首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Drosophila has a single glycoinositol phospholipid (GPI)-anchored form of acetylcholinesterase (AChE) encoded by the Ace locus. To assess the role that GPI plays in the physiology, of AChE, we have replaced the wild-type GPI-AChE with a chimeric transmembrane form (TM-AChE) in the nervous system of the fly. Ace null alleles provided a genetic background completely lacking in endogenous GPI-AChE, and Ace minigene P transposon constructs were used to express both GPI- and TM-AChE forms in the tissues where AChE is normally expressed. Control experiments with the GPI-AChE minigene demonstrated a threshold between 9 and 12% of normal AChE activity for adult viability. Ace mutant flies were rescued by GPI-AChE minigene lines that expressed 12-40% of normal activity and were essentially unchanged from wild-type flies in behavior. TM-AChE minigene lines were able to rescue Ace null alleles, although with a slightly higher threshold than that for GPI-AChE. Although rescued flies expressing GPI-AChE at a level of 12% of normal activity were viable, flies expressing 13-16% of normal activity from the TM-AChE transgene died shortly after eclosion. Flies expressing TM-AChE at about 30% of normal levels were essentially unchanged from wild-type flies in gross behavior but had a reduced lifespan secondary to subtle coordination defects. These flies also showed reduced locomotor activity and performed poorly in a grooming assay. However, light level and electron microscopic immunocytochemistry showed no differences in the localization of GPI- and TM-AChE. Furthermore, endogenous and ectopic-induced expression of both AChEs in epithelial tissues of the adult and embryo, respectively, showed that they were sorted identically. Most epithelial cells sorted GPI- and TM-AChE to the apical surface, but cuticle-secreting epithelia sorted both proteins basolaterally. Our data suggest that rather than having a primary role in protein sorting, the GPI anchor or AChE plays some other more subtle cellular role in neuronal physiology.  相似文献   

2.
The presence of a glycoinositol phospholipid anchor in Drosophila acetylcholinesterase (AChE) was shown by several criteria. Chemical analysis of highly purified Drosophila AChE demonstrated approximately one residue of inositol per enzyme subunit. Selective cleavage by Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) was tested with Drosophila AChE radiolabeled by the photoactivatable affinity probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID), a reagent that specifically labels the lipid moiety of glycoinositol phospholipid-anchored proteins. Digestion with PI-PLC released 75% of this radiolabel from the protein. Gel electrophoresis of Drosophila AChE in sodium dodecyl sulfate indicated prominent 55- and 16-kDa bands and a faint 70-kDa band. The [125I]TID label was localized on the 55-kDa fragment, suggesting that this fragment is the C-terminal portion of the protein. In support of this conclusion, a sensitive microsequencing procedure that involved manual Edman degradation combined with radiomethylation was used to determine residues 2-5 of the 16-kDa fragment. Comparison with the Drosophila AChE cDNA sequence [Hall, L.M.C., & Spierer, P. (1986) EMBO J. 5, 2949-2954] confirmed that the 16-kDa fragment includes the N-terminus of AChE. Furthermore, the position of the N-terminal amino acid of the mature Drosophila AChE is closely homologous to that of Torpedo AChE. The presence of radiomethylatable ethanolamine in both 16- and 55-kDa fragments was also confirmed. Thus, Drosophila AChE may include a second posttranslational modification involving ethanolamine.  相似文献   

3.
Fasciculins are peptides isolated from mamba (Dendroaspis) venoms which exert their toxic action by inhibiting acetylcholinesterase (AChE). They contain a characteristic triple stranded antiparallel beta-sheet formed by residues 22-27, 34-39 and 48-53. A chimeric peptide named Fas-C, encompassing most of these sequences was synthesized using SPPS/Boc-chemistry and characterized chemically, structurally and functionally. Fas-C has two disulfide bridges, formed sequentially using dual cysteine protection. SDS-PAGE patterns, HPLC profiles and MS proved the peptide identity. Circular dichroism indicated the presence of 13.6% and 41.6% of beta-sheet and beta-turn, respectively, comparable to values observed in the native toxin. An inhibitory effect on eel AChE was displayed by the peptide (Ki71.6 +/- 18.3 microM), although not reaching the affinity level of the parent native toxin (Ki 0.3 nM). It is confirmed that the principal binding region of fasciculin to AChE resides within loop II.  相似文献   

