首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
The major histocompatibility complex (MHC) consists of polymorphic frozen blocks (PFBs) that are linked to form megabase haplotypes. These blocks consist of polymorphic sequences and define regions where recombination appears to be inhibited. We have been able to show, using a highly polymorphic sequence centromeric of HLA-B (within the beta block), that PFBs are conserved and contain specific insertions/deletions and substitutions that are the same for individuals with the same MHC haplotype but that differ between at least most different haplotypes. A sequence comparison between ethnic-specific haplotypes shows that these sequences have remained stable and predate the formation of these haplotypes. To determine whether the same conserved block has been involved in the generation of multiple haplotypes, we compared the block typing profiles of different ethnic specific haplotypes. Block typing profiles have previously been shown to be identical in individuals with the same MHC haplotype but, generally, to differ between different haplotypes. It was found that some PFBs are common to more than one haplotype, implying a common ancestry. Subsequently, haplotypes have been generated by the shuffling and exchange of these PFBs. The regions between these PFBs appear to permit the recombination sites and therefore could be expected to exhibit either low polymorphism or a localized ``hotspot.' Received: 20 January 1997 / Accepted: 11 March 1997  相似文献   

2.
Studies of major histocompatibility complex (MHC) diversity in non-model vertebrates typically focus on structure and sequence variation in the antigen-presenting loci: the highly variable and polymorphic class I and class IIB genes. Although these studies provide estimates of the number of genes and alleles/locus, they often overlook variation in functionally related and co-inherited genes important in the immune response. This study utilizes the sequence of the MHC B-locus derived from a commercial turkey to investigate MHC variation in wild birds. Sequences were obtained for nine interspersed MHC amplicons (non-class I/II) from each of 40 birds representing 3 subspecies of wild turkey (Meleagris gallopavo). Analysis of aligned sequences identified 238 single-nucleotide variants approximately one-third of which had minor allele frequencies >0.2 in the sampled birds. PHASE analysis identified 70 prospective MHC haplotypes in the wild turkeys, whereas a combined analysis with commercial birds identified almost 100 haplotypes in the species. Denaturing gradient gel electrophoresis (DGGE) of the class IIB loci was used to test the efficacy of single-nucleotide polymorphism (SNP) haplotyping to capture locus-wide variation. Diversity in SNP haplotypes and haplotype sharing among individuals was directly reflected in the DGGE patterns. Utilization of a reference haplotype to sequence interspersed regions of the MHC has significant advantages over other methods of surveying diversity while identifying high-frequency SNPs for genotyping. SNP haplotyping provides a means to identify both divergent haplotypes and homozygous individuals for assessment of immunological variation in wild and domestic populations.  相似文献   

3.
Lines of White Leghorn chickens were developed by selection for high (HA) or low (LA) antibody response to sheep red blood cells (SRBC) and then backcrossed to provide individuals segregating for haplotypes B13 and B21 of the major histocompatibility complex (MHC) within each selected line. Although antibody response to SRBC was consistently higher in background genome HA than LA, there was a significant interaction between background genome and MHC haplotypes. The interaction resulted from higher antibody response in B13/B21 individuals of line HA and in B21/B21 individuals of line LA. Thus, response to SRBC was dependent on particular haplotype combinations present at the MHC as well as the background genome in which they were expressed.  相似文献   

4.
Theiler's murine encephalomyelitis virus (TMEV) induces demyelinating disease in susceptible mouse strains after intracerebral inoculation. The clinical symptoms and histopathology of the central nervous system appear to be similar to those of human multiple sclerosis (MS), and thus, this system provides an excellent infectious animal model for studying MS. The virus-induced demyelination is immune mediated, and the genes involved in the immune response such as those for the T-cell receptor beta-chain and major histocompatibility complex (MHC) haplotypes are known to influence disease susceptibility. To define whether the T-cell receptor Jbeta-Cbeta or Vbeta genes are associated with susceptibility, we have analyzed F2 mice from crosses of susceptible SJL/J (Vbeta(a)-JCbeta(b)) mice and resistant C57L (Vbeta(a)-JCbeta(a)) mice. Our results indicate that susceptibility to TMEV-induced demyelination is associated with restriction fragment length polymorphism reflecting the T-cell receptor Jbeta1-Cbeta1 region rather than the Vbeta polymorphism. This association becomes stronger when the MHC haplotype is considered in the linkage analysis. However, differences in the T-cell receptor alpha-chain haplotype have no significant influence on the pathogenesis of TMEV-induced demyelination.  相似文献   

