首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
In contrast to the great majority of mycobacterial species that are harmless saprophytes, Mycobacterium tuberculosis and other closely related tubercle bacilli have evolved to be among the most important human and animal pathogens. The need to develop new strategies in the fight against tuberculosis (TB) and related diseases has fuelled research into the evolutionary success of the M. tuberculosis complex members. Amongst the various disciplines, genomics and functional genomics have been instrumental in improving our understanding of these organisms. In this review we will present some of the recent key findings on molecular determinants of mycobacterial pathogenicity and attenuation, the evolution of M. tuberculosis, genome dynamics, antigen mining for improved diagnostic and subunit antigens, and finally the identification of novel drug targets. The genomics revolution has changed the landscape of TB research, and now underpins our renewed efforts to defeat this deadly pathogen.  相似文献   

2.
Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non‐synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species‐specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia‐related genes between M. bovis and M. tuberculosis.  相似文献   

3.
4.
This paper shows that in vitro infection of human monocytes by Mycobacterium tuberculosis affected monocyte to macrophage differentiation. Despite the low bacterial load used, M. tuberculosis-infected monocytes had fewer granules, displayed a reduced number of cytoplasmic projections and decreased HLA class II, CD68, CD86 and CD36 expression compared to cells differentiated in the absence of mycobacteria. Infected cells produced less IL-12p70, TNF-α, IL-10, IL-6 and high IL-1β in response to lipopolysaccharide and purified protein M. tuberculosis-derived. Reduced T-cell proliferative response and IFN-γ secretion in response to phytohemagglutinin and culture filtrate proteins from M. tuberculosis was also observed in infected cells when compared to non-infected ones. The ability of monocytes differentiated in the presence of M. tuberculosis to control mycobacterial growth in response to IFN-γ stimulation was attenuated, as determined by bacterial plate count; however, they had a similar ability to uptake fluorescent M. tuberculosis and latex beads compared to non-infected cells. Recombinant IL-1β partially altered monocyte differentiation into macrophages; however, treating M. tuberculosis-infected monocytes with IL-1RA did not reverse the effects of infection during differentiation. The results indicated that M. tuberculosis infection altered monocyte differentiation into macrophages and affected their ability to respond to innate stimuli and activate T-cells.  相似文献   

5.
Mycobacterium tuberculosis is a leading cause of infectious disease in the world today. This outlook is aggravated by a growing number of M. tuberculosis infections in individuals who are immunocompromised as a result of HIV infections. Thus, new and more potent anti-TB agents are necessary. Therefore, acetolactate synthase (mtALS) was selected as a target enzyme to combat M. tuberculosis. In this work, the three-dimensional molecular model of the hypothetical structure for the ALS catalytic subunit of M. tuberculosis was elucidated by homology modelling. In addition, the orientations and binding affinities of sulfonylurea inhibitors with the new structure was investigated. Our findings could be helpful for the design of new, more potent mtAHAS inhibitors.  相似文献   

6.
The causative agent of tuberculosis, Mycobacterium tuberculosis, is one of the most successful of human pathogens. It can evade the host immune response and establish a persistent infection or enter a dormant state within the host which can be reactivated if the host becomes immuno-compromised. Both of these features are major obstacles to tuberculosis eradication. Dormancy and reactivation of M. tuberculosis are tightly coordinated dynamic processes involving numerous genes and their products. Molecular mechanisms underlying M. tuberculosis persistence may provide an opportunity for the discovery of effective drug targets for tuberculosis control. Here, we review the genes required for M. tuberculosis persistence and propose a regulatory network for the action of these genes using text mining. This should provide fresh insights into the persistence mechanisms of M. tuberculosis and suggest candidates for new drug targets and immune intervention.  相似文献   

7.
Strains of Mycobacterium bovis, M. bovis BCG, and M. tuberculosis, including a so-called Canetti strain, were analyzed by means of two-dimensional immunoelectrophoresis (2D-IE), 2D-IE combined with enzyme staining, and multilocus enzyme electrophoresis (MEE). The results demonstrated a close antigentic and enzymatic resemblance among all the strains tested, even though the BCG strains could be divided into two groups based on the presence of one precipitinogen. Eight of the precipitinogens were shown to correspond to enzymes in M. bovis BCG and 10 in M. tuberculosis. Thus, catalase, isocitrate dehydrogenase, malate dehydrogenase, peroxidase, and several others were identified. By means of MEE the strains of M. tuberculosis, M. bovis, and M. bovis BCG could be differentiated. The analyses further indicated that the M. tuberculosis strain Canetti was more closely related to M. bovis than to M. tuberculosis.  相似文献   

