首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study characterized conformational states of platelet glycoprotein IIb-IIIa (GPIIb-IIIa) and regions of the molecule required for fibrinogen binding. Platelet lysates were passed sequentially over concanavalin A and aminoethylglycine (Aeg)RGDS affinity columns. Approximately 10% of the total GPIIb-IIIa bound to the Aeg-RGDS column. The non-binding GPIIb-IIIa was further purified by S300 gel filtration. Only GPIIb-IIIa which recognized immobilized RGDS bound fibrinogen. The functional difference between the Aeg-RGDS binding GPIIb-IIIa (active) and the S300-purified complex (inactive) suggested that the two populations existed in different conformations. This was confirmed immunochemically and in an assay utilizing endoproteinase Arg-C. Active GPIIb-IIIa was heavily degraded by Arg-C, whereas inactive GPIIb-IIIa was highly resistant to degradation. Receptor occupancy by RGDV or peptidomimetic inhibitors prevented degradation of regions of the active complex and stimulated hydrolysis of the inactive receptor such that the two populations yielded fragments of identical electrophoretic mobility. Induction of hydrolysis of inactive GPIIb-IIIa required 15-fold higher concentrations of RGDV than protection of the active complex. Upon removal of inhibitor, fragments generated from either active or inactive GPIIb-IIIa bound fibrinogen. The ability of carboxypeptidase Y to digest inhibitor-protected GPIIb-IIIa was also examined. GPIIb was cleaved to a 58-kDa NH2-terminal fragment, whereas GPIIIa remained essentially intact. The complexed fragments bound fibrinogen with similar affinity as intact GPIIb-IIIa. This binding was inhibited by both RGDV and HHLGGAKQAGDV peptides. These data suggest that: 1) purified active and inactive GPIIb-IIIa exist in different conformations and have different affinities for RGDV; 2) certain peptidomimetic inhibitors (Ro 42-1499 and Ro 43-5054) alter the conformation of inactive GPIIb-IIIa; 3) GPIIIa and a 58-kDa NH2-terminal fragment of GPIIb alpha form a high affinity fibrinogen binding complex.  相似文献   

2.
The serine proteinase alpha chymotrypsin from bovine pancreas (CT) is known to expose fibrinogen binding sites on the surface of human platelets in the absence of cell activation and granular secretion. This is accompanied by the appearance of membrane-bound chymotryptic fragments of both glycoprotein (GP) IIb and GPIIIa, the two subunits of the platelet fibrinogen receptor, the GPIIb-IIIa complex. However, no clear relationship between discrete proteolytic event(s) within GPIIb-IIIa and fibrinogen-binding-site expression has yet been established. We have now evaluated the proteolysis of GPIIb-IIIa by CT by Western blot analyses using a panel of polyclonal and monoclonal antibodies against GPIIb or GPIIIa. The different proteolytic events were then correlated with the kinetics of the expression of active fibrinogen binding sites on platelets, as measured through the binding of 125I-labelled purified fibrinogen and to the capacity of CT-treated platelets to aggregate. Treatment of platelets with CT at 22 degrees C resulted in the expression of fibrinogen binding sites prior to cleavage of GPIIIa (Mr approximately 90,000) into a previously described, major membrane-bound fragment with Mr 60,000. In contrast, fibrinogen receptor expression closely paralleled a proteolytic cleavage at the carboxy terminus of the GPIIb heavy chain (Mr approximately 120,000), which was converted into a faster migrating species with Mr approximately 115,000). This proteolysis resulted in the release of a soluble peptide with an expected molecular mass of less than 3.7 kDa. Quantitation of this peptide using a competitive immunoenzymatic assay, confirmed that its release from the platelet surface correlated with the expression of fibrinogen binding sites and aggregability. When platelets were exposed to CT at 37 degrees C, a prompt increase in fibrinogen binding sites and platelet aggregability was observed, whereas the GPIIb heavy chain was rapidly converted into the carboxy-terminal-cleaved form. However, incubation at 37 degrees C for longer than 10 min resulted in extensive and simultaneous degradation of both the GPIIb heavy and light chains and of GPIIIa, with the latter being converted into the 60-kDa fragment. These later events were associated with a sharp decline of platelet aggregability and a reduction in the number of fibrinogen binding sites. These data allow us to propose that an early and limited proteolytic processing of the GPIIb component of the platelet fibrinogen receptor is associated with a shift of this receptor complex into a state which expresses specific binding sites for fibrinogen. Further cleavage of GPIIIa to generate the 60-kDa fragment results in loss of receptor activity.  相似文献   