5.
The heterozygosity status of polymorphic elements of the immune system, such as the major histocompatibility complex (MHC), is known to increase the potential to cope with a wider variety of pathogens. Pre‐ and postcopulatory processes may regulate MHC heterozygosity. In a population where mating occurs among individuals that share identical MHC haplotypes, postcopulatory selection may disfavour homozygous offspring or ones with two MHC haplotypes identical to its mother. We tested these ideas by determining the incidence of MHC‐heterozygous and MHC‐homozygous individuals in a pedigreed, partially consanguineous captive rhesus monkey colony. Bayesian statistics showed that when parents share MHC haplotypes, the distribution of MHC‐heterozygous and MHC‐homozygous individuals significantly fitted the expected Mendelian distribution, both for the complete MHC haplotypes, and for MHC class I or II genes separately. Altogether, we found in this captive colony no evidence for postcopulatory selection against MHC‐homozygous individuals. However, the distribution of paternally and maternally inherited MHC haplotypes tended to differ significantly from expected. Individuals with two MHC haplotypes identical to their mother were underrepresented and offspring with MHC haplotypes identical to their father tended to be overrepresented. This suggests that postcopulatory processes affect MHC haplotype combination in offspring, but do not prevent low MHC heterozygosity.  相似文献   

6.
Major histocompatiblity complex (MHC) class IV haplotypes were identified in a population of meat-type chickens by restriction fragment length polymorphism (RFLP) analysis. Fourteen different haplotypes were designated on the basis of restriction patterns obtained from Southern blots of PvuII- or BglII-digested DNA, hybridized with the MHC class IV cDNA probe bg32.1. Digestion with each restriction enzyme yielded the same level of polymorphism among individuals. For each haplotype, 4–10 restriction fragments ranging from 0–8 to 8 kb were observed. Such a designation of meat-type chicken MHC class IV haplotypes enables a rapid recognition of previously defined haplotypes, is readily adjustable to additional, newly found restriction patterns and could prove useful in practical breeding programmes.  相似文献   

7.
Summary. Lines of White Leghorn chickens were developed by selection for high (HA) or low (LA) antibody response to sheep red blood cells (SRBC) and then backcrossed to provide individuals segregating for haplotypes B 13 and B 21 of the major histocompatibility complex (MHC) within each selected line. Although antibody response to SRBC was consistently higher in background genome HA than LA, there was a significant interaction between background genome and MHC haplotypes. The interaction resulted from higher antibody response in B13/B21 individuals of line HA and in B21/ B 21 individuals of line LA. Thus, response to SRBC was dependent on particular haplotype combinations present at the MHC as well as the background genome in which they were expressed.  相似文献   

8.
The chicken major histocompatibility complex (MHC) is commonly defined by serologic reactions of erythrocytes with antibodies specific to the highly polymorphic MHC class I (BF) and MHC class IV (BG) antigens. The microsatellite marker LEI0258 is known to be physically located within the MHC, between the BG and BF regions. DNA from various serologically defined MHC haplotypes was amplified by polymerase chain reaction with primers surrounding this marker. Twenty-six distinctive allele sizes were identified. Some serologically well-defined MHC haplotypes shared a common LEI0258 allele size but could be distinguished either by the addition of information from another nearby marker (MCW0371) or by small indels or single nucleotide polymorphism (SNP) differences between the alleles. The association between LEI0258 allele and serologically defined MHC haplotype was very consistent for the same haplotype from multiple sources. Sequence information for the region defined by LEI0258 was obtained for 51 different haplotypes. Two internal repeats whose lengths were 13 and 12 bp, respectively, are the primary basis for allelic variability. Allele size variation ranges from 182 to 552 bp. Four indels and five SNPs in the surrounding sequence provide additional means for distinguishing alleles. Typing with LEI0258 and MCW0371 will be useful in identifying MHC haplotypes in outbred populations of chickens particularly for the initial development of serological reagents.  相似文献   