8.
The Mycobacterium tuberculosis protein kinase B (PknB) is critical for growth and survival of M. tuberculosis within the host. The series of aminopyrimidine derivatives show impressive activity against PknB (IC50 < .5 μM). However, most of them show weak or no cellular activity against M. tuberculosis (MIC > 63 μM). Consequently, the key structural features related to activity against of both PknB and M. tuberculosis need to be investigated. Here, two- and three-dimensional quantitative structure–activity relationship (2D and 3D QSAR) analyses combined with molecular dynamics (MD) simulations were employed with the aim to evaluate these key structural features of aminopyrimidine derivatives. Hologram quantitative structure–activity relationship (HQSAR) and CoMSIA models constructed from IC50 and MIC values of aminopyrimidine compounds could establish the structural requirements for better activity against of both PknB and M. tuberculosis. The NH linker and the R1 substituent of the template compound are not only crucial for the biological activity against PknB but also for the biological activity against M. tuberculosis. Moreover, the results obtained from MD simulations show that these moieties are the key fragments for binding of aminopyrimidine compounds in PknB. The combination of QSAR analysis and MD simulations helps us to provide a structural concept that could guide future design of PknB inhibitors with improved potency against both the purified enzyme and whole M. tuberculosis cells.  相似文献   

9.
结核分枝杆菌作为肺结核病的病原菌,在人类中致死率远高于其他病原菌.结核分枝杆菌具有特殊的疏水性细胞壁结构,这种致密的细胞壁结构帮助结核分枝杆菌抵御外界环境压力和来自宿主细胞的毒素.同时,它利用特殊的分泌系统将体内的毒力蛋白输出体外,ESX-1分泌系统就是其中之一.结核分枝杆菌ESX-1系统在结核分枝杆菌进入宿主细胞吞噬小体、逃逸至细胞质以及杀死吞噬细胞这些过程中发挥重要作用.研究表明,在结核分枝杆菌内膜上存在一个由多亚基组成、旨在帮助结核分枝杆菌向外输送分泌蛋白的分泌装置.在这个分泌装置的帮助下,结核分枝杆菌重要的毒力蛋白ESAT-6跨内膜向外分泌,EspB也通过这个内膜上的分泌装置被转运至胞外.EspB存在于静置培养的结核分枝杆菌的胶囊层中,也可在振荡培养的结核分枝杆菌的培养液中被检测.通过X射线晶体衍射分析,我们解析了EspB的晶体结构,相比于其他同源结构,发现了EspB的不同构象,即EspB单体能够自组装成为七聚体的规则结构,联系其与毒力因子ESAT-6具有共分泌的特点,七聚体构象的发现为解释EspB在结核分枝杆菌向外分泌蛋白的过程中发挥的作用提供线索,即EspB具有锚定在结核分枝杆菌胶囊层中,作为运输ESAT-6的孔道而存在的可能.  相似文献   

10.
Mycobacterium tuberculosis and Mycobacterium bovis are pathogenic bacterial species in the genus Mycobacterium and the causative agents of most cases of tuberculosis (TB). Detection of M. tuberculosis and M. bovis using conventional culture- and biochemical-based assays is time-consuming and laborious. Therefore, a simple and sensitive method for rapid detection has been anxiously awaited. In the present study, a visual loop-mediated isothermal amplification (LAMP) assay was designed from the rimM (encoding 16S rRNA-processing protein) gene sequence and used to rapidly detect M. tuberculosis and M. bovis from clinical samples in South China. The visual LAMP reaction was performed by adding calcein and manganous ion, allowing the results to be read by simple visual observation of color change in a closed-tube system, and which takes less than 1 h at 65 °C. The assay correctly identified 84 M. tuberculosis isolates, 3 M. bovis strains and 1 M. bovis BCG samples, but did not detect 51 non-tuberculous mycobacteria (NTM) isolates and 8 other bacterial species. Sensitivity of this assay for detection of genomic DNA was 1 pg. Specific amplification was confirmed by the ladder-like pattern of gel electrophoresis and restriction enzyme HhaI digestion. The assay successfully detected M. tuberculosis and M. bovis not only in pure bacterial culture but also in clinical samples of sputum, pleural fluid and blood. The speed, specificity, sensitivity of the rimM LAMP, the lack of a need for expensive equipment, and the visual readout show great potential for clinical detection of M. tuberculosis and M. bovis.  相似文献   

