首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone marrow–derived cells represent a heterogeneous cell population containing haematopoietic stem and progenitor cells. These cells have been identified as potential candidates for use in cell therapy for the regeneration of damaged tissues caused by trauma, degenerative diseases, ischaemia and inflammation or cancer treatment. In our study, we examined a model using whole-body irradiation and the transplantation of bone marrow (BM) or haematopoietic stem cells (HSCs) to study the repair of haematopoiesis, extramedullary haematopoiesis and the migration of green fluorescent protein (GFP+) transplanted cells into non-haematopoietic tissues. We investigated the repair of damage to the BM, peripheral blood, spleen and thymus and assessed the ability of this treatment to induce the entry of BM cells or GFP+linSca-1+ cells into non-haematopoietic tissues. The transplantation of BM cells or GFP+linSca-1+ cells from GFP transgenic mice successfully repopulated haematopoiesis and the haematopoietic niche in haematopoietic tissues, specifically the BM, spleen and thymus. The transplanted GFP+ cells also entered the gastrointestinal tract (GIT) following whole-body irradiation. Our results demonstrate that whole-body irradiation does not significantly alter the integrity of tissues such as those in the small intestine and liver. Whole-body irradiation also induced myeloablation and chimerism in tissues, and induced the entry of transplanted cells into the small intestine and liver. This result demonstrates that grafted BM cells or GFP+linSca-1+ cells are not transient in the GIT. Thus, these transplanted cells could be used for the long-term treatment of various pathologies or as a one-time treatment option if myeloablation-induced chimerism alone is not sufficient to induce the entry of transplanted cells into non-haematopoietic tissues.  相似文献   

2.
Myostatin (MSTN) is a member of the transforming growth factor-β (TGF-β) superfamily that functions as a negative regulator of skeletal muscle development and growth in mammals. However, few reports are available about the structure and function of MSTN in teleost. Here, the MSTN gene was cloned from sea perch (Lateolabrax japonicus) by homology cloning and genomic walking. In the 4873-bp genomic sequence, three exons, two introns, and 5′ and 3′ flanking sequences were identified. The sea perch MSTN gene encodes a 374-amino acid protein, including a signal peptide, conserved cysteine residues, and a RXXR proteolytic cleavage domain. Expression analysis of MSTN revealed that MSTN was highly expressed in eyes, brain, and muscle; intermediately in intestine; and weakly in gill, spleen, liver, and heart. It was demonstrated that MSTN mRNA was highly expressed in embryonic stem cell line (LJES1), but it was undetectable in several types of somatic cell lines from sea perch, including fibroblast-like cell, epithelioid cell, and lymphocyte-like cell. Further, it was demonstrated that the 5′ flanking region of the MSTN gene can drive the expression of green fluorescent protein (GFP) reporter gene in LJES1 cells and transgenic zebrafish (Danio rerio). This is the first report on the expression profile of MSTN gene in various types of cell cultures.  相似文献   

3.
Delayed wound healing is a serious clinical problem in patients after surgery. A recent study has demonstrated that bone marrow-derived c-kit-positive (c-kit+) cells play important roles in repairing and regenerating various tissues and organs. To examine the hypothesis that surgical injury induces the mobilization and recruitment of c-kit+ cells to accelerate wound healing. Mice were subjected to a left pneumonectomy. The mobilization of c-kit+ cells was monitored after surgery. Using green fluorescent protein (GFP+) bone marrow-transplanted chimera mice, we investigated further whether the mobilized c-kit+ cells were recruited to effect wound healing in a skin puncture model. The group with left pneumonectomies increased the c-kit+ and CD34+ stem cells in peripheral blood 24 h after surgery. At 3 days after surgery, the skin wound size was observed to be significantly smaller, and the number of bone marrow-derived GFP+ cells and GFP+/c-kit+ cells in the wound tissue was significantly greater in mice that had received pneumonectomies, as compared with those that had received a sham operation. Furthermore, some of these GFP+ cells were positively expressed specific markers of macrophages (F4/80), endothelial cells (CD31), and myofibroblasts (αSMA). The administration of AMD3100, an antagonist of a stromal-cell derived factor (SDF)-1/CXCR4 signaling pathway, reduced the number of GFP+ cells in wound tissue and completely negated the accelerated wound healing. Surgical injury induces the mobilization and recruitment of c-kit+ cells to contribute to wound healing. Regulating c-kit+ cells may provide a new approach that accelerates wound healing after surgery.  相似文献   