9.
The Major Histocompatibility Complex (MHC, 6p21) codes for traditional HLA and other host response related genes. The polymorphic HLA-DRB1 gene in MHC Class II has been associated with several complex diseases. In this study we focus on MHC haplotype structures in the Finnish population. We explore the variability of extended HLA-DRB1 haplotypes in relation to the other traditional HLA genes and a selected group of MHC class III genes. A total of 150 healthy Finnish individuals were included in the study. Subjects were genotyped for HLA alleles (HLA-A, -B, -DRB1, -DQB1, and -DPB1). The polymorphism of TNF, LTA, C4, BTNL2 and HLA-DRA genes was studied with 74 SNPs (single nucleotide polymorphism). The C4A and C4B gene copy numbers and a 2-bp silencing insertion at exon 29 in C4A gene were analysed with quantitative genomic realtime-PCR. The allele frequencies for each locus were calculated and haplotypes were constructed using both the traditional HLA alleles and SNP blocks. The most frequent Finnish A∼B∼DR -haplotype, uncommon in elsewhere in Europe, was A*03∼B*35∼DRB1*01∶01. The second most common haplotype was a common European ancestral haplotype AH 8.1 (A*01∼B*08∼DRB1*03∶01). Extended haplotypes containing HLA-B, TNF block, C4 and HLA-DPB1 strongly increased the number of HLA-DRB1 haplotypes showing variability in the extended HLA-DRB1 haplotype structures. On the contrary, BTNL2 block and HLA-DQB1 were more conserved showing linkage with the HLA-DRB1 alleles. We show that the use of HLA-DRB1 haplotypes rather than single HLA-DRB1 alleles is advantageous when studying the polymorphisms and LD patters of the MHC region. For disease association studies the HLA-DRB1 haplotypes with various MHC markers allows us to cluster haplotypes with functionally important gene variants such as C4 deficiency and cytokines TNF and LTA, and provides hypotheses for further assessment. Our study corroborates the importance of studying population-specific MHC haplotypes.  相似文献   

10.
The major histocompatibility complex (MHC) is recognised as one of the most important genetic regions in relation to common human disease. Advancement in identification of MHC genes that confer susceptibility to disease requires greater knowledge of sequence variation across the complex. Highly duplicated and polymorphic regions of the human genome such as the MHC are, however, somewhat refractory to some whole-genome analysis methods. To address this issue, we are employing a bacterial artificial chromosome (BAC) cloning strategy to sequence entire MHC haplotypes from consanguineous cell lines as part of the MHC Haplotype Project. Here we present 4.25 Mb of the human haplotype QBL (HLA-A26-B18-Cw5-DR3-DQ2) and compare it with the MHC reference haplotype and with a second haplotype, COX (HLA-A1-B8-Cw7-DR3-DQ2), that shares the same HLA-DRB1, -DQA1, and -DQB1 alleles. We have defined the complete gene, splice variant, and sequence variation contents of all three haplotypes, comprising over 259 annotated loci and over 20,000 single nucleotide polymorphisms (SNPs). Certain coding sequences vary significantly between different haplotypes, making them candidates for functional and disease-association studies. Analysis of the two DR3 haplotypes allowed delineation of the shared sequence between two HLA class II-related haplotypes differing in disease associations and the identification of at least one of the sites that mediated the original recombination event. The levels of variation across the MHC were similar to those seen for other HLA-disparate haplotypes, except for a 158-kb segment that contained the HLA-DRB1, -DQA1, and -DQB1 genes and showed very limited polymorphism compatible with identity-by-descent and relatively recent common ancestry (<3,400 generations). These results indicate that the differential disease associations of these two DR3 haplotypes are due to sequence variation outside this central 158-kb segment, and that shuffling of ancestral blocks via recombination is a potential mechanism whereby certain DR-DQ allelic combinations, which presumably have favoured immunological functions, can spread across haplotypes and populations.  相似文献   

11.
The major histocompatibility complex (MHC) sequences of three B21-like haplotypes deriving from very different origins including the Red Jungle Fowl Gallus Gallus gallus were compared with the MHC sequences of the standard B21 haplotype from Scandinavian White Leghorn Gallus domesticus. The present analysis reveals two cDNA sequences for B-F and two cDNA sequences for B-LB for every B21-like haplotype, including B21 itself. Contrary to expectation, no sequence polymorphism in the antigen-binding domains of the MHC genes, between the investigated haplotypes, was found. The relative level of MHC class I molecules on the surface of leukocytes measured by flow cytometry was also analysed and found to be low in Marek's Disease (MD)-resistant B haplotypes (B21 and B21-like) and high in MD-susceptible B haplotypes (B15 and B19). However, in heterozygous (resistant/susceptible) animals, the relative level was almost as high as in susceptible haplotypes.  相似文献   

