首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factors Related to the Oxygen Tolerance of Anaerobic Bacteria   总被引:10,自引:5,他引:5       下载免费PDF全文
The effect of atmospheric oxygen on the viability of 13 strains of anaerobic bacteria, two strains of facultative bacteria, and one aerobic organism was examined. There were great variations in oxygen tolerance among the bacteria. All facultative bacteria survived more than 72 h of exposure to atmospheric oxygen. The survival time for anaerobes ranged from less than 45 min for Peptostreptococcus anaerobius to more than 72 h for two Clostridium perfringens strains. An effort was made to relate the degree of oxygen tolerance to the activities of superoxide dismutase, catalase, and peroxidases in cell-free extracts of the bacteria. All facultative bacteria and a number of anaerobic bacteria possessed superoxide dismutase. There was a correlation between superoxide dismutase activity and oxygen tolerance, but there were notable exceptions. Polyacrylamide gel electropherograms stained for superoxide dismutase indicated that many of the anaerobic bacteria contained at least two electrophoretically distinct enzymes with superoxide dismutase activity. All facultative bacteria contained peroxidase, whereas none of the anaerobic bacteria possessed measurable amounts of this enzyme. Catalase activity was variable among the bacteria and showed no relationship to oxygen tolerance. The ability of the bacteria to reduce oxygen was also examined and related to enzyme content and oxygen tolerance. In general, organisms that survived for relatively long periods of time in the presence of oxygen but demonstrated little superoxide dismutase activity reduced little oxygen. The effects of medium composition and conditions of growth were examined for their influence on the level of the three enzymes. Bacteria grown on the surface of an enriched blood agar medium generally had more enzyme activity than bacteria grown in a liquid medium. The data indicate that superoxide dismutase activity and oxygen reduction rates are important determinants related to the tolerance of anaerobic bacteria to oxygen.  相似文献   

2.
Matters, G. L. and Scandalios, J. G. 1987. Synthesis of isozymesof superoxide dismutase in maize leaves in response to O3 SO2and elevated O2.—J. exp. Bot 38: 842–852. The activities of the enzymes superoxide dismutase (SOD) andcatalase were determined in maize leaves treated with O3or SO2for8 h, or with elevated levels of oxygen for up to 96 h. NeitherO3nor SO2significantly increased the levels of superoxide dismutaseor catalase activity. However, after 72 h in an atmosphere containing90% oxygen, superoxide dismutase activity was increased, butnot the activities of catalase, ascorbate pcroxidase, and malatedehydrogenase. Immunological analysis showed that amounts ofthe cytosolic superoxide dismutase isozymes, SOD-2 and SOD-4,were increased by the elevated oxygen but not the chroloplast(SOD-1) or mitochondrial (SOD-3) isozymes. Immunoprecipitationof translation products of leaf polysomes indicated that thehigher levels of SOD-2 and SOD-4 were due to increased amountsof polysome-bound mRNA coding for these proteins. The specificresponse of SOD-2 and SOD-4 to 90% oxygen treatments contrastswith the increase in all SOD isozymes in maize leaves treatedwith the herbicide paraquat. Key words: Air pollutants, maize, oxidative stress, oxygen, superoxide dismutase  相似文献   

