首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma membrane Ca2+ ATPase in erythrocytes is vital for the maintenance of intracellular Ca2+ levels. Since the cytoplasmic Ca2+ concentration is elevated in older erythrocytes, the properties of the Ca2+ transport ATPase were examined during cell aging using inside-out vesicles (IOVs) prepared from density-separated, young (less dense, Ey) and old (more dense, Eo) rat and human erythrocytes. The transport of Ca2+ and the coupled hydrolysis of ATP were measured using radiolabeled substrates. The calmodulin-independent Ca2+ transport activity (Ey, 38.8 vs. Eo, 23.3 nmols/min/mg IOV protein) and the Ca2+ dependent ATP phosphohydrolase activity (Ey, 53.5 vs. Eo, 48.8 nmols/min/mg protein) were greater in IOVs prepared from younger (less dense) rat erythrocytes. The calmodulin-independent Ca2+ transport activity in IOVs from human erythrocytes was 12.9 nmols/min/mg IOV protein for Ey and 10.7 nmols/min/mg IOV protein for Eo. Inside-out vesicles from older (more dense) cells exhibited a lower pumping efficiency as determined by the calculated stoichiometry, molecule of Ca2+ transported per molecule of ATP hydrolyzed (rat: Ey, 0.74 vs. Eo, 0.49; human: Ey, 1.22 vs. Eo, 0.77). The enzymatic activity of rat and human Ey IOVs was labile. The Ca2+ transport activity in Ey but not Eo IOVs rapidly declined during cold storage (4°C). The decrease in Ca2+ transport activity during aging may accentuate the age-related decline in several erythrocytic properties.Abbreviations IOV Inside-Out Vesicles - Ey Erythrocytes enriched with young (less dense) cells - Eo Erythrocytes enriched with old (more dense) cells - ACEase Acetylcholinesterase  相似文献   

2.
Sarcoplasmic reticulum vesicles freeze-dried in the presence of trehalose retain most of their original biological activity for short periods. When the dry vesicles are stored for longer periods in air, Ca2+-transport becomes uncoupled from ATPase activity within a few days. However, when they are stored under vacuum, ATPase activity, Ca2+ transport, and coupling between Ca2+ transport and ATP utilization are maintained essentially intact for at least 110 days.  相似文献   

3.
The uncoupling of Ca2+ transport from ATP hydrolysis in the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase by trypsin digestion was re-investigated by comparing ATPase activity with the ability of the enzyme to occlude Eu3+ (a transport parameter) after various tryptic digests. With this method, re-examination of uncoupling by tryptic digest of the ATPase revealed that TD2 cleavage (Arg-198) had no effect on either occlusion or ATPase activity. Digestion past TD2 in the presence of 5 mM Co2+ and at 25°C resulted in the loss of about 70% of the ATPase activity, but no loss of occlusion. Digestion past TD2 in the presence of 5 mM Ca2+, 3 mM ATP, and at 25°C resulted in a partially uncoupled enzyme complex which retained about 50% of the ATPase activity, but completely lost the ability to occlude Eu3+. Digest past TD2 in the presence of 5 mM Ca2+ and 3 mM AMP-PNP. (a non-hydrolyzable ATP analog) at 25°C resulted in no loss of occlusion, thus revealing the absolute requirement of ATP during the digest to eliminate occlusion. From these findings we conclude that uncoupling of Ca2+ transport from ATPase activity is possible by tryptic digestion of the (Ca2+ + Mg2+)-ATPase. Interestingly, only after phosphorylation of the enzyme do the susceptible bond(s) which lead to the loss of occlusion become exposed to trypsin.  相似文献   

4.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

5.
Procedures were developed for measurement of Na+/Ca2+ exchange in resealed plasma membrane vesicles from postmortem human brain. The vesicle preparation method permits use of stored frozen tissue with minimal processing required prior to freezing. Vesicles prepared in this manner transport Ca2+ in the presence of a Na+ gradient. The kinetic characteristics of the Na+/Ca2+ exchange process were determined in membrane vesicles isolated from hippocampus and cortex. The Kact for Ca2+ was estimated to be 32 M for hippocampal and 17 M for cortical tissue. The maximal rate of Ca2+ uptake (Vmax) was 3.5 nmol/mg protein/15 sec and 3.3 nmol/mg protein/15 sec for hippocampal and cortical tissue, respectively. Exchange activity was dependent on the Na+ gradient, and was optimal in the high pH range. Therefore, membranes in which Na+-dependent o Ca2+ transport activity is preserved can be isolated from postmortem human brain and could be used to determine the influence of pathological conditions on this transport system.  相似文献   