4.
Acetylcholinesterase subunits of type T (AChET) possess an alternatively spliced C-terminal peptide (t peptide) which endows them with amphiphilic properties, the capacity to form various homo-oligomers and to associate, as a tetramer, with anchoring proteins containing a proline rich attachment domain (PRAD). The t peptide contains seven conserved aromatic residues. By spectroscopic analyses of the synthetic peptides covering part or all of the t peptide of Torpedo AChET, we show that the region containing the aromatic residues adopts an alpha helical structure, which is favored in the presence of lipids and detergent micelles: these residues therefore form a hydrophobic cluster in a sector of the helix. We also analyzed the formation of disulfide bonds between two different AChET subunits, and between AChET subunits and a PRAD-containing protein [the N-terminal fragment of the ColQ protein (QN)] possessing two cysteines upstream or downstream of the PRAD. This shows that, in the complex formed by four T subunits with QN (T4-QN), the t peptides are not folded on themselves as hairpins but instead are all oriented in the same direction, antiparallel to that of the PRAD. The formation of disulfide bonds between various pairs of cysteines, introduced by mutagenesis at various positions in the t peptides, indicates that this complex possesses a surprising flexibility.  相似文献   

5.
Recently we have over-expressed the enzyme alpha 1,6-fucosyltransferase from Rhizobium sp. in Escherichia coli. In this heterologous system the enzyme was mainly expressed as inclusion bodies and the one that was expressed soluble showed a short-lasting activity in solution due to precipitation of the protein. A structural analysis of the sequence using the TMpred program predicted a highly hydrophobic region of 19 aa close to the C-terminal of the protein. In order to investigate the influence of this region on the formation of inclusion bodies and the precipitation from solution, we cloned a truncated version of the protein where a C-terminal fragment of 65 aa, including the predicted transmembrane-like region, was removed. The resulting protein was expressed in a soluble form without formation of inclusion bodies. The truncated protein catalyzed the transfer of a fucopyranosyl moiety from GDP-beta-L-Fucose to chitobiose. Comparison of the acceptor specificity between the truncated alpha 1,6-fucosyltransferase and the wild-type enzyme, showed a similar behavior for both enzymes. Our results indicate that the active center is not located in the C-terminal extreme of the protein in contrast to the case of the mammalian glycosyltransferases. Also, these results indicate that the alpha-6-motif III is not directly involved in the catalytic activity of the enzyme.  相似文献   

6.
The binding of antigenic peptide to class II MHC is mediated by hydrogen bonds between the MHC and the peptide, by salt bridges, and by hydrophobic interactions. The latter are confined to a number of deeper pockets within the peptide binding groove, and peptide side chains that interact with these pockets are referred to as anchor residues. T cell recognition involves solvent-accessible peptide residues along with minor changes in MHC helical pitch induced by the anchor residues. In class I MHC there is an added level of epitope complexity that results from binding of longer peptides that bulge out into the solvent-accessible, T cell contact area. Unlike class I MHC, class II MHC does not bind peptides of discrete length, and the possibility of peptide bulging has not been clearly addressed. A peptide derived from position 24-37 of integrin beta(3) can either bind or not bind to the class II MHC molecule HLA DRB3*0101 based on a polymorphism at the P9 anchor. We show that the loss of binding can be compensated by changes at the P10 position. We propose that this could be an example of a class II peptide bulge. Although not as efficient as P9 anchoring, the use of P10 as an anchor adds another possible mechanism by which T cell epitopes can be generated in the class II presentation system.  相似文献   

7.
Chinese hamster ovary (CHO) cells have been transfected with either a full-length cDNA encoding human angiotensin I-converting enzyme (kininase II; EC 3.4.15.1) (ACE) or a mutated cDNA, in which the last C-terminal 47 amino acids, including the putative transmembrane domain, are not translated. Cell lines expressing high levels of the wild-type ACE or the mutant were established. The cells transfected with the wild-type cDNA (CHO-ACE) express a membrane-bound ectoenzyme with an intracellular C terminus, as shown by indirect immunofluorescence using an antiserum (28A7) raised against a synthetic peptide corresponding to the deduced C terminus of ACE. This enzyme is structurally, immunologically, and enzymatically identical to human kidney ACE. In addition, CHO-ACE cells also produce a secreted form of the enzyme. Neither this secreted form nor the enzyme purified from human plasma is recognized by the antiserum 28A7, indicating that they undergo a truncation in the C-terminal region. On the other hand, the transfected cells expressing the C-terminally truncated mutant (CHO-ACE delta COOH) do not retain ACE in the plasma membrane, but secrete it into the medium. These results indicate that ACE is anchored to the plasma membrane by the predicted C-terminal transmembrane domain, and the secreted form is derived from the membrane-bound form by a post-translational proteolytic cleavage of the C-terminal region.  相似文献   

8.
9.
Recently, we have identified a novel topogenic sequence at the C terminus of Escherichia coli haemolysin (HlyA) which is essential for its efficient secretion into the medium. This discovery has introduced the possibility of using this secretion system for the release of chimeric proteins from E. coli directly into the medium. We have now successfully fused this C-terminal signal to a hybrid protein containing a few residues of beta-galactosidase and the majority of the E. coli outer membrane porin OmpF lacking its own N-terminal signal sequence. We find that this chimeric protein is specifically translocated across the inner and outer membranes and is released into the medium. In addition, we have further localized the HlyA secretion signal to the final 113 amino acids of the C terminus. In fact, a specific secretion signal appears to reside at least in part within the last 27 amino acids of HlyA.  相似文献   