3.
Mutations in Escherichia coli that effect sensitivity to oxygen   总被引:7,自引:2,他引:5       下载免费PDF全文
Fifteen oxygen-sensitive (Oxys) mutants of Escherichia coli were isolated after exposure to UV light. The mutants did not form macroscopic colonies when plated aerobically. They did form macroscopic colonies anaerobically. Oxygen, introduced during log phase, inhibited the growth of liquid cultures. The degree of inhibition was used to separate the mutants into three classes. Class I mutants did not grow after exposure to oxygen. Class II mutants were able to grow, but at a reduced rate and to a reduced final titer, when compared with the wild-type parent. Class III mutants formed filaments in response to oxygen. Genetic experiments indicated that the mutations map to six different chromosomal regions. The results of enzymatic assays indicated that 7 of the 10 class I mutants have low levels of catalase, peroxidase, superoxide dismutase, and respiratory enzymes when compared with the wild-type parent. Mutations in five of the seven class I mutants which have the low enzyme activities mapped within the region 8 to 13.5 min. P1 transduction data indicated that mutations in three of these five mutants, Oxys-6, Oxys-14, and Oxys-17, mapped to 8.4 min. The correlation of low enzyme levels and mapping data suggests that a single gene may regulate several enzymes in response to oxygen. The remaining three class I mutants had wild-type levels of catalase, peroxidase, and superoxide dismutase, but decreased respiratory activity. The class II and III mutants had enzyme activities similar to those of the wild-type parent. Our results demonstrate that mutations in at least six genes can be expressed as oxygen sensitivity. Some of these genes may be involved in respiration or cell division or may regulate the expression of several enzymes.  相似文献   

4.
Kim YH  Kim Y  Cho E  Kwak S  Kwon S  Bae J  Lee B  Meen B  Huh GH 《Phytochemistry》2004,65(17):2471-2476
Cultured plant cells are a good system for the study of antioxidant mechanisms and for the mass production of antioxidants, because they can be grown under conditions of high oxidative stress. Alterations in the intracellular and extracellular activities of three antioxidant enzymes, superoxide dismutase (SOD), guaiacol-type peroxidase (POD), and glutathione peroxidase (GPX), were investigated in suspension cultures of sweetpotato (Ipomoea batatas) during cell growth. Intracellular SOD activities (units/mg protein) at 15 days after subculture (DAS) and 30 DAS were 10 and 20 times higher, respectively, compared with the SOD activity at 1 DAS, whereas intracellular specific POD and GPX activities did not significantly increase until after 15 DAS, when they rapidly increased. The extracellular activities of the three enzymes in culture medium were much higher than were the intracellular activities. The change in extracellular SOD activity was similar to that of extracellular GPX during cell growth. Those activities showed high levels until 5 DAS and then significantly decreased. Extracellular POD activity had an almost constant level regardless of the cell growth stage. In addition, intracellular SOD and POD isozymes were quite different from those isozymes in the culture medium. The changes in SOD and POD isozymes observed here suggest that different isozymes might modulate the levels of reactive oxygen intermediates during cell growth. Characterization of extracellular antioxidant enzymes discovered here would provide a new understanding for defense mechanism in plants.  相似文献   

5.
Cells of Saccharomyces cerevisiae were grown aerobically and anaerobically, and levels of the protective compounds, cysteine and glutathione, and activities of defensive enzymes, catalase and superoxide dismutase, against an oxygen stress were determined and compared in both cells. Aerobiosis increased both the compounds and enzyme activities. The elevated synthesis of glutathione could be associated with the increased levels of cysteine which in its turn was found to be controlled by the oxygen-dependent activation of cystathionine beta-synthase.  相似文献   

6.
Superoxide dismutases (SOD; EC 1.15.1.1) in chestnut ( Castanea sativa Mill., cv. 431) leaves were characterized by native polyacrylamide gel electrophoresis. The three molecular forms of SOD were distinguished from each other by their different sensitivity to cyanide and H2O2 Three CuZn-containing SODs were detected (CuZn-SOD I, II. and III), and all the isozymes had a molecular mass of 33 kDa. CuZn-SOD III was the most abundant isozyme. whereas CuZn-SOD II was present in a minor amount. In leaves showing typical symptoms of senescence increases of 2.5-. 7- and 4-fold in the specific activities of CuZn-SODs I, II, and III. respectively, were found. In addition, the pattern of the three isozymes was modified by the age of leaves, a rise in the CuZn-SOD II and a decrease in the CuZn-SOD 1 percentages being found in senescent leaves compared to green leaves. As to other activated oxygen-related enzymes, an increase in the superoxide-generating xanthine oxidase activity and a decline in both catalase and peroxidase activities during natural senescence of chestnut leaves were observed. Results obtained suggest that in natural senescence of chestnut leaves activated oxygen species are involved, and an overproduction of hydrogen peroxide and superoxide radicals probably takes place.  相似文献   