3.
The platelet integrin, glycoprotein IIb-IIIa (GPIIb-IIIa), is a calcium-dependent heterodimer that binds fibrinogen, von Willebrand factor, and fibronectin after platelet activation. We examined GPIIb-IIIa alone and bound to these ligands by electron microscopy after rotary shadowing with platinum/tungsten. We found, as observed previously, that in the presence of detergent and 2 mM Ca2+, GPIIb-IIIa consists of an 8 x 12-nm globular head with two 18-nm flexible tails extending from one side. We also found that in the presence of EDTA, GPIIb-IIIa dissociates into two similar comma-shaped subunits, each containing a portion of the globular head and a single tail. Using monoclonal antibodies to GPIIb, GPIIIa, and the GPIIb-IIIa heterodimer, we found that the tails contained the carboxyl termini of each subunit, while the nodular head was composed of amino-terminal segments of both subunits. Electron microscopy of GPIIb-IIIa bound to fibrinogen revealed a highly specific interaction of the nodular head of GPIIb-IIIa with the distal end of the trinodular fibrinogen molecule and with the tails of GPIIb-IIIa extended laterally at an angle of approximately 98 degrees with respect to the long axis of fibrinogen. When a GPIIb-IIIa was bound to each end of a single fibrinogen, the tails were oriented to opposite sides of fibrinogen, enabling fibrinogen to bridge two adjacent platelets. Electron microscopy of GPIIb-IIIa bound to fibronectin revealed GPIIb/IIIa-binding sites approximately two-thirds of the distance from the amino terminus of each end of the fibronectin molecule, while GPIIb-IIIa was found to bind to von Willebrand factor protomers along a rod-like region near the central nodule of the molecule.  相似文献   

4.
Alternative model for the internal structure of laminin   总被引:4,自引:0,他引:4  
S L Palm  J B McCarthy  L T Furcht 《Biochemistry》1985,24(26):7753-7760
A monoclonal antibody to laminin, LMN-1, was generated by immunizing rats with laminin from the EHS tumor and fusing the rat spleen cells with mouse NS-1 myeloma cells. Laminin fragments were generated by proteolytic digestion with thrombin, thermolysin, and chymotrypsin. Monoclonal antibody binding fragments were identified by immunoblotting. Fragments which bound monoclonal antibody LMN-1 included a 440-kilodalton (kDa) chymotrypsin fragment and thermolysin fragments of 440 and 110 kDa. These fragments could also be generated from within a 600-kDa thrombin fragment. Digestion of the 440-kDa chymotrypsin fragment with thermolysin generated the 110-kDa antibody binding fragment and a 330-kDa nonbinding fragment. Immunoblotting was performed on extracts of PYS-2 cells and EHS cells using polyclonal and monoclonal antibodies to laminin. Polyclonal antibodies stained the intact 850-kDa complex and the 200- and 400-kDa subunits, while monoclonal LMN-1 stained only the 400-kDa subunit and the complete molecule. Rotary shadowing of monoclonal LMN-1 bound to laminin molecules indicated that the binding site was within the long arm of laminin. Changes in the model of the internal organization of the laminin molecule are proposed, based on the binding of LMN-1 to the 400-kDa subunit and specific proteolytic fragments. The locations of the major thrombin and chymotrypsin fragments in the model are rotated 180 degrees relative to the previously described model [Ott, U., Odermatt, E., Engel, J., Furthmayr, H., & Timpl, R. (1982) Eur. J. Biochem. 123, 63-72] to include part of the 400-kDa subunit of laminin.  相似文献   

