首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of the adhesion of PCC Lactobacillus fermentum VRI 003 to Peyer's patches was studied in vitro. The adhesion of L. fermentum 003 was strongly inhibited in the presence of d-mannose and methyl-alpha-d-mannoside although other carbohydrates tested, such as N-acetyl-glucosamine, d-galactose, d-glucose and l-fucose, did not affect the adhesion. Lactobacillus fermentum 003 was shown to strongly attach to mannose immobilized on a surface using BSA, suggesting that L. fermentum 003 specifically adhered to mannose-containing molecule(s). Pretreatment of L. fermentum 003 with proteinase K and trypsin decreased the adhesive capacity and bacterial surface extracts diminished adhesion of L. fermentum 003 indicating that cell surface proteins are involved in adhesion to Peyer's patches. It was concluded that a mannose-specific protein mediated adhesion of L. fermentum 003 to the Peyer's patches.  相似文献   

2.
In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents.  相似文献   

3.
A locus encoding two repetitive proteins that have LPXTG cell wall anchoring signals from Lactobacillus fermentum BR11 has been identified by using an antiserum raised against whole L. fermentum BR11 cells. The first protein, Rlp, is similar to the Rib surface protein from Streptococcus agalactiae, while the other protein, Mlp, is similar to the mucus binding protein Mub from Lactobacillus reuteri. It was shown that multiple copies of mlp exist in the genome of L. fermentum BR11. Regions of Rlp, Mlp, and the previously characterized surface protein BspA were used to surface display or secrete heterologous peptides in L. fermentum. The peptides tested were 10 amino acids of the human cystic fibrosis transmembrane regulator protein and a six-histidine epitope (His(6)). The BspA promoter and secretion signal were used in combination with the Rlp cell wall sorting signal to express, export, and covalently anchor the heterologous peptides to the cell wall. Detection of the cell surface protein fusions revealed that Rlp was a significantly better surface display vector than BspA despite having lower cellular levels (0.7 mg per liter for the Rlp fusion compared with 4 mg per liter for the BspA fusion). The mlp promoter and encoded secretion signal were used to express and export large (328-kDa at 10 mg per liter) and small (27-kDa at 0.06 mg per liter) amino-terminal fragments of the Mlp protein fused to the His(6) and CFTR peptides or His(6) peptide, respectively. Therefore, these newly described proteins from L. fermentum BR11 have potential as protein production and targeting vectors.  相似文献   

4.
The beneficial effect of lactobacilli has been attributed to their ability to colonize human and animal gastrointestinal tracts. In this work, adhesion assays with three lactobacillus strains and intestinal fragments obtained from chickens were assessed. Lactobacillus animalis and L. fermentum were able to adhere to three kinds of epithelial cells (crop, small and large intestines) with predominance to small intestine. Among the strains considered, L. fermentum subsp. cellobiosus showed the lowest and L. animalis the highest adhesion ability. Scanning electron microphotographs showing L. animalis and L. fermentum adhering to intestinal cells were obtained. The characterization of L. animalis adhesion indicated that lectin-like structure of this strain has glucose/mannose as specific sugars of binding. However, a calcium requirement was not observed. The adhesion of L. fermentum was reduced by addition of sialic acid or mannose (P < 0.01). These carbohydrates can be involved in the interaction between adhesin and epithelial surface. In this case, the dependence on bivalent cations was demonstrated. Lactobacillus fermentum was effective in reducing the attachment of Salmonella pullorum by 77%, while L. animalis was able to inhibit (90%, 88%, and 78%) the adhesion of S. pullorum, S. enteritidis, and S. gallinarum to host-specific epithelial fragments respectively. Our results from this in vitro model suggest that these lactobacilli are able to block the binding sites for Salmonella adhesion.  相似文献   