12.
Improving disease resistance in poultry by direct selection or by selecting for immune response is hardly feasible due to the quantitative nature of these traits, their low heritability, and the difficulties associated with reliable measurements. In this situation, marker-assisted selection (MAS) is expected to be a more effective breeding approach. The major histocompatibility complex (MHC), known to affect immune response and disease resistance, was examined as a set of candidate genes for association between DNA markers and antibody response. Backcross (BC1) and F2 families were generated from a cross between lines divergently selected for high or low antibody response to Escherichia coli vaccination. Restriction fragment length polymorphism (RFLP) analysis of the highly polymorphic MHC class IV (B-G) region suggested an association with antibody response to several antigens (E. coli, SRBC, NDV). The multiband data generated with the class IV probe were used to compare the efficacies of three alternative analyses: "single-band" (carriers versus noncarriers of each RFLP band separately), "multiband" (multiple regression on all RFLP bands), and "genotype" (determined from family analysis of RFLP patterns/haplotypes). Groups of birds identified by the "multiband" analysis were identical to the haplotype-based genotypes, suggesting that the laborious step of haplotype determination can be omitted without unduly sacrificing power of analysis.  相似文献   

13.
The gene for the second component of complement, C2, maps within the class III region of the major histocompatibility complex (MHC). Many human diseases have been reported to be associated with MHC alleles, haplotypes, or extended haplotypes, but in most cases additional polymorphic markers are needed for the eventual localization of the genes responsible for these diseases. In this study, nine C2 haplotypes for four restriction-site polymorphisms, detected by SstI, BamHI, and TaqI, were defined among 143 unrelated individuals. Two of these polymorphisms are multiallelic and map near the 5' end of the C2 gene. The extensive allelic variation of the C2 gene may prove of value in studies of diseases associated with the MHC.  相似文献   

14.
阮清伟  俞卓伟  保志军  马永兴 《遗传》2013,35(7):813-822
衰老是进行性的、多细胞普遍存在的、不可逆的功能减退状态。免疫衰老主要表现为造血干细胞再生和淋巴系分化能力下降、机体对感染和疫苗的反应减弱、对炎症反应的放大和自身的免疫反应增加, 与衰老和增龄相关疾病密切相关。免疫基因变异, 影响机体免疫反应, 可加速或延缓衰老和增龄相关疾病。获得性免疫基因, 如对自身免疫性疾病起保护性作用的HLA II 抗原基因DRB1*11和DRB*16相关的单倍型在长寿老人频率增加。抗炎因子IL-10-1082G等位基因频率和TGFβ1单倍型cnd10T/C、cnd25G/G、-988C/C、-800G/A频率的下降, 促炎因子TNFα低表达相关的扩展的TNF-A基因型-1031C/C、-863C/A、-857C/C、IL-6-174 CC基因型, 和IFN-γ+874 T等位基因频率减少与免疫炎症反应易感性, 衰老相关疾病的发病率和死亡率正相关。固有免疫基因, 如高频表达抗炎的+896 G KIR4等位基因、CCR5Δ32突变、-765 C Cox-2等位基因、-1708 G和21 C 5-Lox等位基因多见于长寿老人。KIR 单倍型 KIR2DS5、A1B10减少, MBL2表达缺乏的单倍型LYPB、LYQC 和HYPD增加的老年人常伴有较高血清CMV抗体滴度。高频出现的CRP ATG单倍型和CFH 402 His 等位基因预示老年人高死亡率风险。文章对固有和获得性免疫基因多态性、单倍体与衰老及衰老相关疾病关系进展进行综述。加强分析扩展的单倍型、表观遗传学和造血干细胞衰老的遗传学研究将有助于更好地理解衰老和长寿的免疫遗传学基础。  相似文献   

15.
Nonhuman primates are widely used to study correlates of protective immunity in AIDS research. Successful cellular immune responses have been difficult to identify because heterogeneity within macaque major histocompatibility complex (MHC) genes results in quantitative and qualitative differences in immune responses. Here we use microsatellite analysis to show that simian immunodeficiency virus (SIV)-susceptible cynomolgus macaques (Macaca fascicularis) from the Indian Ocean island of Mauritius have extremely simple MHC genetics, with six common haplotypes accounting for two-thirds of the MHC haplotypes in feral animals. Remarkably, 39% of Mauritian cynomolgus macaques carry at least one complete copy of the most frequent MHC haplotype, and 8% of these animals are homozygous. In stark contrast, entire MHC haplotypes are rarely conserved in unrelated Indian rhesus macaques. After intrarectal infection with highly pathogenic SIVmac239 virus, a pair of MHC-identical Mauritian cynomolgus macaques mounted concordant cellular immune responses comparable to those previously reported for a pair of monozygotic twins infected with the same strain of human immunodeficiency virus. Our identification of relatively abundant SIV-susceptible, MHC-identical macaques will facilitate research into protective cellular immunity.  相似文献   