5.
《The Journal of cell biology》1993,120(4):1021-1030
Treatment of human platelets by EDTA (5 mM at 37 degrees C and pH 7.4 for 30 min) induces ultrastructural morphological changes of the surface-connected canalicular system (SCCS). The first consists in dilations of some portions of the channels, whereas the second is represented by collapse of parts of the canaliculi. The collapsed elements of the EDTA treated SCCS are made up of two parallel limiting membranes and a central striated zone. Some of the EDTA treated platelets form microaggregates, the cohesion of which is apparently due to the appearance of pentalaminar interplatelet structures. EDTA treatment is known to induce an irreversible loss of platelet aggregability which is due to irreversible dissociation of the membrane GPIIb-IIIa complexes. In the present study, we looked for involvement of GPIIb-IIIa in the formation of these pentalaminar structures, and were able to demonstrate that the morphological changes described are in fact directly dependent on the EDTA induced dissociation of GPIIb- IIIa complexes. Indeed, we observed that these changes (a) cannot be induced in type I Glanzmann's thrombasthenia, where GPIIb-IIIa complexes are absent, (b) do not appear when human platelets are preincubated with monoclonal anti-GPIIb-IIIa complex-dependent (CD41a) antibodies, which protect the complex from EDTA induced dissociation, (c) appear only at alkaline pH and at 37 degrees C, which corresponds to the range of pH and temperature where EDTA can dissociate GPIIb-IIIa complexes, (d) are accompanied by the disappearance in fluorescence flow cytometry of the heterodimer complex-dependent epitopes, when using anti-CD41a antibodies and (e) do not appear in rat platelets, where GPIIb-IIIa does not dissociate after EDTA treatment. Furthermore, using gold-labeled mAbs concomitantly with the addition of EDTA, we observed that almost only GPIIb was present in the collapsed regions of the canaliculi. Using double labeling studies with polyclonal anti- GPIIb antibodies coupled to 10 nm gold particles and polyclonal anti- GPIIIa antibodies coupled to 20 nm gold particles, we observed that while both 10 and 20 nm particles were present in the dilated portions of the canaliculi almost only the small particles, coupled to the anti- GPIIb antibodies, labeled the collapsed portions of the SCCS. On Lowicryl thin sections, polyclonal antibodies against GPIIb labeled the central striated zone while both GPIIb and GPIIIa were found in the dilated portions of the SCCS. All these observations lead us to suggest that homopolymers of GPIIb could be responsible for "zipping" of the SCCS.  相似文献   

6.
Fibronectin receptors on mononuclear phagocytes are involved in the localization of monocytes at inflammatory sites and in the subsequent expression of macrophage-like phenotypes. In this study, we have investigated the hypothesis that proteolytically derived fragments of fibronectin may interfere with binding of fibronectin to monocytes in the extracellular matrix. We report on the reactivity of U937 cells with an 80-kDa tryptic fragment of fibronectin which contains the cell-binding domain but lacks the gelatin/collagen-binding domain. U937 cells attached to surfaces coated with the 80-kDa fragment as well as with intact fibronectin. Preincubation of the cells with the 80-kDa fragment inhibited attachment to both surfaces while intact fibronectin had little or no inhibitory effect. The Ki for inhibition of attachment (0.5 microM) was consistent with the Kd for binding of the 3H-labeled 80-kDa fragment (0.34 microM) to U937 cells in suspension. There were 4-5 x 10(5) 80-kDa binding sites per cell. The relatively high affinity of the 80-kDa fragment for the monocyte surface permitted the isolation and characterization of fibronectin-binding proteins from U937 cells and peripheral blood monocytes by affinity chromatography. When octylglucoside lysates of lactoperoxidase iodinated cells were applied to 80-kDa-Sepharose columns, a polypeptide complex of 152/125 kDa was eluted with the synthetic peptide GRGDSPC, but not with GRGESP. This complex resolved into a single diffuse band of 144 kDa upon reduction. Binding of the protein complex to the affinity column required divalent cations. The complex bound to wheat germ agglutinin and could be specifically eluted by N-acetylglucosamine. Similar cell-surface proteins were isolated from peripheral blood monocytes.  相似文献   