6.
Summary Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment.45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(K m (Ca2+)=0.4 m) and ATP(K m (ATP)=3.9 m), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl or NO 3 . Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanidem-chlorophenylhydrazone (CCCP) and VO 4 3– which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves.  相似文献   

7.
AggregatingDictyostelium cells release protons when stimulated with cAMP. To find out whether the protons are generated by acidic vesicles or in the cytosol, we permeabilized the cells and found that this did not alter the cAMP-response. Proton efflux in intact cells was inhibited by preincubation with the V-type H+ ATPase inhibitor concanamycin A and with the plasma membrane H+ ATPase blocker miconazole. Surprisingly, miconazole also inhibited efflux in permeabilized cells, indicating that this type of H+ ATPase is present on intracellular vesicles as well. Vesicular acidification was inhibited by miconazole and by concanamycin A, suggesting that the acidic vesicles contain both V-type and P-type H+ ATPases. Moreover, concanamycin A and miconazole acted in concert, both in intact cells and in vesicles. The mechanism of cAMP-induced Ca2+-fluxes involves phospholipase A2 activity. Fatty acids circumvent the plasma membrane and stimulate vesicular Ca2+-efflux. Here we show that arachidonic acid elicited H+-efflux not only from intact cells but also from acidic vesicles. The target of regulation by arachidonic acid seemed to be the vesicular Ca2+-relase channel.  相似文献   

8.
Ca2+ transport by the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) is sensitive to monovalent cations. Possible K+ binding sites have been identified in both the cytoplasmic P-domain and the transmembrane transport-domain of the protein. We measured Ca2+ transport into SR vesicles and SERCA ATPase activity in the presence of different monovalent cations. We found that the effects of monovalent cations on Ca2+ transport correlated in most cases with their direct effects on SERCA. Choline+, however, inhibited uptake to a greater extent than could be accounted for by its direct effect on SERCA suggesting a possible effect of choline on compensatory charge movement during Ca2+ transport. Of the monovalent cations tested, only Cs+ significantly affected the Hill coefficient of Ca2+ transport (nH). An increase in nH from ∼2 in K+ to ∼3 in Cs+ was seen in all of the forms of SERCA examined. The effects of Cs+ on the maximum velocity of Ca2+ uptake were also different for different forms of SERCA but these differences could not be attributed to differences in the putative K+ binding sites of the different forms of the protein.  相似文献   

9.
In resting muscle, cytoplasmic Ca2+ concentration is maintained at a low level by active Ca2+ transport mediated by the Ca2+ ATPase from sarcoplasmic reticulum. The region of the protein that contains the catalytic site faces the cytoplasmic side of the membrane, while the transmembrane helices form a channel-like structure that allows Ca2+ translocation across the membrane. When the coupling between the catalytic and transport domains is lost, the ATPase mediates Ca2+ efflux as a Ca2+ channel. The Ca2+ efflux through the ATPase channel is activated by different hydrophobic drugs and is arrested by ligands and substrates of the ATPase at physiological pH. At acid pH, the inhibitory effect of cations is no longer observed. It is concluded that the Ca2+ efflux through the ATPase may be sufficiently fast to support physiological Ca2+ oscillations in skeletal muscle, that occur mainly in conditions of intracellular acidosis.  相似文献   

10.
Summary We have examined the effect of second messengers on ATP-driven H+ transport in an H+ ATPase-bearing endosomal fraction isolated from rabbit renal cortex. cAMP (0.1mm) had no effect on H+ transport. Acridine orange fluorescence in the presence of 0.5mm Ca2+ (+1mm EGTA) was 19±6% of control. Inhibition of ATP-driven H+ transport by Ca2+ was concentration dependent; 0.25 and 0.5mm Ca2+ (+1mm EGTA) inhibited acridine orange fluorescence by 50 and 80%, respectively. Ca2+ also produced a concentration-dependent increase in the rate of pH-gradient dissipation. Ca2+ did not affect ATP hydrolysis. ATP-dependent Br uptake was virtually unchanged in the presence of 0.5mm Ca2+ (+1mm EGTA). These vesicles were also shown to transport Ca2+ in an ATP-dependent mode. Inositol 1, 4, 5-trisphosphate had no effect on ATP-dependent Ca2+ uptake. These results are consistent with the co-existence of an H+ ATPase and an H+/Ca2+ exchanger on these endosomes, the latter transport system using the H+ gradient to energize Ca2+ uptake. Attempts to demonstrate an H+/Ca2+ antiporter in the absence of ATP have been unsuccessful. Yet, when a pH gradient was established by preincubation with ATP and residual ATP was subsequently removed by hexokinase + glucose, stimulation of Ca2+ uptake could be demonstrated. A Ca2+-dependent increase in H+ permeability and an ATP-dependent Ca2+ uptake might have important implications for the regulation of vacuolar H+ ATPase activity as well as the homeostasis of cytosolic Ca2+ concentration.  相似文献   