5.
In the present work, interactions between three Lactobacillus strains (Lactobacillus fermentum CRL1015, Lactobacillus animalis CRL1014, and Lactobacillus fermentum CRL1016) and chicken small intestinal mucus were determined. Three lactobacilli isolated from chicken and selected by their potentially probiotic properties were able to grow in mucus preparations. Three peaks from gel filtration chromatography of intestinal mucus were obtained. The adhesion to three mucus fractions (I, II, and III), especially fraction III, was higher (P < 0.01) in L. fermentum CRL1015 than L. animalis CRL1014. Pretreatment of this fraction with proteases and metaperiodate showed lower (P < 0.01) adhesion values than that of the control, suggesting that a glycoprotein from the mucus acts as a receptor for L. fermentum CRL1015. Highest adhesion values were obtained at pH 7 and 42 degrees C, and neither the removal of divalent cations with ethylenediaminetetraacetic acid (EDTA) nor the addition of calcium produced significant variation from the adhesion values of the control (P > 0.01). This adhesion was only inhibited by N-acetyl-glucosamine. Salmonella pullorum and Salmonella gallinarum showed high (P < 0.01) values of adhesion to chick intestinal mucus. The results obtained from assays of the inhibition of adherence of Salmonella spp. to mucus, immobilized in polystyrene tissue culture wells, indicated that the pathogen adhesion was not reduced by lactobacilli (P > 0.05) or their spent culture supernatants (P > 0.05), suggesting that these strains did not interfere with the binding sites for Salmonella spp. adhesion to the small intestinal mucus.  相似文献   

6.
Screening of a genomic library with an antiserum raised against whole Lactobacillus fermentum BR11 cells identified a clone expressing an immunoreactive 37-kDa protein. Analysis of the 3010-bp DNA insert contained within the clone revealed four open reading frames (ORFs). One ORF encodes LysA, a 303 amino acid protein which has up to 35% identity with putative endolysins from prophages Lj928 and Lj965 from Lactobacillus johnsonii and Lp1 and Lp2 from Lactobacillus plantarum as well as with the endolysin of Lactobacillus gasseri bacteriophage Phiadh. The immunoreactive protein was shown to be encoded by a truncated ORF downstream of lysA which has similarity to glutamyl-tRNA synthetases. The N-terminus of LysA has sequence similarity with N-acetylmuramidase catalytic domains while the C-terminus has sequence similarity with putative cell envelope binding bacterial SH3b domains. C-terminal bacterial SH3b domains were identified in the majority of Lactobacillus bacteriophage endolysins. LysA was expressed in Escherichia coli and unusually was found to have a broad bacteriolytic activity range with activity against a number of different Lactobacillus species and against Lactococcus lactis, streptococci and Staphylococcus aureus. It was found that LysA is 2 and 8000 times more active against L. fermentum than L. lactis and Streptococcus pyogenes, respectively.  相似文献   

7.
Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria.  相似文献   

8.
The microbial adhesion process includes passive forces; electrostatic interactions; hydrophobic, steric forces; lipoteichoic acids; and specific structures, such as external appendages (lectins) and (or) extracellular polymers. In a previous work, we showed that Lactobacillus animalis, L. fermentum, and L. fermentum ssp. cellobiosus had lectinlike proteic structures on their surfaces and high hydrophobicity values on the cell surface of L. fermentum ssp. cellobiosus. Here, we examined the presence of the bacterial forces or structures that could be involved in the interaction between bacteria and epithelial cells. Lactobacillus animalis and L. fermentum possessed a net negative surface charge, whereas L. fermentum ssp. cellobiosus showed similar affinity to both cationic and anionic exchange resins, aggregated in the presence of ammonium sulfate, and had high affinity (75.4%) to a hydrophobic matrix. Only L. animalis was shown to have ribitol teichoic acids in the cell wall. The amount of polysaccharides from cell walls varied between different strains, with L. fermentum ssp. cellobiosus having the highest concentration. Lectin extracts obtained from lactobacilli did not possess sugar residues, thereby demonstrating the proteic nature of the superficial surface structures of three strains. The lactic acid bacteria studied here showed different surface determinants, which could be involved in the interactions between these lactobacilli and intestinal epithelial cells.  相似文献   

9.
AIMS: To isolate lactobacilli from the mucus layer of the human intestine and evaluate their adhesion abilities using a BIACORE assay. METHODS AND RESULTS: Thirty strains of lactobacilli were isolated from the mucus layer of normal human intestinal tissues using conventional plate culture. The strains were identified using homology comparisons of the 16S rDNA sequence to databases as Lactobacillus salivarius (26%), Lactobacillus fermentum (13%), Lactobacillus gasseri (10%), Lactobacillus paracasei (7%), Lactobacillus casei (3%), Lactobacillus mucosae (3%) and Lactobacillus plantarum (3%). Lactobacillus plantarum LA 318 shows the highest adhesion to human colonic mucin (HCM) using the BIACORE assay at 115.30 +/- 12.37 resonance unit (RU). The adhesion of cell wall surface proteins from strain LA 318 was significantly higher to HCM than to bovine serum albumin (BSA; P < 0.05). CONCLUSIONS: We isolated 30 strains of lactobacilli. Lactobacillus salivarius was the predominant species of lactobacilli isolated in this study. The adhesion of strain LA 318 isolated from human transverse colon to its mucin was shown. The adhesion could be mediated by lectin-like components on the bacterial cell surface. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study where lactobacilli were isolated from human intestinal tissues and shown to adhere to HCM.  相似文献   