11.
Interactions between Mycobacterium tuberculosis bacilli and alveolar macrophages have been extensively characterized, while similar analyses in epithelial cells have not been performed. In this study, we microscopically examined endosomal trafficking of M. tuberculosis strain Erdman in A549 cells, a human type II pneumocyte cell line. Immuno‐electron microscopic (IEM) analyses indicate that M. tuberculosis bacilli are internalized to a compartment labelled first with Rab5 and then with Rab7 small GTPase proteins. This suggests that, unlike macrophages, M. tuberculosis bacilli traffic to late endosomes in epithelial cells. However, fusion of lysosomes with the bacteria‐containing compartment appears to be inhibited, as illustrated by IEM studies employing LAMP‐2 and cathepsin‐L antibodies. Examination by transmission electron microscopy and IEM revealed M. tuberculosis‐containing compartments surrounded by double membranes and labelled with antibodies against the autophagy marker Lc3, providing evidence for involvement and intersection of the autophagy and endosomal pathways. Interestingly, inhibition of the autophagy pathway using 3‐methyladenine improved host cell viability and decreased numbers of viable intracellular bacteria recovered after 72 h post infection. Collectively, these datasuggest that trafficking patterns for M. tuberculosis bacilli in alveolar epithelial cells differ from macrophages, and that autophagy is involved this process.  相似文献   

12.
Mammalian heterotrimeric GTP-binding proteins (G proteins) are involved in transmembrane signalling that couples a number of receptors to effectors mediating various physiological processes in mammalian cells. We demonstrate that bacterial proteins such as a Ras-like protein from Pseudomonas aeruginosa or a 65 kDa protein from Mycobacterium smegmatis can form complexes with human or yeast nucleoside diphosphate kinase (Ndk) to modulate their nucleoside triphosphate synthesizing specificity to GTP or UTP. In addition, we demonstrate that bacteria such as M. smegmatis or Mycobacterium tuberculosis harbour proteins that cross react with antibodies against the α-, β- or the γ-subunits of heterotrimeric G proteins. Such antibodies also alter the GTP synthesizing ability of specific membrane fractions isolated from glycerol gradients of such cells, suggesting that a membrane-associated Ndk–G-protein homologue complex is responsible for part of GTP synthesis in these bacteria. Indeed, purified Ndk from human erythrocytes and M. tuberculosis showed extensive complex formation with the purified mammalian α and β G-protein subunits and allowed specific GTP synthesis, suggesting that such complexes may participate in transmembrane signalling in the eukaryotic host. We have purified the α-, β- and γ-subunit homologues from M. tuberculosis and we present their internal amino acid sequences as well as their putative homologies with mammalian subunits and the localization of their genes on the M. tuberculosis genome. Using oligonucleotide probes from the conserved regions of the α- and γ-subunit of M. tuberculosis G-protein homologue, we demonstrate hybridization of these probes with the genomic digest of M. tuberculosis H37Rv but not with that of M. smegmatis, suggesting that M. smegmatis might lack the genes present in M. tuberculosis H37Rv. Interestingly, the avirulent strain H37Ra showed weak hybridization with these two probes, suggesting that these genes might have been deleted in the avirulent strain or are present in limited copy numbers as opposed to those in the virulent strain H37Rv.  相似文献   

13.
In many bacterial species, the translational GTPase TypA acts as a global stress- and virulence regulator and also mediates resistance to the antimicrobial peptide BPI. On the chromosome of M. tuberculosis, typA is located next to narGHJI, which plays a role in adaptation of the pathogen to various environmental conditions. Here, we show that Mycobacterium tuberculosis is sensitive to P2, a derivative of BPI. Using a typA mutant of M. tuberculosis, we found this phenotype to be independent of TypA. We further tested typA expression in M. tuberculosis under defined stress conditions, such as oxygen- and nutrient depletion, low pH, heat shock, antibiotic stress and the presence of P2, and found that typA expression remains unaffected by any of these conditions. Analysis of growth and whole-genome expression revealed similar growth kinetics and gene expression profiles of the wild type and the mutant under normal growth conditions as well as under stress conditions. Our results suggest that in contrast to the findings in other bacteria, TypA does not act as a global stress- and virulence regulator in M. tuberculosis.  相似文献   

14.
Mycobacterium tuberculosis H37 Rv, the slow-growing human pathogenic strain of tubercle bacilli and Mycobacterium smegmatis and Mycobacterium phlei, the fast-growing saprophytes, have shown variations regarding the type of dehydrogenase that initiates malate oxidation in the respiratory chain.M. tuberculosis H37Rv is characterized by having a malate oxidase system (designated MALNAD pathway) in which malate oxidation is mediated by the NAD+? dependent malate dehydrogenase (EC 1.1.1.37) but not by FAD-dependent malatevitamin K reductase. M. smegmatis possesses a different malate oxidase system (designated MALFAD pathway) in which malate oxidation is exclusively carried out by the FAD-dependent malate-vitamin K reductase because NAD+-dependent malate dehydrogenase is absent in this organism. M. phlei has a mixed system of malate oxidase (designated MALNAD+FAD pathways) in which both the NAD+? and FAD-dependent dehydrogenases take part. In all the three systems, the rest of the electron transport chain is common.  相似文献   