4.
Background aimsThe purpose of this study was to investigate therapeutic potential of green fluorescent protein expressing porcine embryonic stem (pES/GFP+) cells in A rat model of spinal cord injury (SCI).MethodsUndifferentiated pES/GFP+ cells and their neuronal differentiation derivatives were transplanted into the contused spinal cord of the Long Evans rat, and in situ development of the cells was determined by using a live animal fluorescence optical imaging system every 15 days. After pES/GFP+ cell transplantation, the behavior functional recovery of the SCI rats was assessed with the Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB scale), and the growth and differentiation of the grafted pES/GFP+ cells in the SCI rats were analyzed by immunohistochemical staining.ResultsThe relative green fluorescent protein expression level was decreased for 3 months after transplantation. The pES/GFP+-derived cells positively stained with neural specific antibodies of anti-NFL, anti-MBP, anti-SYP and anti-Tuj 1 were detected at the transplanted position. The SCI rats grafted with the D18 neuronal progenitors showed a significant functional recovery of hindlimbs and exhibited the highest BBB scale score of 15.20 ± 1.43 at week 24. The SCI rats treated with pES/GFP+-derived neural progenitors demonstrated a better functional recovery.ConclusionsTransplantation of porcine embryonic stem (pES)-derived D18 neuronal progenitors has treatment potential for SCI, and functional behavior improvement of grafted pES-derived cells in SCI model rats suggests the potential for further application of pES cells in the study of replacement medicine and functionally degenerative pathologies.  相似文献   

5.
6.
Bmi‐1 gene is well recognized as an oncogene, but has been recently demonstrated to play a role in the self‐renewal of tissue‐specific stem cells. By using Bmi‐1GFP/+ mice, we investigated the role of Bmi‐1 in cardiac stem/progenitor cells and myocardial repair. RT‐PCR and flow cytometry analysis indicated that the expression of Bmi‐1 was significantly higher in cardiac side population than the main population from CD45?Ter119?CD31? heart cells. More Sca‐1+ cardiac stem/progenitor cells were found in Bmi‐1 GFPhi subpopulation, and these Bmi‐1 GFPhi heart cells showed the potential of differentiation into SMM+ smooth muscle‐like cells and TnT+ cardiomyocyte‐like cells in vitro. The silencing of Bmi‐1 significantly inhibited the proliferation and differentiation of heart cells. Otherwise, myocardial infarction induced a significantly increase (2.7‐folds) of Bmi‐1 GFPhi population, mainly within the infarction and border zones. These preliminary data suggest that Bmi‐1hi heart cells are enriched in cardiac stem/progenitor cells and may play a role in myocardial repair.  相似文献   

7.
Stem cells are recruited to the uterus where they differentiate into endometrial cells and have been suggested as potential therapy for uterine injury such as Asherman's syndrome. However, it is unknown whether local intrauterine injection may result in better stem cell engraftment of the uterus compared with systemic administration, and whether uterine‐derived cells (UDCs) may confer an advantage over BM‐derived cells (BMDCs). Mice underwent local injury to a single uterine horn. Green fluorescent protein (GFP)‐expressing BMDCs, UDCs or saline (control) were injected either intravenously or locally (uterine lumen) into wild‐type recipients. Two or 3 weeks post‐transplant, uterine tissues were collected for fluorescence‐activated cell sorting (FACS) and immunohistochemistry/immunofluorescence studies. Mice injected intravenously with BMDCs or UDCs had increased GFP+ cells recruitment to the non‐injured or injured uterus compared to those injected locally. No significant differences were noted in GFP+ cell recruitment to the injured versus non‐injured horn. In addition, systemic injection of BMDCs led to greater recruitment of GFP+ cells at 2 weeks and 3 weeks compared with UDCs. Immunohistochemical staining demonstrated that GFP+ cells were found in stroma but not in epithelium or blood vessels. Immunofluorescence analysis revealed that GFP+ cells were mostly CD45‐negative, and negative for CD31 and cytokeratin, confirming their stromal identity. In conclusion, the systemic route of administration results in better recruitment of BMDCs or UDCs to the injured uterus than local injection. In addition, BMDCs recruitment to the uterus is greater than UDCs. These findings inform the development of stem cell‐based therapies targeting the uterus.  相似文献   