10.
An adhesion-promoting protein involved in the binding of Lactobacillus fermentum strain 104R to small intestinal mucus from piglets and to partially purified gastric mucin was isolated and characterized. Spent culture supernatant fluid and bacterial cell wall extracts were fractionated by ammonium sulfate precipitation and gel filtration. The active fraction was purified by affinity chromatography. The adhesion-promoting protein was detected in the fractions by adhesion inhibition and dot blot assays and visualized by polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate-PAGE, and Western blotting with horseradish peroxidase-labeled mucus and mucin. The active fraction was characterized by estimating the relative molecular weight and by assessing the presence of carbohydrates in, and heat sensitivity of, the active region of the adhesion-promoting protein. The purified protein was digested with porcine trypsin, and the peptides were purified in a SMART system. The peptides were tested for adhesion to horseradish peroxidase-labeled mucin by using the dot blot adhesion assay. Peptides which bound mucin were sequenced. It was shown that the purified adhesion-promoting protein on the cell surface of L. fermentum 104R is extractable with 1 M LiCl and low concentrations of lysozyme but not with 0.2 M glycine. The protein could be released to the culture supernatant fluid after 24 h of growth and had affinity for both small intestinal mucus and gastric mucin. In the native state this protein was variable in size, and it had a molecular mass of 29 kDa when denatured. The denatured protein did not contain carbohydrate moieties and was not heat sensitive. Alignment of amino acids of the adhering peptides with sequences deposited in the EMBL data library showed poor homology with previously published sequences. The protein represents an important molecule for development of probiotics.  相似文献   

11.
Colonization by lactobacilli of piglet small intestinal mucus   总被引:2,自引:1,他引:1  
The colonization potential of lactobacilli was investigated using small intestinal mucus extracts from 35-d-old pigs. Mucus-secreting tissue from the small intestine of piglets was gently rinsed to remove contents and then shaken in buffer to release mucus from the surface. Numbers of lactobacilli in different portions of the small intestine of 35-d-old pigs were enumerated. Also, mucus isolated from the small intestine of pigs was investigated for its capacity to support the growth of lactobacilli. Results indicated that Lactobacillus spp. inhabit the mucus layer of the small intestine and can grow and adhere to ileal mucus. From adhesion studies of Lactobacillus fermentum 104R to mucus analysed by Scatchard plot, it is suggested that an associating system showing positive cooperativity is involved. Proteinaceous compound(s) involved in the adhesion to mucus were detected in the spent culture fluid from the growth of strain 104R. Studies are continuing in order to identify and characterize the adhesion-promoting protein(s). From the data, it is proposed that lactobacilli colonize the mucus layer of the small intestine of pigs.  相似文献   

12.
本实验主要探究发酵乳杆菌AR497对DSS诱导的小鼠炎症性肠病的影响。发酵乳杆菌AR497在低pH、高胆盐浓度、高渗透压等极端条件下仍具有良好的生长能力,对大部分抗生素敏感;在C57BL/6J小鼠中研究其对由葡聚糖硫酸钠(DSS)诱导的结肠炎的缓解作用,发酵乳杆菌AR497处理后抑制小鼠体重减少,降低疾病活动指数,上调紧密连接蛋白基因Claudin 3,ZO-1和E-cadherin 1的表达。实验结果表明发酵乳杆菌AR497具有优良的生物学特性并可通过保护肠道屏障从而缓解DSS诱导的结肠炎。  相似文献   

13.
Aims:  We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect.
Methods and Results:  The anti-adhesive activity was assayed against Escherchia coli K-12, and bacterial adhesion was quantified by crystal violet staining and sonication methods. Proteolytic digestion, elution and fractionation experiments revealed that the anti-adhesive activity of the extract was linked to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein adsorption profiles obtained from the various materials did not differ significantly, but elution was often incomplete making minor qualitative/quantitative differences indiscernible.
Conclusions:  The data highlights the significance of protein conditioning films on bacterial adhesion and emphasizes the importance of substratum's physiochemical properties and exposure time with regards to protein adsorption/elution efficiency and subsequent bacterial adhesion.
Significance and Impact of the Study:  Fish tropomyosin-coatings could potentially offer a nontoxic and relatively inexpensive measure of reducing bacterial colonization of inert surfaces.  相似文献   