7.
Cell surface molecules that bind fibronectin's matrix assembly domain   总被引:4,自引:0,他引:4  
The assembly of fibronectin into disulfide cross-linked extracellular matrices requires the interaction of mesenchymal cells with two distinct sites on fibronectin, the Arg-Gly-Asp cell adhesive site and an amino-terminal site contained within the first five type I homologous repeats (Quade, B. J., and McDonald, J. A. (1988) J. Biol. Chem. 263, 19602-19609). Proteolytically derived 29-kDa fragments of fibronectin (29kDa) containing these repeats bind to monolayers of cultured fibroblasts and inhibit fibronectin matrix assembly. The cell surface molecules interacting with fibronectin's 29-kDa matrix assembly domain have resisted purification using conventional methods such as affinity chromatography. Accordingly, in order to identify molecules which bind this fragment, 125I-labeled 29kDa was allowed to bind to fibroblast monolayers and chemically cross-linked to the cell surface with bis(sulfosuccinimidyl) suberate. Extraction of the cross-linked cell layer yielded radiolabeled complexes of 56, 150, and 280 kDa. Formation of these cross-linked complexes was specifically inhibited by the addition of excess unlabeled 29kDa but was unaffected by the presence of fibronectin fragments containing other type I repeats outside of the 29kDa matrix assembly domain. The cross-linked complexes were insoluble in nondenaturing detergents but soluble when denatured and reduced, suggesting that 29kDa may be cross-linked to components of the pericellular matrix. Immunoprecipitation of cross-linked cell extracts with a polyclonal antibody to fibronectin that does not recognize the amino terminus demonstrate that the 280-kDa band contains 29kDa cross-linked to fibronectin present on the cell surface. Formation of the 150-kDa complex was inhibited by EDTA, suggesting that divalent cations are required for its formation. Although the molecular mass and divalent cation requirement suggest that the 150-kDa complex may be related to an integrin, this complex was not immunoprecipitated by polyclonal antibodies generated to the alpha 5 beta 1 integrin fibronectin receptor.  相似文献   

8.
The Arg-Gly-Asp (RGD)-binding domain of GPIIb-IIIa has been localized in a fragment of the GPIIIa subunit that includes the sequence between amino acids 109 and 171. To examine, in a platelet membrane environment, the activated versus nonactivated status of this domain, we have produced a monoclonal antibody against a synthetic peptide (residues 109-128) located within the RGD-binding region on GPIIIa. This kappa-IgM, named AC7, was specific for GPIIIa peptide 109-128 and interacted only with activated platelets. Fibrinogen, RGDF peptide, and the fibrinogen phi chain decapeptide LGGAKQAGDV inhibited the binding of AC7 to ADP-stimulated platelets. AC7 IgM and "small fragments" inhibited fibrinogen binding and platelet aggregation in a dose-dependent fashion. Induction of AC7 binding by D33C, a monoclonal antibody recognizing the GPIIb 426-437 sequence and stimulating fibrinogen binding, indicated that the GPIIb 426-437 and the GPIIIa 109-128 sequences were both involved in a stimulation-dependent conformational modification of the receptor. AC7 was able to recognize beta subunits other than GPIIIa on leucocyte surfaces but only after cell fixation with glutaraldehyde. The results are consistent with the implication of the RGD-binding domain in receptor ligand interaction on the platelet surface and its conformational modification and exposure upon receptor induction.  相似文献   

9.
The interaction of thrombospondin with platelet glycoprotein GPIIb-IIIa   总被引:7,自引:0,他引:7  
The interaction of human platelet thrombospondin (TSP) with human platelet glycoproteins GPIIb-IIIa was studied using a solid-phase binding assay. Polystyrene test tubes were coated with TSP, and 125I-labeled GPIIb-IIIa was added, allowed to bind, and the bound radioactivity was measured. After 90 min, the binding became time independent, and in most experiments, more than 10% of the exogenously added radioactivity was bound to the tube. Analysis of the bound radioactivity by polyacrylamide gel electrophoresis and autoradiography indicated that it was from labeled GPIIb-IIIa. Several lines of evidence indicate that the binding of GPIIb-IIIa to TSP was specific. (a) TSP immobilized on plastic or Sepharose bound 3-10-fold more GPIIb-IIIa than immobilized bovine serum albumin. (b) Addition of unlabeled excess GPIIb-IIIa reversed the binding of 125I-labeled GPIIb-IIIa to immobilized TSP. (c) Addition of EDTA inhibited the binding of GPIIb-IIIa to TSP by more than 90%, whereas addition of 1 mM CaCl2 and 1 mM MgCl2 potentiated the binding by more than 100%. (d) Monoclonal antibodies against TSP and GPIIb-IIIa inhibited the binding by 30-70% as compared with control and polyclonal anti-fibrinogen anti-serum. (e) A plot of GPIIb-IIIa bound versus GPIIb-IIIa added was best described as a rectangular hyperbola by regression analysis with half-saturation at 60 ng/ml GPIIb-IIIa. Similar results were obtained when labeled TSP was added to tubes coated with GPIIb-IIIa. These results show that TSP and GPIIb-IIIa can specifically interact in vitro and suggest that GPIIb-IIIa may function as a platelet TSP receptor during platelet aggregation.  相似文献   