7.
Superoxide dismutase and catalase activities were studied in Azotobacter vinelandii grown diazotrophically at different ambient oxygen concentrations in continuous culture. Activities were expressed either as specific activity or activity per cell. Specific superoxide dismutase activity increased by a factor of 1.6 with increasing oxygen concentration from about 1% to 90% air saturation of the growth medium whereas specific catalase activity increased only slightly, if at all. Since cell volumes increased in parallel to increases in the oxygen concentration cellular superoxide dismutase activities increased by a factor of 4.3 while cellular catalase activities increased by a factor of 3.3. Under all conditions only the Fe-containing form of superoxide dismutase was detected. The possible function of these enzymes in the protection nitrogenase from oxygen damage is discussed.Abbreviation SOD superoxide dismutase  相似文献   

8.
The combined effects of Mn and oxygen on lignin peroxidase (LIP) activity and isozyme composition in Phanerochaete chrysosporium were studied by using shallow stationary cultures grown in the presence of limited or excess N. When no Mn was added, LIP was formed in both N-limited and N-excess cultures exposed to air, but no LIP activity was observed at Mn concentrations greater than 13 mg/liter. In oxygen-flushed, N-excess cultures, LIP was formed at all Mn concentrations, and the peak LIP activity values in the extracellular fluid were nearly identical in the presence of Mn concentrations ranging from 3 to 1,500 mg/liter. When the availability of oxygen to cultures exposed to air was increased by growing the fungus under nonimmersed liquid conditions, higher levels of Mn were needed to suppress LIP formation compared with the levels needed in shallow stationary cultures. The composition of LIP isozymes was affected by the levels of N and Mn. Addition of veratryl alcohol to cultures exposed to air did not eliminate the suppressive effect of Mn on LIP formation. A deficiency of Mn in N-excess cultures resulted in lower biomass and a lower rate of glucose consumption than in the presence of Mn. In addition, almost no activity of the antioxidant enzyme Mn superoxide dismutase was observed in Mn-deficient, N-excess cultures, but the activity of this enzyme increased as the Mn concentration increased from 3 to 13 mg/liter. No Zn/Cu superoxide dismutase activity was observed in N-excess cultures regardless of the Mn concentration.  相似文献   

9.
Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. Increased specific activities of catalase but not superoxide dismutase were observed during growth of these bacteria on components washed from root surfaces. The specific activities of both enzymes were also regulated during contact of these bacteria with intact bean roots. Increased superoxide dismutase and decreased catalase activities were observed rapidly, by 10 min upon inoculation of cells onto intact bean roots. Catalase specific activity increased with time to peak at 12 h before declining. By 48 h, the cells displayed this low catalase but maintained high superoxide dismutase specific activities. Catalase with a low specific activity and a high superoxide dismutase activity also were present in extracts of cells obtained from 7-day-old roots colonized from inoculum applied to seed. This specific activity of superoxide dismutase of root-contacted cells was about fourfold-higher in comparison to cells grown on rich medium, whereas the specific activity for catalase was reduced about fivefold. A single catalase isozyme, isozyme A, and one isozyme of superoxide dismutase, isozyme 1, were detected during growth of the bacteria on root surface components and during exposure of cells to intact bean roots for 1 h. An additional catalase, isozyme B, was detected from bacteria after exposure to the intact bean roots for 12 h. Catalase isozyme A and superoxide dismutase isozyme 1 were located in the cytoplasm and catalase band B was located in the membrane of P. putida.  相似文献   