8.
FGF1 is involved in multiple biological functions and exhibits the importance in neuroprotective effects. Our previous studies indicated that, in human brain and retina, the FGF1B promoter controlled the expression of FGF1. However, the exact function and regulation of FGF1 in brain is still unclear. Here, we generated F1B‐GFP transgenic mice that expressed the GFP reporter gene under the control of human FGF1B promoter (?540 to +31). Using the fresh brain sections of F1B‐GFP transgenic mice, we found that the F1B‐GFP cells expressed strong fluorescent signals in the ventricular system throughout the brain. The results of immunohistochemistry further showed that two distinct populations of F1B‐GFP+ cells existed in the brains of F1B‐GFP transgenic mice. We demonstrated that one population of F1B‐GFP+ cells was ependymal cells, which distributed along the entire ventricles, and the second population of F1B‐GFP+ cells was neuronal cells that projected their long processes into multiple directions in specific areas of the brain. The double labeling of F1B‐GFP+ cells and tyrosine hydroxylase indicated that a subpopulation of F1B‐GFP+‐neuronal cells was dopaminergic neurons. Importantly, these F1B‐GFP+/TH+ cells were distributed in the main dopaminergic neuronal groups including hypothalamus, ventral tegmental area, and raphe nuclei. These results suggested that human FGF1B promoter was active in ependymal cells, neurons, and a portion of dopaminergic neurons. Thus, the F1B‐GFP transgenic mice provide an animal model not only for studying FGF1 gene expression in vivo but also for understanding the role of FGF1 contribution in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 232–248, 2015  相似文献   

9.
The preparation of biodegradable scaffolds loaded with cells and cytokine is a feature of tissue-engineered skin. IPSCs-based tissue-engineered skin treatment for wound repair is worth exploring. Healthy human skin fibroblasts were collected and reprogrammed into iPSCs. After gene modification and induction, CK19+/Integrinβ1+/CD200+ VEGF165 gene-modified iPS-HFSCsGFP were obtained and identified by a combination of immunofluorescence and RT-qPCR. Astragalus polysaccharide-containing 3D printed degradable scaffolds were prepared and co-cultured with VEGF165 gene-modified iPS-HFSCsGFP, and the biocompatibility and spatial structure of the tissue-engineered skin was analysed by cell counting kit-8 (CCK8) assay and scanning electron microscopy. Finally, the tissue-engineered skin was transplanted onto the dorsal trauma of nude mice, and the effect of tissue-engineered skin on the regenerative repair of total skin defects was evaluated by a combination of histology, immunohistochemistry, immunofluorescence, RT-qPCR, and in vivo three-dimensional reconstruction under two-photon microscopy. CK19+/Integrinβ1+/CD200+ VEGF165 gene-modified iPS-HFSCsGFP, close to the morphology and phenotype of human-derived hair follicle stem cells, were obtained. The surface of the prepared 3D printed degradable scaffold containing 200 μg/mL astragalus polysaccharide was enriched with honeycomb-like meshwork, which was more conducive to the proliferation of the resulting cells. After tissue-engineered skin transplantation, combined assays showed that it promoted early vascularization, collagen and hair follicle regeneration and accelerated wound repair. VEGF165 gene-modified iPS-HFSCsGFP compounded with 3D printed degradable scaffolds containing 200 μg/mL astragalus polysaccharide can directly and indirectly participate in vascular, collagen, and hair follicle regeneration in the skin, achieving more complete structural and functional skin regenerative repair.  相似文献   