11.
We have studied the activities of Ca2+-stimulated ATPase in rat heart sarcolemma upon modulating the redox state of membrane thiol groups with dithiothreitol (DTT). The suitability of alamethicin to unmask the latent activity of this enzyme was also investigated. The Ca2+-stimulated ATPase in sarcolemma exhibited two activation sites — one with low affinity (Km = 0.70 ± 0.2 mM; Vmax = 10.0 ± 2.2 mol Pi/mg/h) and the other with high affinity (Km = 0.16 ± 0.7 mM; Vmax = 4.6 ± 0.8 mol Pi/mg/h) for Mg2+ATP. Alamethicin at a ratio of 1:1 with the sarcolemmal protein caused a 3-fold activation of Ca2+-stimulated ATPase without affecting its sensitivity to Ca2+ or Mg2+ATP. Treatment of sarcolemma with deoxycholate or sodium dodecyl sulfate resulted in a total loss of the enzyme activity; high concentrations of alamethicin also showed a detergent-like action on the sarcolemmal vesicles. DTT at 5–10 mM concentrations caused a 4–5 fold activation of Ca2+-stimulated ATPase in sarcolemma and this effect was observed to be dependent on the concentration of Mg2+ATP. DTT increased the affinity of the enzyme to Mg2+ATP at the high affinity site and enhanced the Vmax at the low affinity site in addition to increasing the sensitivity of Ca2+-stimulated ATPase to Ca2+. DTT protected the Ca2+-stimulated ATPase against deterioration by detergents and restored the enzyme activity after treatment with N-ethylmaleimide. The mechanism of action of DTT on Ca2+-stimulated ATPase may involve the reduction of essential thiols at the active site of the enzyme or its interaction with specific DTT-dependent inhibitor protein. No changes in the sensitivity of sarcolemmal Ca2+-stimulated ATPase to orthovanadate was evident in the absence or presence of DTT and alamethicin. The results suggest the use of both DTT and alamethicin for the determination of Ca2+-stimulated ATPase activity in sarcolemmal preparations.  相似文献   

12.
Ca 2+ uptake in reconstituted sarcoplasmic reticulum vesicles   总被引:3,自引:0,他引:3  
The reconstitution of functional sarcoplasmic reticulum vesicles capable of Ca2+ transport has been achieved. Sarcoplasmic reticulum vesicles are first solubilized with deoxycholate and then reassembled into membranous vesicles by removal of the detergent using dialysis. The Ca2+ pump protein can, by itself, be reconstituted to form membranous vesicles capable of energized Ca2+ binding and uptake. The lipid content of the reconstituted vesicles is about the same as that of the original sarcoplasmic reticulum vesicles. The reconstituted vesicles have an elevated ATPase activity. Ca2+ binding and uptake in the presence of ATP are restored to about 25% and 50%, respectively.  相似文献   

13.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

14.
Microsomal membrane vesicles isolated from goat spermatozoa contain Ca2+-ATPase, and exhibit Ca2+ transport activities that do not require exogenous Mg2+ .The enzyme activity is inhibited by calcium-channel inhibitors,e.g. verapamil and diltiazem, like the well known Ca2+ , Mg2+-ATPase. The uptake of calcium is ATP (energy)-dependent and the accumulated Ca2+ can be completely released by the Ca2+ ionophore A23187, suggesting that a significant fraction of the vesicles are oriented inside out  相似文献   

15.
Abstract: Activation of the Ca2+/Mg2+ ATPase associated with highly purified Torpedo synaptic vesicles results in 45Ca2+ uptake. The accumulated 45Ca2+ is released by hypoosmotic buffer and by the Ca2+ ionophore A23187. Density-gradient centrifugation and permeation chromatography reveal that vesicular acetylcholine and the membrane-bound 45Ca2+ co-migrate, thus implying that 45Ca2+ is transported into cholinergic vesicles. ATP-dependent 45Ca2+ uptake follows saturation kinetics, with KmCa2+= 50 μM, KmATP= 5 μM, and Vmax= 3 ± 0.3 nmol Ca2+/mg protein/min. Treatment of the vesicles with mersalyl, dicyclohexyl-carbodiimide, and quercetin leads to inactivation of the Ca2+/Mg2+ ATPase and to comparable inhibition of 45Ca2+ transport. Ruthenium red and ouabain have no effect on either of these activities. Nigericin in the presence of external K+ is a potent inhibitor of 45Ca2+ translocation, whereas gramicidin activates transport. The proton translocator carbonylcyanide p-trifluoromethoxy-phenylhydrazone (FCCP) and FCCP + the ionophore valinomycin partially inhibit 45Ca2+ transport. By contrast, the above ionophores do not affect Ca2+/Mg2+ ATPase activity. Tentative mechanisms for ATP-dependent Ca2+ transport into cholinergic synaptic vesicles and the physiological significance of this process are discussed.  相似文献   