10.
The enzymes catalase and superoxide dismutase play major roles in protecting phytopathogenic bacteria from oxidative stress. In Xanthomonas species, these enzymes are regulated by both growth phase and oxygen tension. The highest enzyme levels were detected within 1 h of growth. Continued growth resulted in a decline of both enzyme activities. High oxygen tension was an inducing signal for both enzyme activities. An 80,000-Da monofunctional catalase and a manganese superoxide dismutase were the major forms of the enzymes detected at different stages of growth. The unusual regulatory patterns are common among several Xanthomonas strains tested and may be advantageous to Xanthomonas species during the initial stage of plant-microorganism interactions.  相似文献   

11.
When cultured anaerobically in a chemically defined medium that was treated with Chelex-100 to lower its trace metal content, Streptococcus mutans OMZ176 had no apparent requirement for manganese or iron. Manganese or iron was necessary for aerobic cultivation in deep static cultures. During continuous aerobic cultivation in a stirred chemostat, iron did not support the growth rate achieved with manganese. Since the dissolved oxygen level in the chemostat cultures was higher than the final level in the static cultures, manganese may be required for growth at elevated oxygen levels. In medium supplemented with manganese, cells grown anaerobically contained a low level of superoxide dismutase (SOD) activity; aerobic cultivation increased SOD activity at least threefold. In iron-supplemented medium, cells grown anaerobically also had low SOD activity; aerobic incubation resulted in little increase in SOD activity. Polyacrylamide gel electrophoresis of the cell extracts revealed a major band and a minor band of SOD activity in the cells grown with manganese; however, cells grown with iron contained a single band of SOD activity with an Rf value similar to that of the major band found in cells grown with manganese. None of the SOD activity bands were abolished by the inclusion of 2 mM hydrogen peroxide in the SOD activity strain. S. mutans may not produce a separate iron-containing SOD but may insert either iron or manganese into an apo-SOD protein. Alternatively, iron may function in another activity (not SOD) that augments the defense against oxygen toxicity at low SOD levels.  相似文献   

12.
Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

13.
Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from less than 10 min to 40 h, reduces immunogenicity, and decreases sensitivity to proteolysis. Because PEG has surface active properties and can induce cell fusion, we hypothesized that PEG conjugation could enhance cell binding and association of normally membrane-impermeable enzymes. Incubation of cultured porcine aortic endothelial cells with 125I-PEG-catalase or 125I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Endothelial cell cultures incubated with PEG-superoxide dismutase and PEG-catalase for 24 h and then extensively washed were protected from the damaging effects of reactive oxygen species derived from exogenous xanthine oxidase as judged by two criteria: decreased release of intracellular 51Cr-labeled proteins and free radical-induced changes in membrane fluidity, measured by electron paramagnetic resonance spectroscopy of endothelial membrane proteins covalently labeled with 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species.  相似文献   

14.
We used a series of normal and Agrobacterium-transformed, bacteria-free tobacco tissue cultures which differ in their levels of histodifferentiation to test the relationship of superoxide dismutase, peroxidase, and catalase to oncogenic transformation and differentiation. When compared with normal callus, tumor callus contained reduced levels of both superoxide dismutase and peroxidase, and a reduced number of isozymes of both enzymes. Teratomas characterized by limited but abnormal differentiation showed increases in superoxide-dismutase activity and isozymes, but levels of peroxidase activity lower than those found in normal callus despite an increase in the number of peroxidase isozymes. A similar disparity between low peroxidase activity and high isozyme number in the shoot suggests that there are increased levels of peroxidase inhibitors or of molecules which interfere with the spectrophotometric assay for peroxidase in more differentiated tissues. As judged by the number of isozymes of both superoxide dismutase and peroxidase in each tissue, the following conclusions are warranted: first, tobacco copper/zinc superoxide dismutases and peroxidases are encoded in several duplicated loci which are regulated independently. Second, transformation is associated with a decrease in both the specific activity and isozyme number of superoxide dismutase. Third, the partial release from the total inhibition of expression of differentiated function exhibited by teratoma is associated with an increase in both the activity and isozyme number of superoxide dismutase. Finally, the expression of superoxide dismutase and peroxidase isozymes appears to be coordinated during differentiation in a manner that is consistent with their role in an integrated mechanism for the removal of reduced oxygen species.  相似文献   