10.
Reduced quantity and quality of stem cells in aged individuals hinders cardiac repair and regeneration after injury. We used young bone marrow (BM) stem cell antigen 1 (Sca‐1) cells to reconstitute aged BM and rejuvenate the aged heart, and examined the underlying molecular mechanisms. BM Sca‐1+ or Sca‐1? cells from young (2–3 months) or aged (18–19 months) GFP transgenic mice were transplanted into lethally irradiated aged mice to generate 4 groups of chimeras: young Sca‐1+, young Sca‐1?, old Sca‐1+, and old Sca‐1?. Four months later, expression of rejuvenation‐related genes (Bmi1, Cbx8, PNUTS, Sirt1, Sirt2, Sirt6) and proteins (CDK2, CDK4) was increased along with telomerase activity and telomerase‐related protein (DNA‐PKcs, TRF‐2) expression, whereas expression of senescence‐related genes (p16INK4a, P19ARF, p27Kip1) and proteins (p16INK4a, p27Kip1) was decreased in Sca‐1+ chimeric hearts, especially in the young group. Host cardiac endothelial cells (GFP?CD31+) but not cardiomyocytes were the primary cell type rejuvenated by young Sca‐1+ cells as shown by improved proliferation, migration, and tubular formation abilities. C‐X‐C chemokine CXCL12 was the factor most highly expressed in homed donor BM (GFP+) cells isolated from young Sca‐1+ chimeric hearts. Protein expression of Cxcr4, phospho‐Akt, and phospho‐FoxO3a in endothelial cells derived from the aged chimeric heart was increased, especially in the young Sca‐1+ group. Reconstitution of aged BM with young Sca‐1+ cells resulted in effective homing of functional stem cells in the aged heart. These young, regenerative stem cells promoted aged heart rejuvenation through activation of the Cxcl12/Cxcr4 pathway of cardiac endothelial cells.  相似文献   

11.
Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs) after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP) reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3–4.3 hour post-fertilization (hpf). Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.  相似文献   

12.
Extraocular muscles (EOM) represent a unique muscle group that controls eye movements and originates from head mesoderm, while the more typically studied body and limb muscles are somite-derived. Aiming to investigate myogenic progenitors (satellite cells) in EOM versus limb and diaphragm of adult mice, we have been using flow cytometry in combination with myogenic-specific Cre-loxP lineage marking for cell isolation. While analyzing cells from the EOM of mice that harbor Myf5Cre-driven GFP expression, we identified in addition to the expected GFP+ myogenic cells (presumably satellite cells), a second dominant GFP+ population distinguished as being Sca1+, non-myogenic, and exhibiting a fibro/adipogenic potential. This unexpected population was not only unique to EOM compared to the other muscles but also specific to the Myf5Cre-driven reporter when compared to the MyoDCre driver. Histological studies of periocular tissue preparations demonstrated the presence of Myf5Cre-driven GFP+ cells in connective tissue locations adjacent to the muscle masses, including cells in the vasculature wall. These vasculature-associated GFP+ cells were further identified as mural cells based on the presence of the specific XLacZ4 transgene. Unlike the EOM satellite cells that originate from a Pax3-negative lineage, these non-myogenic Myf5Cre-driven GFP+ cells appear to be related to cells of a Pax3-expressing origin, presumably derived from the neural crest. In all, our lineage tracing based on multiple reporter lines has demonstrated that regardless of common ancestral expression of Myf5, there is a clear distinction between periocular myogenic and non-myogenic cell lineages according to their mutually exclusive antecedence of MyoD and Pax3 gene activity.  相似文献   

13.
Although recent studies suggest that hyperlipidemia is a risk factor for osteoarthritis (OA), the link between OA and hyperlipidemia is not fully understood. As the number of activated, circulating myeloid cells is increased during hyperlipidemia, we speculate that myeloid cells contribute to the pathology of OA. Here, we characterized myeloid cells in STR/Ort mice, a murine osteoarthritis model, under hyperlipidemic conditions. Ratios of myeloid cells in bone marrow, the spleen, and peripheral blood were determined by flow cytometry. To examine the influence of the hematopoietic environment, including abnormal stem cells, on the hematopoietic profile of STR/Ort mice, bone marrow transplantations were performed. The relationship between hyperlipidemia and abnormal hematopoiesis was examined by evaluating biochemical parameters and spleen weight of F2 animals (STR/Ort x C57BL/6J). In STR/Ort mice, the ratio of CD11b+Gr1+ cells in spleens and peripheral blood was increased, and CD11b+Gr1+ cells were also present in synovial tissue. Splenomegaly was observed and correlated with the ratio of CD11b+Gr1+ cells. When bone marrow from GFP-expressing mice was transplanted into STR/Ort mice, no difference in the percentage of CD11b+Gr1+ cells was observed between transplanted and age-matched STR/Ort mice. Analysis of biochemical parameters in F2 mice showed that spleen weight correlated with serum total cholesterol. These results suggest that the increase in circulating and splenic CD11b+Gr1+ cells in STR/Ort mice originates from hypercholesterolemia. Further investigation of the function of CD11b+Gr1+ cells in synovial tissue may reveal the pathology of OA in STR/Ort mice.  相似文献   