14.
BspA is a non-covalently anchored cystine-binding protein from Lactobacillus fermentum BR11. It has previously been used to present antigens derived from infectious organisms on the L. fermentum BR11 cell surface. In this study, the capacity of BspA to present a very large polypeptide was tested. A temperature sensitive plasmid was constructed that encodes a 175-kDa chimeric protein consisting of a fusion between BspA and an N-terminally truncated derivative of the Streptococcus salivarius ATCC 25975 glucosyltransferase GtfJ. This plasmid was introduced into the L. fermentum genome. Integrants were able to incorporate 20-40 nmol sucrose derived glucose into glucan per ml culture per optical density unit. The glucosyltransferase activity was external to the cytoplasmic membrane and bound to the cell. Unlike native BspA, the BspA-GtfJ fusion could not be removed from the cell by 5 M LiCl wash.  相似文献   

15.
AIMS: The aims of this study were to investigate in vitro the effects of Lactobacillus isolates from a chicken on adhesion of pathogenic Salmonella and Escherichia coli to chicken intestinal mucus obtained from different intestinal regions. METHODS AND RESULTS: Bacteria were labelled by using methyl-1,2-[(3)H]-thymidine. The bacterial adhesion was assessed by measuring the radioactivity of bacteria adhered to the mucus. The results showed that the abilities of Lactobacillus spp. to bind to the same intestinal mucus were higher than those of pathogenic Salmonella and E. coli. Pretreatment of intestinal mucus with Lactobacillus fermentum and Lactobacillus acidophilus, alone or in combination, reduced the adhesion of the tested pathogens, but the reductive extent of pathogenic adhesion by Lactobacillus spp. in combination was relatively high. CONCLUSIONS: The tested bacteria had different adhesions to mucus glycoproteins isolated from different intestinal regions of chicken. Lactobacillus acidophilus and Lact. fermentum in combination revealed a better ability to inhibit attachments of Salmonella and E. coli to chicken intestinal mucus than Lactobacillus sp. alone. SIGNIFICANCE AND IMPACT OF THE STUDY: A mixture of intestinal Lactobacillus spp. from a chicken may play a protective role in excluding pathogenic Salmonella and E. coli from the intestine of chicken.  相似文献   

16.
The mechanism of adhesion of Lactobacillus fermentum strain 737 to mouse stomach squamous epithelium was investigated. Adhesion inhibition tests involving chelators, monosaccharides, periodate and concanavalin A and the use of bacteria grown in the presence of tunicamycin failed to clarify the adhesive mechanism. Washed bacterial cells had reduced adhesive capacity, except in the presence of spent broth culture supernatant fraction or cell washings. Spent culture supernatant fractions of erythrosine-supplemented broth did not enhance adhesion of washed cells. The adhesion-promoting factor(s) in the spent broth culture supernatant fractions and cell washings bound to both bacterial and epithelial cell surfaces, but did not promote adhesion of two other Lactobacillus strains which were not of mouse origin, thereby indicating host specificity for the adhesion-promoting activity. Chemical characteristics of the adhesion-promoting factor were determined by pretreatment of the dialysis retentate of spent broth culture supernatant fractions with proteolytic enzymes, concanavalin A-Sepharose or periodate before the adhesion assay. The adhesin was non-dialysable, pronase-sensitive, heat sensitive at 100 degrees C, had no affinity for concanavalin A-Sepharose and contained no carbohydrate groups active in the adhesion process. The protein profiles of dialysis retentates of spent broth culture supernatant fractions after bacterial growth in the absence and presence of erythrosine were determined by 2-dimensional SDS-PAGE. Gel filtration by HPLC was used for purification of an adhesion-promoting fraction. The host-specific adhesion of L. fermentum strain 737 was mediated by a protein, with an Mr of 12-13000, that was not detectable in cells grown in the presence of erythrosine. A model for the mode of binding of the adhesin to host epithelia and bacterial surfaces is proposed.  相似文献   