15.
16.
The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculosis (M. tuberculosis), a human pathogen that causes most cases of tuberculosis (TB). The sliding clamp from M. tuberculosis forms a ring-shaped head-to-tail dimer with three domains per subunit. Each domain contains two α helices in the inner ring that lie against two β sheets in the outer ring. Previous studies have indicated that many Escherichia coli clamp-binding proteins have a conserved LF sequence, which is critical for binding to the hydrophobic region of the sliding clamp. Here, we analyzed the binding affinities of the M. tuberculosis sliding clamp and peptides derived from the α and δ subunits of Pol III, which indicated that the LF motif also plays an important role in the binding of the α and δ subunits to the sliding clamp of M. tuberculosis.  相似文献   

17.
18.
M. tuberculosis causes an enormous worldwide burden of disease. Its success depends upon subverting the antimicrobial capacity of macrophages. We have known for decades that M. tuberculosis impairs phagosomal trafficking to avoid lysosomal degradation, but the mechanism is unclear. Recent work has described a phagolysosomal pathway called LC3-associated phagocytosis (LAP), in which LC3 associates with microbe-containing phagosomes. Macrophage pathogen recognition receptors (PRRs) initiate LAP, and NADPH oxidase and RUBCN/RUBICON are required for LAP. We discovered that CpsA, an exported M. tuberculosis virulence factor, blocks LAP by interfering with recruitment of CYBB/NOX2 (cytochrome b-245, beta polypeptide) to the mycobacterial phagosome. In macrophages and in mice, M. tuberculosis mutants lacking cpsA are successfully cleared by NADPH oxidase and the ensuing LC3-associated lysosomal trafficking pathway. CpsA belongs to the LytR-CpsA-Psr family, which is found widely in Gram-positive bacilli. This family is known for its enzymatic role in cell wall assembly. However, our data suggest that CpsA inhibits CYBB oxidase independently of a cell wall function. Thus, CpsA may have evolved from an enzyme involved in cell wall integrity to an indispensable virulence factor that M. tuberculosis uses to evade the innate immune response.  相似文献   

19.
Abstract

Over a decade ago, the analysis of the complete sequence of the genome of the human pathogen Mycobacterium tuberculosis revealed an unexpectedly high number of open reading frames encoding proteins with homology to polyketide synthases (PKSs). PKSs form a large family of fascinating multifunctional enzymes best known for their involvement in the biosynthesis of hundreds of polyketide natural products with diverse biological activities. The surprising polyketide biosynthesis capacity of M. tuberculosis has been investigated since its initial inference from genome analysis. This investigation has been based on the genes found in M. tuberculosis or their orthologs found in other Mycobacterium species. Today, the majority of the PKS-encoding genes of M. tuberculosis have been linked to specific biosynthetic pathways required for the production of unique lipids or glycolipid conjugates that are critical for virulence and/or components of the extraordinarily complex mycobacterial cell envelope. This review provides a synopsis of the most relevant studies in the field and an overview of our current understanding of the involvement of PKSs and several other polyketide production pathway-associated proteins in critical biosynthetic pathways of M. tuberculosis and other mycobacteria. In addition, the most relevant studies on PKS-containing biosynthetic pathways leading to production of metabolites from mycobacteria other than M. tuberculosis are reviewed.  相似文献   

20.
Mycobacterium tuberculosis complex strains contain a unique chromosomal region, which consists of multiple 36bp direct repeats (DRs), which are interspersed by unique spacers 35 to 41 bp in length. In this study we investigated the nature of the DNA polymorphism of this DR cluster by sequencing part of this region in a large number of M. tuberculosis complex strains. Two types of genetic rearrangements were observed. One type consists of the variation in one or a few discrete, contiguous DRs plus spacer sequences. This variation is probably driven by homologous recombination between adjacent or distant DRs. The other type of polymorphism is probably driven by transpositional events of the insertion sequence, IS6110, which is almost invariably present in the DR cluster of M. tuberculosis complex strains. Based on the nature of the DNA polymorphism in the DR cluster, we developed a novel method of strain differentiation, direct variable repeat polymer chain reaction (DVR-PCR), which enables typing of individual M. tuberculosis strains in a single PCR. The method allows an excellent differentiation of epidemiologically unrelated isolates and, in principle, the DVR-PCR allows the detection of M. tuberculosis and strain differentiation at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号