10.
11.
In Drosophila, plexin A is a functional receptor for semaphorin-1a. Here we show that the human plexin gene family comprises at least nine members in four subfamilies. Plexin-B1 is a receptor for the transmembrane semaphorin Sema4D (CD100), and plexin-C1 is a receptor for the GPI-anchored semaphorin Sema7A (Sema-K1). Secreted (class 3) semaphorins do not bind directly to plexins, but rather plexins associate with neuropilins, coreceptors for these semaphorins. Plexins are widely expressed: in neurons, the expression of a truncated plexin-A1 protein blocks axon repulsion by Sema3A. The cytoplasmic domain of plexins associates with a tyrosine kinase activity. Plexins may also act as ligands mediating repulsion in epithelial cells in vitro. We conclude that plexins are receptors for multiple (and perhaps all) classes of semaphorins, either alone or in combination with neuropilins, and trigger a novel signal transduction pathway controlling cell repulsion.  相似文献   

12.
Jiao J  Yu M  Ru B 《Biochimie》2001,83(11-12):1049-1055
A recombinant chimeric plasminogen activator (f beta/scuPA-32k), with a fibrin beta-chain peptide (comprising Gly15 through Arg 42) linked to the N-terminal of a low molecular mass (32 kDa) single-chain urokinase (scuPA-32k, comprising Leu144 through Leu 411) via a 50 amino acid linker sequence, was produced by expression the corresponding chimeric cDNA in Escherichia coli cells. After refolding in vitro, the chimeric protein was purified to homogeneity by zinc chelate-Sepharose chromatography, Sephacryl S200 chromatography and benzamidine-Sepharose chromatography in sequence. The apparent molecular mass was 36 kDa shown by SDS-PAGE analysis. The special activity was 87,000 IU/mg detected by fibrin plate determination. F beta/scuPA-32k could directly activate plasminogen following Michaelis-Menten kinetics with K(m) = 0.52 microM and k(2) = 0.0024 s(-1). Mediated by plasmin, the single-chain molecule could be converted to the active two-chain molecule. The chimeric protein had 3.3 times higher fibrin affinity than scuPA-32k in the fibrin concentration of 3.2 mg/mL, while the chimeric protein inhibited the fibrin clotting and platelet aggregation. F beta/scuPA-32k showed a higher thrombolytic potency in vitro plasma clot lysis than scuPA-32k and depleted less fibrinogen in plasma. These results showed that the chimeric protein had not only higher fibrinolytic activity but also anti-thrombus activity. Further evaluation of the thrombolytic potential in appropriate animal models is required.  相似文献   

13.
Casso DJ  Liu S  Biehs B  Kornberg TB 《PloS one》2012,7(3):e33827
Intramembrane proteases of the Signal Peptide Peptidase (SPP) family play important roles in developmental, metabolic and signaling pathways. Although vertebrates have one SPP and four SPP-like (SPPL) genes, we found that insect genomes encode one Spp and one SppL. Characterization of the Drosophila sppL gene revealed that the predicted SppL protein is a highly conserved structural homolog of the vertebrate SPPL3 proteases, with a predicted nine-transmembrane topology, an active site containing aspartyl residues within a transmembrane region, and a carboxy-terminal PAL domain. SppL protein localized to both the Golgi and ER. Whereas spp is an essential gene that is required during early larval stages and whereas spp loss-of-function reduced the unfolded protein response (UPR), sppL loss of function had no apparent phenotype. This was unexpected given that genetic knockdown phenotypes in other organisms suggested significant roles for Spp-related proteases.  相似文献   

14.
Twin-arginine translocation (Tat)-mediated protein transport across the bacterial cytoplasmic membrane occurs only after synthesis and folding of the substrate protein that contains a signal peptide with a characteristic twin-arginine motif. This implies that premature contact between the Tat signal peptide and the Tat translocon in the membrane must be prevented. We used site-specific photo-crosslinking to demonstrate that the signal peptide of nascent Tat proteins is in close proximity to the chaperone and peptidyl-prolyl isomerase trigger factor (TF). The contact with TF was strictly dependent on the context of the translating ribosome, started early in biogenesis when the nascent chain left the ribosome near L23, and persisted until the chain reached its full length. Despite this exclusive and prolonged contact, depletion or overexpression of TF had little effect on the kinetics and efficiency of the Tat export process.  相似文献   

15.
Misono KS  Ogawa H  Qiu Y  Ogata CM 《Peptides》2005,26(6):957-968
The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism.  相似文献   