17.
AIMS: The antimicrobial potential of four lactobacilli (Lactobacillus salivarius CECT5713, Lactobacillus gasseri CECT5714, L. gasseri CECT5715 and Lactobacillus fermentum CECT5716), isolated from fresh human breast milk, was evaluated in this study and compared with Lactobacillus coryniformis CECT5711, a reuterin-producing strain isolated from an artisan goat's cheese. METHODS AND RESULTS: Agar diffusion tests, competitive adhesion assays and mucin expression assays were carried out in order to value the antibacterial properties of the lactobacilli strains. The antibacterial capability of the strains was tested in vivo by using a murine infection model with Salmonella choleraesuis. The results revealed that all the strains studied, displayed antibacterial properties against pathogenic bacteria. However, the antibacterial potential varied among the lactobacilli tested and, in fact, L. salivarius CECT5713 showed not only the best in vitro antibacterial activity, but also the highest protective effect against a Salmonella strain in the murine infection model. CONCLUSION: The four breast-milk lactobacilli, and particularly L. salivarius CECT5713, possess potent antibacterial activities that result in a higher protection against S. choleraesuis CECT4155 in a mouse infection model. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that lactobacilli from breast milk could contribute to an anti-infective protection in neonates and would be excellent candidates for the development of infant probiotic products.  相似文献   

18.
Extraction of Lactobacillus fermentum BR11 cells with 5 M LiCl yielded a preparation containing a single predominant polypeptide with an apparent molecular mass of 32 kDa. A clone encoding an immunoreactive 32-kDa polypeptide was isolated from a pUC18 library of L. fermentum BR11 DNA by screening with an antiserum raised against whole cells of L. fermentum BR11. Sequence determination of the insert in the clone revealed a complete 795-bp open reading frame (ORF) that defines a 28,625-Da polypeptide (BspA). N-terminal sequencing of the LiCl-extracted polypeptide from L. fermentum BR11 confirmed that it is the same as the cloned BspA. BspA was found to have a sequence similar to those of family III of the bacterial solute-binding proteins. The sequences of two ORFs upstream of bspA are consistent with bspA being located in an operon encoding an ATP-binding cassette-type uptake system. Unusually, BspA contains no lipoprotein cleavage and attachment motif (LXXC), despite its origin in a gram-positive bacterium. Biotin labelling and trypsin digestion of whole cells indicated that this polypeptide is exposed on the cell surface. The isoelectric point as predicted from the putative mature sequence is 10.59. It was consequently hypothesized that the positively charged BspA is anchored by electrostatic interaction with acidic groups on the cell surface. It was shown that BspA could be selectively removed from the surface by extraction with an acidic buffer, thus supporting this hypothesis.  相似文献   

19.
Reciprocal effect of 4 strains of Klebsiella pneumoniae and 6 Lactobacillus strains on their cytadhesion in mixed populations was studied on a model of formalinized human erythrocytes. The Lactobacillus strains included 2 strains of Lactobacillus casei subsp. casei, 2 strains of L. plantarum and 2 strains of L. fermentum. It was shown that adhesion of both the Klebsiella and the Lactobacillus strains changed under their reciprocal effect. The changes were characterized by the strain differences and depended on the quantitative ratio of the microorganisms.  相似文献   

20.
Spirosomes, cytoplasmic fine spirals, were isolated and purified from Lactobacillus brevis ATCC 8287, L. fermentum F-1, and L. buchneri ATCC 4005, and their morphological, biochemical, and immunological properties were investigated. The spirosomes of these lactobacilli were morphologically indistinguishable from one another, and they had the same buoyant density of 1.320 g/cm3 in CsCl. All of the spirosomes were composed of a single protein, spirosin, with an apparent molecular weight of about 95,000 for L. brevis and L. fermentum and of about 96,000 for L. buchneri as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The spirosins from the three lactobacilli were compared by peptide mapping on SDS-PAGE after cleavage with N-chlorosuccinimide and limited proteolysis with Staphylococcus aureus V8 protease. The peptide map of the L. brevis spirosin was identical with that of the L. fermentum spirosin, whereas it was markedly different from the L. buchneri spirosin. The amino acid composition of the L. brevis spirosin was almost similar to that of the L. fermentum spirosin, while it differed appreciably from the L. buchneri spirosin. Using antiserum against the L. brevis spirosin, immunodiffusion test revealed that the antigenicity of the spirosomes from L. brevis was identical with that from L. fermentum, whereas it was partially different from that from L. buchneri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号