10.
The binding of fibronectin (Fn) to several integrins involves the Arg-Gly-Asp (RGD) tripeptide sequence. However, linear synthetic RGD peptides do not completely mimic the cell attachment activity of intact Fn or certain large Fn fragments. This suggests that the integrin-Fn interaction involves a more extended surface of Fn than that provided by the RGD sequence. To test this possibility, three novel monoclonal anti-Fn antibodies that inhibit its binding to a purified integrin, alpha IIb beta 3, were developed. The epitopes of these three antibodies mapped to a region at least 55 residues amino-terminal of the RGD sequence. Further, recombinant fragments of Fn containing these epitopes and lacking the RGD site also inhibited the binding of Fn to purified alpha IIb beta 3. These fragments, which spanned Fn residues 1359-1436, bound to alpha IIb beta 3 in a divalent cation-dependent manner. In addition, this region of Fn bound specifically to alpha IIb beta 3 on thrombin-stimulated but not resting platelets. These results demonstrate the presence of additional sequences in Fn that interact with integrin alpha IIb beta 3 and suggest that multiple sites in Fn are involved in its recognition by this integrin.  相似文献   

11.
P-glycoprotein is an energy-dependent drug efflux pump with broad specificity for hydrophobic antitumor agents such as vinblastine, doxorubicin, and taxol. We have previously shown that [3H]azidopine and [125I] iodoaryl azidoprazosin, which are photoaffinity probes for the alpha 1-subunit of the L-type calcium channel and alpha 1-adrenergic receptor, respectively, specifically interact with P-glycoprotein, partially reverse multidrug resistance, and bind to a 6-kDa common domain in the 140-kDa P-glycoprotein molecule (Greenberger, L., Yang, C.-P. H., Gindin, E., and Horwitz, S. B. (1990) J. Biol. Chem. 265, 4394-4401). An immunological approach was used to identify the position of photoaffinity drug-binding domains in P-glycoprotein. Analysis was done with a series of site-specific rabbit polyclonal antibodies to peptides that mimic domains in the mouse mdr1b gene product. The antibodies were made against amino acid residues 269-284, 356-373, 665-682, 740-750, 907-924, and 1203-1222. Upon trypsin digestion, cleavage products of 95 and 55 kDa were obtained, which after further digestion migrated at 60 and 40 kDa, respectively. The 40-kDa fragment was recognized by the antibodies to residues 1203-1222 and 919-1276, while the 55-kDa fragment was recognized by these antibodies plus antibodies to residues 740-750 and 907-924. In contrast, the 95- and 60-kDa trypsin fragments were recognized only by the antibody to residues 269-284. The 55- and 40-kDa fragments, as well as the 95- and 60-kDa fragments, were major photolabeled species after digestion of P-glycoprotein. The previously identified 6-kDa photo-labeled P-glycoprotein fragment was within the 40-kDa trypsin fragment. These data suggest that there are two photoaffinity drug-binding domains in P-glycoprotein encoded by mouse mdr1b. The C-terminal site most likely resides within or in close proximity to putative transmembrane domains 11-12.  相似文献   

12.
Thrombospondin is a major glycoprotein of the platelet alpha-granule and is secreted during platelet activation. Several protease-resistant domains of thrombospondin mediate its interactions with components of the extracellular matrix including fibronectin, collagen, heparin, laminin, and fibrinogen. Thrombospondin, as well as fibronectin, is composed of several discretely located biologically active domains. We have characterized the thrombospondin binding domains of plasma fibronectin and determined the binding affinities of the purified domains; fibronectin has at least two binding sites for thrombospondin. Thrombospondin bound specifically to the 29-kDa amino-terminal heparin binding domain of fibronectin as well as to the 31-kDa non-heparin binding domain located within the larger 40-kDa carboxy-terminal fibronectin domain generated by chymotrypsin proteolysis. Platelet thrombospondin interacted with plasma fibronectin in a specific and saturable manner in blot binding as well as solid-phase binding assays. These interactions were independent of divalent cations. Thrombospondin bound to the 29-kDa fibronectin heparin binding domain with a Kd of 1.35 x 10(-9) M. The Kd for the 31-kDa domain of fibronectin was 2.28 x 10(-8) M. The 40-kDa carboxy-terminal fragment bound with a Kd of 1.65 x 10(-8) M. Heparin, which binds to both proteins, inhibited thrombospondin binding to the amino-terminal domain of fibronectin by more than 70%. The heparin effect was less pronounced with the non-heparin binding carboxy-terminal domain of fibronectin. By contrast, the binding affinity of the thrombospondin 150-kDa domain, which itself lacked heparin binding, was not affected by the presence of heparin. Based on these data, we conclude that thrombospondin binds with different affinities to two distinct domains in the fibronectin molecule.  相似文献   