16.
I Stroynowski  M Soloski  M G Low  L Hood 《Cell》1987,50(5):759-768
The H-2, Qa, and Tla genes of the murine major histocompatibility complex are related to each other by DNA sequence homology. The H-2 genes encode ubiquitously expressed transplantation antigens that serve as recognition structures for cytotoxic T cells. The identities of the Qa and Tla products, their sites of expression, and their functions are largely unknown. We report here that the Qa region gene Q7 encodes a membrane-bound as well as a secreted form of the serologically defined antigen Qa-2. The Q7 gene introduced into liver-derived cells is expressed as a membrane-bound and as a secreted molecule. In transfected L cells it is expressed only as a soluble protein. Biochemical analysis suggests that the Q7 product is anchored to the liver cell membranes by a phospholipid tail. This feature may be responsible for cell type-specific expression of the two forms of the Qa-2 molecules.  相似文献   

17.
18.
The C-terminal t peptide (40 residues) of vertebrate acetylcholinesterase (AChE) T subunits possesses a series of seven conserved aromatic residues and forms an amphiphilic alpha-helix; it allows the formation of homo-oligomers (monomers, dimers and tetramers) and heteromeric associations with the anchoring proteins, ColQ and PRiMA, which contain a proline-rich motif (PRAD). We analyzed the influence of mutations in the t peptide of Torpedo AChE(T) on oligomerization and secretion. Charged residues influenced the distribution of homo-oligomers but had little effect on the heteromeric association with Q(N), a PRAD-containing N-terminal fragment of ColQ. The formation of homo-tetramers and Q(N)-linked tetramers required a central core of four aromatic residues and a peptide segment extending to residue 31; the last nine residues (32-40) were not necessary, although the formation of disulfide bonds by cysteine C37 stabilized T(4) and T(4)-Q(N) tetramers. The last two residues of the t peptide (EL) induced a partial intracellular retention; replacement of the C-terminal CAEL tetrapeptide by KDEL did not prevent tetramerization and heteromeric association with Q(N), indicating that these associations take place in the endoplasmic reticulum. Mutations that disorganize the alpha-helical structure of the t peptide were found to enhance degradation. Co-expression with Q(N) generally increased secretion, mostly as T(4)-Q(N) complexes, but reduced it for some mutants. Thus, mutations in this small, autonomous interaction domain bring information on the features that determine oligomeric associations of AChE(T) subunits and the choice between secretion and degradation.  相似文献   

19.
K Majumder 《Gene》1992,110(1):89-94
A unique kination and ligation-free method that allows de novo synthesis of a gene through a novel application of polymerase chain reaction (PCR) involving stepwise elongation of sequence (SES) is described. SES-PCR is simple and efficient. Optimal utilization of nucleotides, ability to use only partially purified oligodeoxyribonucleotides, and elimination of kination and ligation of intermediates make SES-PCR-mediated gene synthesis more economical in terms of time, labour and money. Site-directed mutagenesis and/or gene fusion by SES-PCR is not limited by the prior availability of the gene(s) in question. The potentials of this novel method in gene synthesis, mutagenesis at multiple loci of DNA and gene fusion have been demonstrated using a chimeric gene encoding fusion between OmpA signal peptide and hirudin, as an example. The SES-PCR product was cloned and sequencing of positive clones demonstrated the presence of genes with expected sequence and bearing only the desired mutations. A nearly 100% efficiency of mutation was easily achieved by the design of the method.  相似文献   

20.
Nikolaeva I  Huber RJ  O'Day DH 《Peptides》2012,34(1):145-149
A synthetic EGF-like (EGFL) peptide (DdEGFL1), equivalent to the first EGFL domain in the extracellular matrix protein CyrA, has previously been shown to enhance random cell motility and cAMP-mediated chemotaxis in Dictyostelium discoideum. However the role of DdEGFL1 as a potential chemoattractant had not been addressed. In this study, a micropipette assay and an under-agarose migration assay showed that DdEGFL1 is not a chemoattractant for Dictyostelium cells. A radial bioassay was used to show that DdEGFL1 does not significantly enhance folate-mediated chemotaxis in contrast to its chemokinetic effect during chemotaxis toward cAMP. However, DdEGFL1 was able to rescue chemotaxis toward folate when the pathway was inhibited by pharmacological agents that inhibit known components of the signaling cascade (e.g. phosphatidylinositol 3-kinase, phospholipase A2, tyrosine kinases, and calmodulin). These data suggest that DdEGFL1 may activate a novel motility pathway that when coupled with folic acid receptor activation, can maintain the normal migratory response to folic acid in vegetative cells. Together, this data provides new insight into the function of EGFL repeats during Dictyostelium chemotaxis and the existence of a novel motility pathway regulated by EGFL peptides and/or repeats in this model organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号