14.
Diel vertical migrations of bathypelagic perch fry   总被引:3,自引:1,他引:2  
The behaviour of young‐of‐the‐year (YOY) perch Perca fluviatilis as a dominant species in the assemblage of fry in the pelagic of Slapy Reservoir (Czech Republic), was studied during late May and mid‐June 2002 using acoustic methods and complementary net catches. During the day, perch fry were present simultaneously in littoral, epipelagic and bathypelagic habitats. Bathypelagic perch fry, forming a scattering layer, migrated vertically each day between the epilimnion and hypolimnion, with an amplitude of 11·0 m in May and 12·5 m in June. At dusk, the migratory bathypelagic fry mixed in the epilimnion with non‐migrating epipelagic fry and spent the night close to the thermocline (abundance maximum at 3–4 m in May, 0–2 m in June). In June, shoaling behaviour by some of the bathypelagic perch fry was also observed: the shoaling fry remained higher in the water column than the non‐shoaling fry. Both depths of the scattering layer and the depths of the fry shoals were strongly controlled by the light intensity. The contribution of the bathypelagic part of the population to the total numbers of pelagic perch fry decreased from 28·1% in May to 4·7% in June, while the density of all pelagic perch fry increased (c. 96 000 individuals ha?1 in May and 142 000 individuals ha?1 in June). In May, the bathypelagic (average total length, LT, 11·9 mm) and epipelagic (average LT 14·6 mm) perch fry differed in size while, in June, the epipelagic fry were divided into two distinct size groups. The more abundant group, of small epipelagic perch fry (average LT 14·6 mm), was similar in size to the bathypelagic fry (average LT 14·6 mm) while the less abundant group, of larger epipelagic fry (average LT 34·4 mm), was similar in size to littoral perch fry (average LT 35·0 mm). The results suggest that in perch fry three different survival strategies with different risks can be used in the same locality, time and year.  相似文献   

15.
Near‐infrared fluorescence (NIRF) imaging by using infrared fluorescent protein (iRFP) gene labelling is a novel technology with potential value for in vivo applications. In this study, we expressed iRFP in mouse cardiac progenitor cells (CPC) by lentiviral vector and demonstrated that the iRFP‐labelled CPC (CPCiRFP) can be detected by flow cytometry and fluorescent microscopy. We observed a linear correlation in vitro between cell numbers and infrared signal intensity by using the multiSpectral imaging system. CPCiRFP injected into the non‐ischaemic mouse hindlimb were also readily detected by whole‐animal NIRF imaging. We then compared iRFP against green fluorescent protein (GFP) for tracking survival of engrafted CPC in mouse ischaemic heart tissue. GFP‐labelled CPC (CPCGFP) or CPC labelled with both iRFP and GFP (CPCiRFP GFP) were injected intramyocardially into mouse hearts after infarction. Three days after cell transplantation, a strong NIRF signal was detected in hearts into which CPCiRFP GFP, but not CPCGFP, were transplanted. Furthermore, iRFP fluorescence from engrafted CPCiRFP GFP was detected in tissue sections by confocal microscopy. In conclusion, the iRFP‐labelling system provides a valuable molecular imaging tool to track the fate of transplanted progenitor cells in vivo.  相似文献   

16.
17.
Recent evidence suggests that transient receptor potential melastatin 2 (TRPM2) expressed in immune cells plays an important role in immune and inflammatory responses. We recently reported that TRPM2 expressed in macrophages and spinal microglia contributes to the pathogenesis of inflammatory and neuropathic pain aggravating peripheral and central pronociceptive inflammatory responses in mice. To further elucidate the contribution of TRPM2 expressed by peripheral immune cells to neuropathic pain, we examined the development of peripheral nerve injury-induced neuropathic pain and the infiltration of immune cells (particularly macrophages) into the injured nerve and spinal cord by using bone marrow (BM) chimeric mice by crossing wildtype (WT) and TRPM2-knockout (TRPM2-KO) mice. Four types of BM chimeric mice were prepared, in which irradiated WT or TRPM2-KO recipient mice were transplanted with either WT-or TRPM2-KO donor mouse-derived green fluorescence protein-positive (GFP+) BM cells (TRPM2BM+/Rec+, TRPM2BM–/Rec+, TRPM2BM+/Rec–, and TRPM2BM–/Rec– mice). Mechanical allodynia induced by partial sciatic nerve ligation observed in TRPM2BM+/Rec+ mice was attenuated in TRPM2BM–/Rec+, TRPM2BM+/Rec–, and TRPM2BM–/Rec– mice. The numbers of GFP+ BM-derived cells and Iba1/GFP double-positive macrophages in the injured sciatic nerve did not differ among chimeric mice 14 days after the nerve injury. In the spinal cord, the number of GFP+ BM-derived cells, particularly GFP/Iba1 double-positive macrophages, was significantly decreased in the three TRPM2-KO chimeric mouse groups compared with TRPM2BM+/Rec+ mice. However, the numbers of GFP/Iba1+ resident microglia did not differ among chimeric mice. These results suggest that TRPM2 plays an important role in the infiltration of peripheral immune cells, particularly macrophages, into the spinal cord, rather than the infiltration of peripheral immune cells into the injured nerves and activation of spinal-resident microglia. The spinal infiltration of macrophages mediated by TRPM2 may contribute to the pathogenesis of neuropathic pain.  相似文献   

