the two major groups, Phascolosomatidea and Sipunculidea is not confirmed. Of the currently recognized families, only Themistidae appears monophyletic. The Aspidosiphonidae, Phascolosomatidae and Golfingiidae would be monophyletic with some adjustments in their definition. The Sipunculidae is clearly polyphyletic, with Sipunculus nudus as the sister group to the remaining Sipuncula, Siphonosoma cumanense the sister group to a clade containing Siphonosoma vastumand the Phascolosomatidea, and Phascolopsis gouldi grouping within the Golfingiiformes, as suggested previously by some authors. Of the genera with multiple representatives, only Phascolosoma and Themiste are monophyletic as currently defined. We are aiming to expand our current dataset with more species in our molecular database and more detailed morphological studies.  相似文献   

12.
The phylogenetic relationships of branchiopod crustaceans have been in the focus of a number of recent morphological and molecular systematic studies. Although agreeing in some respects, major differences remain. We analyzed molecular sequences and morphological characters for 43 branchiopods and two outgroups. The branchiopod terminals comprise all eight “orders”. The molecular data include six loci: two nuclear ribosomal genes (18S rRNA, 28S rRNA), two mitochondrial ribosomal genes (12S rRNA, 16S rRNA), one nuclear protein coding gene (elongation factor 1α), and one mitochondrial protein coding gene (cytochrome c oxidase subunit I). A total of 65 morphological characters were analyzed dealing with different aspects of branchiopod morphology, including internal anatomy and larval characters. The morphological analysis resulted in a monophyletic Phyllopoda, with Notostraca as the sister group to the remaining taxa supporting the Diplostraca concept (“Conchostraca” + Cladocera). “Conchostraca” is not supported but Cyclestheria hislopi is the sister group to Cladocera (constituting together Cladoceromorpha) and Spinicaudata is closer to Cladoceromorpha than to Laevicaudata. Cladocera is supported as monophyletic. The combined analysis under equal weighting gave results in some respects similar to the morphological analysis. Within Phyllopoda, Cladocera, Cladoceromorpha and Spinicaudata + Cladoceromorpha are monophyletic. The combined analysis is different from the morphological analysis with respect to the position of Notostraca and Laevicaudata. Here, Laevicaudata is the sister group to the remaining Phyllopoda and Notostraca is sister group to Spinicaudata and Cladoceromorpha. A sensitivity analysis using 20 different parameter sets (different insertion–deletion [indel]/substitution and transversion/transition ratios) show the monophyly of Anostraca, Notostraca, Laevicaudata, Spinicaudata, Cladoceromorpha, Cladocera, and within Cladocera, of Onychopoda and Gymnomera under all or almost all (i.e., 19 of 20) parameter sets. Analyses with an indel‐to‐transversion ratio up to 2 result in monophyletic Phyllopoda, with Laevicaudata as sister group to the remaining Phyllopoda and with Spinicaudata and Cladoceromorpha as sister groups. Almost all analyses (including those with higher indel weights) result in the same topology when only ingroup taxa are considered. © The Willi Hennig Society 2007.  相似文献   

13.
The basal relationship of bryophytes and tracheophytes is problematic in land plant phylogeny. In addition to cladistic analyses of morphological data, molecular phylogenetic analyses of the nuclear small-subunit ribosomal RNA gene and the plastic gene rbcL have been performed, but no confident conclusions have been reached. Using the maximum-likelihood (ML) method, we analyzed 4,563 bp of aligned sequences from plastid protein-coding genes and 1,680 bp from the nuclear 18S rRNA gene. In the ML tree of deduced amino acid sequences of the plastid genes, hornworts were basal among the land plants, while mosses and liverworts each formed a clade and were sister to each other. Total-evidence evaluation of rRNA data and plastid protein-coding genes by TOTALML had an almost identical result.  相似文献   

14.
5S rRNAs from 12 species of free living and parasitic platyhelminthes were sequenced. In the phylogenetic analysis, attention was focused on the statistical estimates of the trees corresponding to existing phylogenetic hypotheses. The available 5S rRNA data agree well with widely accepted views on the relationships between the Acoela, Polycladida, Tricladida, and Neorhabdocoela; our analysis of the published 18S rRNA sequences also demonstrated good correspondence between these views and molecular data. With available 5S rRNA data the hypothesis that the dalyellioid turbellarians is the sister group of the Neodermata is less convincing than the hypotheses proposing the Neodermata as the sister group of the Neorhabdocoela, or of the Seriata, or of the branch uniting them. A relatively low rate of base replacement in parasitic flatworms, probably, accounts for the uncertain position of the Neodermata, while a relatively high rate in planarians may explain a relatively too early divergence of the Tricladida in several published phylogenetic trees constructed from various rRNA data.  相似文献   

15.
Coding regions of the rbcL and matK genes of cp DNA and internal transcribed spacers (ITS) of nuclear ribosomal DNA were sequenced to study phylogenetic relationships within and among all four genera of Trilliaceae: Trillium, Paris, Daiswa and Kinugasa . The rbcL gene has evolved much slower than matK and in particular ITS; hence the phylogenetic trees based on the rbcL gene show a much lower resolution than trees based on either matK or ITS. The general topology of phylogenetic trees resulting from separate parsimony analyses of the matK and ITS sequences are relatively congruent, with the exception of the placement of T. pusillum . Both matK and ITS phylogenies reveal that T. rivale diverges at the base of the trees. In both trees, Paris, Daiswa and Kinugasa form a relatively weakly supported group. Within this group, the allo-octaploid Kinugasa japonica is the sister group of Daiswa species. The Paris–Daiswa – Kinugasa group, the major Trillium group, and T. undulatum and T. govanianum showed a loosely related topology, but their affinities are not evident according to these two molecular markers. However, phylogenetic analysis of amino acid sequences derived from matK shows that T. rivale together with clades T. undulatum–T. govanianum, Daiswa–Kinugasa and Paris is basally diverged as a sister group to the remainder of Trillium .  相似文献   