13.
Fibroblasts organize the modular cell-adhesive glycoprotein fibronectin into a highly structured pericellular matrix by poorly understood mechanisms. Previous studies implicated an amino-terminal domain in matrix assembly and suggested that fibronectin's cell-adhesive domain and the corresponding fibroblast receptor were not involved in this process. To further elucidate the fibronectin region(s) involved in matrix assembly, we mapped a library of proteolytic fragments and antibodies to various fibronectin domains. The fragments and antibodies were used to probe the role of fibronectin's amino-terminal and cell-adhesive domains in a fibroblast matrix assembly assay. We found that fibronectin fragments including the first 25-kDa sequence of fibronectin and antibodies to amino-terminal domains inhibited pericellular matrix assembly. Polyclonal antibodies to the 40-kDa collagen binding domain following the 25-kDa amino-terminal domain also inhibited matrix assembly. However, collagen binding is not required for matrix assembly as neither monoclonals blocking collagen binding nor purified collagen binding domains themselves inhibited matrix assembly. Therefore, the amino-terminal region of fibronectin contains a site important in matrix assembly, and most activity is present in the first 25-kDa of fibronectin. Fibronectin's cell-adhesive domain and the fibroblast receptor binding to this domain also play an important role in fibronectin matrix assembly. Apart from a monoclonal antibody to the amino-terminal domain, only monoclonal antibodies binding to fibronectin's cell-adhesive domain and inhibiting cell adhesion also inhibited matrix assembly. In addition a 105-kDa fragment containing the cell-adhesive domain inhibited matrix assembly. We conclude that at least two discrete and widely separated sites in fibronectin with different binding properties--the carboxyl-terminal fibroblast cell-adhesive domain and an amino-terminal matrix assembly domain localized primarily within the first 25 kDa--are required for fibronectin pericellular matrix assembly by fibroblasts. Fibronectin's cell-adhesive domain and its cell surface-receptor complex appear to be involved in the matrix assembly process prior to a step involving the amino-terminal domain. We believe that this step is likely to be the initiation of cell-associated fibronectin fibril formation by the fibronectin-adhesive-receptor complex.  相似文献   

14.
Monoclonal anti-idiotypic antibodies (3C3F3E4 and 10D3F8H7) that interact with platelet activating factor (PAF) receptors were generated using an auto-anti-idiotypic approach by immunizing mice with an aldehydic analog of PAF coupled to bovine thyroglobulin. The resulting hybridomas were screened for anti-idiotypic antibody (anti-anti-PAF) with F(ab')2 fragments of affinity-purified polyclonal rabbit anti-PAF antibody. These antibodies displayed internal image properties of PAF and were considered as Ab2 beta according to the following criteria: (a) they bound to F(ab')2 fragments of the affinity-purified rabbit polyclonal anti-PAF antibody that had high affinity for PAF; (b) they inhibited [3H]PAF binding to rabbit polyclonal anti-PAF antibody and its F(ab')2 fragment in a concentration-dependent manner; (c) they displaced [3H]PAF from the anti-PAF antibody/[3H]PAF complex specifically; (d) they inhibited [3H]PAF binding to PAF receptors on rabbit platelet membranes dose dependently; (e) they displaced [3H]PAF from the [3H]PAF/PAF receptor complex specifically; and (f) they stimulated rabbit platelets to aggregate, and this aggregation could be inhibited or totally blocked by specific PAF receptor antagonists WEB 2086 and SRI 63-441. All of the above are consistent with the first successful production of monoclonal antibodies that mimic PAF and interact specifically with the PAF binding domain of PAF receptors on rabbit platelet membranes.  相似文献   