16.
The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation.  相似文献   

17.
The genomic sequences of 15 horse major histocompatibility complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and nonclassical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal and two to three nonclassical sequences. Phylogenetic analysis was applied to these sequences, and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The nonclassical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine major histocompatibility complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci.  相似文献   

18.
Diversity and locus specificity of chicken MHC B class I sequences   总被引:6,自引:0,他引:6  
The major histocompatibility complex B (MHC B) region in a standard haplotype of Leghorn chickens contains two closely linked class I loci, B-FI and B-FIV. Few sequences of B-FI alleles are available, and therefore alleles of the two loci have not been compared with regard to sequence diversity or locus specificity. Here, we report eight new B-F alpha 1/alpha 2-coding sequences from broiler chicken MHC B haplotypes, and a unique recombinant between the two B-F loci. The new sequences were combined with existing B-F sequences from Leghorn and broiler haplotypes for analysis. On the basis of phylogenetic analysis and conserved sequence motifs, B-F sequences separated into two groups (Groups A and B), corresponding to B-FIV and B-FI locus, respectively. Every broiler haplotype had one B-F sequence in Group A and the second B-F sequence, if it existed, clustered in Group B. Group B (presumptive B-FI locus) sequences identified in broiler haplotypes resembled the human MHC class I HLA-C locus in their distinctive pattern of allelic polymorphism. Compared with B-FIV, B-FI alleles were less polymorphic and possessed a conserved locus-specific motif in the alpha1 helix, but nevertheless demonstrated evidence of diversifying selection. One B-FI alpha 1/alpha 2-coding nucleotide sequence was completely conserved in four different broiler haplotypes, but each allele differed in the exon encoding the alpha 3 domain.  相似文献   

19.
Four cDNA probes for the human major histocompatibility complex (MHC) were used to investigate the sheep MHC, in conjunction with serological typing for ovine lymphocyte antigen (OLA). Lymphocytes from a family (two parents and five offspring) of Romanov sheep were subjected to genomic DNA digestion by the restriction endonuclease Eco RI, followed by gel electrophoresis. A single Southern blot representing all seven individuals was then consecutively hybridized with the class I, alpha-DC, beta-DR, and C4 probes, which were originally designed to identify HLA class I, class II (DC and DR), and C4 products, respectively. Using each of the three class I/class II probes, several bands showing DNA polymorphism were detected. The segregation of these bands in the five offspring exactly paralleled the OLA haplotype segregation established by serological typing. A further eight individuals carrying haplotypes which were phenotypically identical to those in the above-mentioned family showed bands in the corresponding positions when tested with the same three probes. Using the C4 probe, no polymorphism was detected in these fifteen individuals.Abbreviations used in this paper MHC major histocompatibility complex - OLA ovine lymphocyte antigen - kbp kilobase pair(s) - MLR mixed lymphocyte reaction - RFLP restriction fragment length polymorphism  相似文献   

20.
Genetic aspects of tolerance to allografts induced at metamorphosis in the toadXenopus laevis were studied in one sibship expressing four different major histocompatibility complex (MHC) haplotypes. Tolerance by skin grafting was induced during metamorphosis in thiourea-blocked individuals, a technique that allows prolonged observation of graft behavior at this stage. Four classes of mutually tolerant animals could be determined. The use of antisera recognizing red blood cell antigens segregating with mixed lymphocyte reaction (MLR) haplotypes revealed that the four abovementioned classes corresponded to the four MHC genotypes of the family. The tolerance is, therefore, preferentially induced to antigens not dependent on the MHC. Under certain circumstances tolerance can also be induced to MHC antigens, provided that the animals differ at the level of one MHC haplotype only. Study of MLR during ontogeny suggested that, between sibs, only the two MLR haplotype differences were stimulatory at metamorphosis, whereas in larval and adult animals a one-haplotype difference was enough for stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号