16.
Keeling PJ  Brugerolle G 《Protist》2006,157(2):205-212
Octomitus intestinalis is a diplomonad flagellate inhabiting the digestive tract of rodents and amphibians. Octomitus is of evolutionary interest because, based on ultrastructural characteristics, it is thought to be closely related to the morphologically derived genus Giardia, and together they have been proposed to make up the Giardiinae. In molecular trees of diplomonads, Giardia is the deepest branching lineage, so identifying a sister group to Giardia that is less derived would be informative. Octomitus is a logical candidate for this position, but unfortunately there are no molecular data from it, and it is not available in culture. To determine the position of Octomitus, and specifically test whether it is more closely related to Giardia than other diplomonads, we have isolated it directly from the caecum of wild mice and characterized its small subunit ribosomal RNA (SSU rRNA) gene. Phylogenetic analysis showed Octomitus to be the sister to Giardia with strong support, together occupying one side of the deepest split in the diplomonad tree.  相似文献   

17.
The order Thaumatomonadida includes biflagellated heterotrophic flagellates that form filopodia and typically possess siliceous surface scales. We found thaumatomonads to contribute on average about 5%-10% to flagellate abundance in different benthic habitats. A new species of thaumatomonads, Thaumatomonas coloniensis n. sp., is described on the basis of morphological and molecular biological features. This new species was isolated both from groundwater at Appeldorn near Rees (Germany) and from the Rhine River at Cologne (Germany). We have sequenced the small subunit rRNA (ssu rRNA) gene and a fragment of the large subunit rRNA (lsu rRNA) gene (D3-D5 region) from the isolates of the new species, including the first sequence of a representative of the thaumatomonad genus Gyromitus. In agreement with previous studies, the differences in ribosomal genes of different thaumatomonad species are very small. For understanding the phylogenetic relationships of Thaumatomonadida and to explore their sister group relationships, we have created three sequence data sets (ssu rRNA, partial lsu rRNA, concatenated alignment of both) with the same composition of isolates (from Thaumatomonadida, Euglyphida, Cercomonadidae, and Heteromitidae). According to a Kishino-Hasegawa test, Thaumatomonadida evolved within the Cercozoa as a sister taxon to the Heteromitidae. A possibly close relationship to the Euglyphida, recently grouped together with the Thaumatomonadida in the class Imbricatea/Silicofilosea based on the rRNA data sets was not supported by our analyses.  相似文献   

18.
络新妇亚科曾归入园蛛科,后改为属于肖蛸科,目前又升格为科级阶元。为对络新妇亚科的分类地位作进一步研究,测定了9种蜘蛛线粒体12SrRNA基因的部分序列;另外还从GenBank检索到17种蜘蛛的12SrRNA基因的的相应序列。基于12SrRNA基因序列进行的分子系统发生分析结果表明络新妇亚科即不属于园蛛科、也不属于肖蛸科,而是与肖蛸科或园蛛科均无直接关联的独立支系,这个结果证实了将络新妇亚科升格为科级阶元的有效性。  相似文献   

19.
The conifers, which traditionally comprise seven families, are the largest and most diverse group of living gymnosperms. Efforts to systematize this diversity without a cladistic phylogenetic framework have often resulted in the segregation of certain genera and/or families from the conifers. In order to understand better the relationships between the families, we performed cladistic analyses using a new data set obtained from 28S rRNA gene sequences. These analyses strongly support the monophyly of conifers including Taxaceae. Within the conifers, the Pinaceae are the first to diverge, being the sister group of the rest of conifers. A recently discovered Australian genus Wollemia is confirmed to be a natural member of the Araucariaceae. The Taxaceae are nested within the conifer clade, being the most closely related to the Cephalotaxaceae. The Taxodiaceae and Cupressaceae together form a monophyletic group. Sciadopitys should be considered as constituting a separate family. These relationships are consistent with previous cladistic analyses of morphological and molecular (18S rRNA, rbcL) data. Furthermore, the well-supported clade linking the Araucariaceae and Podocarpaceae, which has not been previously reported, suggests that the common ancestor of these families, both having the greatest diversity in the Southern Hemisphere, inhabited Gondwanaland.  相似文献   

20.
Numerous phylogenetic hypotheses have been advanced for the Malagasy lemuriform radiation, drawing on data from morphology, physiology, behaviour and molecular genetics. Almost all possible relationships have been proposed and most nodes have been contested. We present a phylogenetic analysis, using several analytical methods, of a partial sequence from the 12s rRNA mitochondrial gene. This gene codes for the small ribosomal subunit, and functional constraints require that the secondary structure of the molecule is strongly conserved, which in inturn exerts constraints on the primary sequence structure. Although previous studies have suggested a very wide range of phylogenetic applicability for this molecule, our results indicate that it is most useful in strepsirrhine primates for estimating relationships among genera within families and among relatively recently diverged families (mean sequence divergence about 11%). Relationships among families separated by larger genetic distances (>12% divergence; e.g. Cheirogaleidae, Daubentoniidae, Megaladapidae) are difficult to resolve consistently. Our data show strong support for an Indridae-Lemuridae sister group and for monophyly of the Lemuridae with Varecia as the sister to all other lemurids. They also support, albeit less strongly, sister group relationships between Lemur and Hapalemur within the Lemuridae and between PmpLthecus and Avahi in the Indridae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号