16.
Summary Proteolytic digestion of sarcoplasmic reticulum vesicles with trypsin has been used as a structural modification with which to examine the interaction between the ATP hydrolysis site and calcium transport sites of the (Ca2++Mg2+)-ATPase. The kinetics of trypsin fragmentation were examined and the time course of fragment production compared with ATP hydrolytic and calcium uptake activities of the digested vesicles. The initial cleavage (TD 1) of the native ATPase to A and B peptides has no effect on the functional integrity of the enzyme, hydrolytic and transport activities remaining at the levels of the undigested control. Concomitant with the second tryptic cleavage (TD 2) of the A peptide to A1 and A2 fragments, calcium transport is inhibited. Kinetic analysis demonstrates that the rate constant for inhibition of calcium uptake is correlated with the rate constant of a fragment disappearance. Both Ca2+-dependent and total ATPase activities are unaffected by this second cleavage. Passive loading of vesicles with calcium and subsequent efflux measurements show that transport inhibition is not due to increased permeability of the membrane to calcium even at substantial extents of digestion. Steady-state levels of acidstable phosphoenzyme are unaffected by either TD 1 or TD 2, indicating that uncoupling of the hydrolytic and transport functions does not increase the turnover rate of the enzyme and that TD 2 does not change the essential characteristics of the ATP hydrolysis site. Sarcoplasmic reticulum (SR) vesicles were examined for the presence of tightly bound nucleotides and are shown to contain 2.8–3.0 nmol ATP and 2.6–2.7 nmol ADP per mg SR protein. The ADP content of SR remains essentially unchanged with TD 1 cleavage of the ATPase enzyme to A and B peptides, but declines upon TD 2 in parallel with the digestion of the A fragment and the loss of calcium uptake activity of the vesicles. The ATP content is essentially constant throughout the course of trypsin digestion. The results are discussed in terms of current models of the SR calcium pump and the molecular mechanism of energy transduction.  相似文献   

17.
In order to gain some information regarding Ca2+-dependent ATPase, the enzyme was purified from cardiac sarcolemma and its properties were compared with Ca2+-ATPase activity of myosin purified from rat heart. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by Ca2+ but the maximal activation of Ca2+-dependent ATPase required 4 mM Ca2+ whereas that of myosin ATPase required 10 mM Ca2+. These ATPases were also activated by other divalent cations in the order of Ca2+ > Mn2+ > Sr2+ > Br2+ > Mg2+; however, there was a marked difference in the pattern of their activation by these cations. Unlike the myosin ATPase, the ATP hydrolysis by Ca2+-dependent ATPase was not activated by actin. The pH optima of Ca2+-dependent ATPase and myosin ATPase were 9.5 and 6.5 respectively. Na+ markedly inhibited Ca2+-dependent ATPase but had no effect on the myosin ATPase activity. N-ethylmaleimide inhibited Ca2+-dependent ATPase more than myosin ATPase whereas the inhibitory effect of vanadate was more on myosin ATPase than Ca2+-dependent ATPase. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by K-EDTA and NH4-EDTA. When myofibrils were treated with trypsin and passed through columns similar to those used for purifying Ca2+-ATPase from sarcolemma, an enzyme with ATPase activity was obtained. This myofibrillar ATPase was maximally activated at 3–4 mM Ca2+ and 3 to 4 mM ATP like sarcolemmal Ca2+-dependent ATPase. K+ stimulated both ATPase activities in the absence of Ca2+ and inhibited in the presence of Ca2+. Both enzymes were inhibited by Na+, Mg2+, La3+, and azide similarly. However, Ca2+ ATPase from myofibrils showed three peptide bands in SDS polyacrylamide gel electrophoresis whereas Ca2+ ATPase from sarcolemma contained only two bands. Sarcolemmal Ca2+-ATPase had two affinity sites for ATP (0.012 mM and 0.23 mM) while myofibrillar Ca2+-ATPase had only one affinity site (0.34 mM). Myofibrillar Ca2+-ATPase was more sensitive to maleic anhydride and iodoacetamide than sarcolemmal Ca2+-ATPase. These observations suggest that Ca2+-dependent ATPase may be a myosin like protein in the heart sarcolemma and is unlikely to be a tryptic fragment of myosin present in the myofibrils.  相似文献   