15.
A 39/34-kilodalton (kDa) monomeric dispase fragment of von Willebrand factor (vWF) has been purified by heparin affinity chromatography. Detailed structural analysis of the individual 39- and 34-kDa fragments indicated that they had identical amino acid sequences extending from Leu-480/Val-481 to Gly-718 with an intramolecular disulfide bond between Cys-509 and Cys-695. In addition to the binding site for heparin, the 39/34-kDa fragment also contained binding sites for collagen and for platelet membrane glycoprotein (GP) Ib. Unlike native vWF, the 39/34-kDa fragment bound to GP Ib without the requirement for a modulator but showed increased binding in the presence of botrocetin. The 39/34-kDa vWF fragment was cross-linked to intact human platelets by using the membrane-impermeable, homobifunctional cross-linking reagent bis(sulfosuccinimidyl) suberate. Two distinct cross-linked species of similar molecular weight (220/200 kDa, nonreduced; 190/175 kDa, reduced) were identified by SDS-polyacrylamide gel electrophoresis and autoradiography, consistent with the cross-linking of the 125I-labeled 39/34-kDa vWF fragment to GP Ib. The formation of these cross-linked species was enhanced 1.5-2.5-fold in the presence of the modulator botrocetin. The platelet membrane protein involved in cross-linking was shown unequivocally to be GP Ib since (i) neither cross-linked species was formed with Bernard-Soulier syndrome platelets, which genetically lack the GP Ib-IX complex, (ii) both cross-linked species were specifically immunoprecipitated by anti-GP Ib polyclonal and monoclonal antibodies, and (iii) the formation of the cross-linked species was completely inhibited only by those anti-GP Ib-IX complex monoclonal antibodies that inhibited vWF-GP Ib-IX complex interaction. Proteolysis of cross-linked platelets with endoproteinase Lys-C, which preferentially cleaves off the N-terminal peptide domain on the alpha-chain of GP Ib, indicated that the 39/34-kDa vWF fragment was cross-linked exclusively to this region of the GP Ib-IX complex.  相似文献   

16.
We have used proteolytic fragments and overlapping synthetic peptides to define the domain of von Willebrand factor (vWF) that forms a complex with botrocetin and modulates binding to platelet glycoprotein (GP) Ib. Both functions were inhibited by the dimeric 116-kDa tryptic fragment and by its constituent 52/48-kDa subunit, comprising residues 449-728 of mature vWF, but not by the dimeric fragment III-T2 which lacks amino acid residues 512-673. Three synthetic peptides, representing discrete discontinuous sequences within the region lacking in fragment III-T2, inhibited vWF-botrocetin complex formation; they corresponded to residues 539-553, 569-583, and 629-643. The 116-kDa domain, with intact disulfide bonds, exhibited greater affinity for botrocetin than did the reduced and alkylated 52/48-kDa molecule, and both fragments had significantly greater affinity than any of the inhibitory peptides. Thus, conformational attributes, though not strictly required for the interaction, contribute to the optimal functional assembly of the botrocetin-binding site. Accordingly, 125I-labeled botrocetin bound to vWF and to the 116-kDa fragment immobilized onto nitrocellulose but not to equivalent amounts of the reduced and alkylated 52/48-kDa fragment; it also bound to the peptide 539-553, but only when the peptide was immobilized onto nitrocellulose at a much greater concentration than vWF or the proteolytic fragments. These studies demonstrate that vWF interaction with GP Ib may be modulated by botrocetin binding to a discontinuous site located within residues 539-643. The finding that single point mutations in Type IIB von Willebrand disease are located in the same region of the molecule supports the concept that this domain may contain regulatory elements that modulate vWF affinity for platelets at sites of vascular injury.  相似文献   

17.
A chemical cross-linking approach has been used to characterize the interaction of platelets with small peptides of 7 and 14 residues containing the arginyl-glycyl-aspartic acid (RGD) sequence recognized by a variety of cellular adhesion receptors. The radioiodinated peptides were bound to platelets, and chemical cross-linking was attained by subsequent addition of bifunctional reagents. Three different cross-linking reagents coupled the RGD-containing peptides to platelet membrane glycoprotein IIb-IIIa (GPIIb-IIIa), and both subunits of this platelet membrane glycoprotein became radiolabeled with the RGD peptides. Platelet stimulation with agonists including thrombin, phorbol myristrate acetate, and ADP increased the extent of cross-linking by predominantly enhancing the coupling of the RGD peptides to the GPIIIa subunit. Cross-linking of the labeled RGD peptides to GPIIb and GPIIIa on stimulated and nonstimulated platelets exhibited structural specificity and was inhibited by excess nonlabeled RGD peptides. The interactions were inhibited by nonlabeled RGD peptides and a peptide with an amino acid sequence corresponding to the carboxyl terminus of the gamma chain of fibrinogen but less effectively by an arginyl-glycyl-glutamic acid peptide. Cross-linking of the RGD peptides to GPIIb-IIIa was divalent ion-dependent and, on stimulated platelets, was inhibited by the adhesive proteins fibrinogen and fibronectin, but not by albumin. These results indicate that the RGD-binding sites on platelets reside in close proximity to both subunits of GPIIb-IIIa and that platelet stimulation alters the topography of these sites such that the peptides become more efficiently cross-linked to GPIIIa.  相似文献   