15.
Groundnut seedlings contain five isozymes of superoxide dismutase. These isozymes were purified to homogeneity by ammonium sulfate precipitation, ionexchange chromatography on diethyl amino ethyl cellulose, gel filtration using Sephadex G100 and preparative gel electrophoresis. Manganese containing superoxide dismutase showed optimal activity at pH 7.8 whereas activity was one fifth at pH 9.8. This difference in the activity was not observed in case of copper-zinc enzymes.  相似文献   

16.
After 2 month of feeding vitamin E-supplemented diet (100.6 and 0 mg/kg; group I-control, II and III, respectively) the concentration of lipid peroxidation products (diene conjugates, malondialdehyde, Schiff's bases) and activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase) was estimated in rat heart and liver. Although the content of alpha-tocopherol in organs of group II was significantly decreased, the concentration of peroxidation products and enzyme activities was unchanged. Moreover, these parameters were constant in rat liver of group III. The heart was more sensitive because in group III to vitamin E deficiency (the alpha-tocopherol level was dropped fourfold) the concentration of diene conjugates and malondialdehyde was increased and superoxide dismutase activity was decreased. Thus insufficiency of vitamin E may result in selective alterations of myocardial functions. In addition, vitamin E may be useful instrument for correction of free radical oxidation and antioxidant system activity in the heart.  相似文献   

17.
Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, an extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (haloenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (< 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 μM, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 μM medium copper, holoenzyme secretion is maintained throughout cell growth.The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN?-insensitive, manganese form of this enzyme. Cells grown at 10 μM copper shown 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

18.
Anaerobically grown Escherichia coli K-12 contain only one superoxide dismutase and that is the iron-containing isozyme found in the periplasmic space. Exposure to oxygen caused the induction of a manganese-containing superoxide dismutase and of another, previously undescribed, superoxide dismutase, as well as of catalase and peroxidase. These inductions differed in their responsiveness towards oxygen. Thus the very low levels of oxygen present in deep, static, aerobic cultures were enough for nearly maximal induction of the manganese-superoxide dismutase. In contrast, induction of the new superoxide dismutase, catalase, and peroxidase required the much higher levels of oxygen achieved in vigorously agitated aerobic cultures. Anaerobically grown cells showed a much greater oxygen enhancement of the lethality of streptonigrin than did aerobically grown cells, in accord with the proposal that streptonigrin can serve as an intracellular source of superoxide. Anaerobically grown cells in which enzyme inductions were prevented by puromycin were damaged by exposure to air. This damage was evidenced both as a decline in viable cell count and as structural abnormalities evident under an electron microscope.  相似文献   

19.
20.
The ligninolytic enzymes produced by the white rot fungus Phanerochaete sordida in liquid culture were studied. Only manganese peroxidase (MnP) activity could be detected in the supernatant liquid of the cultures. Lignin peroxidase (LiP) and laccase activities were not detected under a variety of different culture conditions. The highest MnP activity levels were obtained in nitrogen-limited cultures grown under an oxygen atmosphere. The enzyme was induced by Mn(II). The initial pH of the culture medium did not significantly affect the MnP production. Three MnP isozymes were identified (MnPI, MnPII, and MnPIII) and purified to homogeneity by anion-exchange chromatography followed by hydrophobic chromatography. The isozymes are glycoproteins with approximately the same molecular mass (around 45 kDa) but have different pIs. The pIs are 5.3, 4.2, and 3.3 for MnPI, MnPII, and MnPIII, respectively. The three isozymes are active in the same range of pHs (pHs 3.0 to 6.0) and have optimal pHs between 4.5 and 5.0. Their amino-terminal sequences, although highly similar, were distinct, suggesting that each is the product of a separate gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号