18.
Summary Microsomal fractions were isolated from gastric antrum and fundus smooth muscle of guinea pigs. Ca2+ uptake into and Ca2+ release from the membrane vesicles were studied by a rapid filtration method, and Ca2+ transport properties of the different regions of the stomach were compared. ATP-dependent Ca2+ uptake was similar in microsomes isolated from both regions. This uptake was increased by oxalate and was not affected by NaN3. Oxalate affected Ca2+ permeability of both antrum and fundus microsome vesicles similarly. Fundus microsome vesicles preincubated in 100mm NaCl and then diluted to 1/20 concentration with Na+-free medium had significantly higher ATP-independent Ca2+ uptake than vesicles preincubated in 100mm KCl and treated the same way. This was not true for antrum vesicles. Monensin abolished Na+-dependent Ca2+ uptake, and NaCl enhanced Ca2+ efflux from fundus microsome vesicles. The halflife values of Ca2+ loss from fundus vesicles in the presence of NaCl were significantly smaller than those in the presence of KCl. The release of Ca2+ from the vesicles within the first 3 min was accelerated by NaCl to three times that by KCl. However, NaCl had ro effect on Ca2+ release from antrum microsome vesicles.Results suggest two distinct mechanisms of stomach membrane Ca2+ transport: (1) ATP-dependent Ca2+ uptake and (2) Na+–Ca2+ exchange; the latter in the fundus only.  相似文献   

19.
Effects of endotoxin administration on the ATP-dependent Ca2+ transport in canine cardiac sarcolemma were investigated. The results show that the sidedness of the sarcolemmal vesicles was not affected but the ATP-dependent Ca2+ transport in cardiac sarcolemma was decreased by 22 to 46% (p < 0.05) at 4 h following endotoxin administration. The kinetic analysis indicates that the Vmax for ATP and for Ca2+ were decreased by 50% (p < 0.01) and 32% (p < 0.01), respectively, while the Km values for ATP and Ca2+ were not significantly affected after endotoxin administration. Magnesium (1–5 mM) stimulated while vanadate (0.25–3.0 M) inhibited the ATP-dependent Ca2+ transport, but the Mg2+-stimulated and the vanadate-inhibitable activities remained significantly lower in the endotoxin-treated animals. These data demonstrate that endotoxin administration impairs the ATP-dependent Ca2+ transport in canine cardiac sarcolemma and that the impairment is associated with a mechanism not affecting the affinity towards ATP and Ca2+. Additional experiments show that the Ca2+ sensitivity of the Ca2+-ATPase activity was indifferent between the control and endotoxic groups suggesting that endotoxic injury impairs Ca2+ pumping without affecting Ca2+-ATPase activity. Since sarcolemmal ATP-dependent Ca2+ transport plays an important role in the regulation of cytosolic Ca2+ homeostasis, an impairment in the sarcolemmal ATP-dependent Ca2+ transport induced by endotoxin administration may have a pathophysiological significance in contributing to the development of myocardial dysfunction in endotoxin shock.  相似文献   

20.
In order to examine the role of phospholipids in the activation of membrane bound Ca2+/Mg2+ ATPase, the activities of Ca2+ ATPase and Mg2+ ATPase were studied in heart sarcolemma after treatments with phospholipases A, C and D. The Mg2+ ATPase activity was decreased upon treating the sarcolemmal membranes with phospholipases, A, C and D; phospholipase A produced the most dramatic effect. The reduction in Mg2, ATPase activity by each phospholipase treatment was associated with a decrease in the Vmax value without any changes in the Ka value. The depression of Mg2+ ATPase in the phospholipase treated preparations was not found to be due to release of fatty acids in the medium and was not restored upon reconstitution of these membranes by the addition of synthetic phospholipids such as lecithin, lysolecithin or phosphatidic acid. In contrast to the Mg2+ ATPase, the sarcolemmal Ca2+ ATPase was affected only slightly by phospholipase treatments. The greater sensitivity of Mg- ATPase to phospholipase treatments was also apparent when deoxycholate-treated preparations were employed. These results indicate that glycerophospholipids are required for the sarcolemmal Mg2+ ATPase activity to a greater extent in comparison to that for the Ca2+ ATPase activity and the phospholipids associated with Mg2+ ATPase are predominantly exposed at the outer surface of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号