18.
Binding of calpain fragments to calpastatin   总被引:1,自引:0,他引:1  
Their cDNA-derived amino acid sequences predict that the 80-kDa subunits of the micromolar and millimolar Ca(2+)-requiring forms of the Ca(2+)-dependent proteinase (mu- and m-calpain, respectively) each consist of four domains and that the 28-kDa subunit common to both mu- and m-calpain consists of two domains. The calpains were allowed to autolyze to completion, and the autolysis products were separated and were characterized by using gel permeation chromatography, calpastatin affinity chromatography, and sequence analysis. Three major fragments were obtained after autolysis of either calpain. The largest fragment (34 kDa for mu-calpain, 35 kDa for m-calpain) contains all of domain II, the catalytic domain, plus part of domain I of the 80-kDa subunit of mu- or m-calpain. This fragment does not bind to calpastatin, a competitive inhibitor of the calpains, and has no proteolytic activity in either the absence or presence of Ca2+. The second major fragment (21 kDa for mu-calpain and 22 kDa for m-calpain) contains domain IV, the calmodulin-like domain, plus approximately 50 amino acids from domain III of the 80-kDa subunit of mu- or m-calpain. The third major fragment (18 kDa) contains domain VI, the calmodulin-like domain of the 28-kDa subunit. The second and third major fragments bind to a calpastatin affinity column in the presence of Ca2+ and are eluted with EDTA. The second and third fragments are noncovalently bound, so the 80- and 28-kDa subunits of the intact calpain molecules are noncovalently bound at domains IV and VI. After separation in 1 M NaSCN, the 28-kDa subunit binds completely to calpastatin, approximately 30-40% of the 80-kDa subunit of mu-calpain binds to calpastatin, and the 80-kDa subunit of m-calpain does not bind to calpastatin in the presence of 1 mM Ca2+.  相似文献   

19.
Trypsinization of rat brain protein kinase C (80 kDa) into 50- and 32-kDa fragments occurred without inhibition of [3H]phorbol dibutyrate ([3H]PDBu) binding activity. The 50-kDa fragment, the catalytic domain (Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616), was further degraded by trypsin, whereas the 32-kDa fragment was resistant. Protein kinase activity and the [3H]PDBu binding activity were completely separated upon gel filtration of a solution containing Triton X-100/phosphatidylserine mixed micelles and trypsinized protein kinase C. Pooled fractions of the [3H]PDBu binding activity contained a 32-kDa fragment exclusively. The binding of [3H]PDBu to this fragment was dependent on calcium and phosphatidylserine and was of high affinity (Kd = 2.8 nM) and of essentially identical specificity to that of native protein kinase C. It is concluded that the 32-kDa fragment represents a lipid binding, regulatory domain of protein kinase C.  相似文献   

20.
Two monoclonal anti-fibronectin antibodies that inhibit fibronectin-mediated cell adhesion have been established and characterized. One antibody, FN12-8, inhibited attachment of rat kidney fibroblasts on the fibronectin-coated substrate in a concentration-dependent manner, attaining a maximal inhibition of greater than 85% at 850 micrograms/ml. Another antibody, FN30-8, caused about 70% inhibition at a concentration as low as 0.85 microgram/ml, although further increase of the antibody concentration did not significantly augment the inhibitory effect. Immunoblot analysis with defined proteolytic fragments revealed that both antibodies are directed to the cell-binding domain of fibronectin. The epitopes for these antibodies were further narrowed down using recombinant cell-binding fragments expressed in Escherichia coli. FN12-8 recognized the 11.5-kDa cell-binding fragment previously characterized by Pierschbacher et al. (1981, Cell 26, 259-267), suggesting that FN12-8 blocks the Arg-Gly-Asp (RGD) cell adhesion signal. FN30-8 could not bind this fragment but did recognize a longer cell-binding fragment containing additional greater than 111 amino acid residues upstream of the 11.5-kDa fragment. Since the RGD-dependent cell adhesion seems to require another signal located at a region 50-160 residues upstream of the 11.5-kDa fragment for full activity, FN30-8 may exert its inhibitory effect by blocking the latter signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号