18.
Experimental studies of infection transmission via water from infected to healthy fish were conducted. The dark-brown bacterial colonies typical for Aeromonas salmonicida on tryptone soya agar (TSA) have been isolated and counted (from 3.0±0.6×102 to 3.5±0.5×105 c.f.u. g−1) from the internal organs of naturally infected (NI) and experimentally infected (EI) perch and sea trout. No significant differences in dark-brown bacterial counts were detected between EI perch and EI sea trout. The assessment and comparison of the alterations of the biological parameters of EI European perch and sea trout with bacterium Aeromonas salmonicida subsp. salmonicida with naturally infected perch were conducted. No mortality was recorded in groups of EI perch and sea trout. Whereas, the mortality of NI perch (collected from the main sites of outbreak of disease) was observed from the second day of the experiments. Changes in morphophysiological parameters of EI perch and sea trout were similar. Different alterations in blood cell parameters of EI fish were observed, and the most noticeable was the decrease (P≤0.01) in white blood cell count (WBC) of EI perch and sea trout. Based on these results it can be deduced that there is infection transmission of bacterium A. salmonicida from European perch via water to other fish species.  相似文献   

19.
Xenopus is an excellent tetrapod model for studying normal and pathological motoneuron ontogeny due to its developmental morpho-physiological advantages. In mammals, the urotensin II-related peptide (UTS2B) gene is primarily expressed in motoneurons of the brainstem and the spinal cord. Here, we show that this expression pattern was conserved in Xenopus and established during the early embryonic development, starting at the early tailbud stage. In late tadpole stage, uts2b mRNA was detected both in the hindbrain and in the spinal cord. Spinal uts2b+ cells were identified as axial motoneurons. In adult, however, the uts2b expression was only detected in the hindbrain. We assessed the ability of the uts2b promoter to drive the expression of a fluorescent reporter in motoneurons by recombineering a green fluorescent protein (GFP) into a bacterial artificial chromosome (BAC) clone containing the entire X. tropicalis uts2b locus. After injection of this construction in one-cell stage embryos, a transient GFP expression was observed in the spinal cord of about a quarter of the resulting animals from the early tailbud stage and up to juveniles. The GFP expression pattern was globally consistent with that of the endogenous uts2b in the spinal cord but no fluorescence was observed in the brainstem. A combination of histological and electrophysiological approaches was employed to further characterize the GFP+ cells in the larvae. More than 98% of the GFP+ cells expressed choline acetyltransferase, while their projections were co-localized with α-bungarotoxin labeling. When tail myotomes were injected with rhodamine dextran amine crystals, numerous double-stained GFP+ cells were observed. In addition, intracellular electrophysiological recordings of GFP+ neurons revealed locomotion-related rhythmic discharge patterns during fictive swimming. Taken together our results provide evidence that uts2b is an appropriate driver to express reporter genes in larval motoneurons of the Xenopus spinal cord.  相似文献   

20.
Medaka is a small egg-laying freshwater fish that allows both genetic and embryological analyses and is one of the three vertebrate model organisms in which genome-wide phenotype-driven mutant screens were carried out 1. Divergence of functional overlap of related genes between medaka and zebrafish allows identification of novel phenotypes that are unidentifiable in a single species 2, thus medaka and zebrafish are complementary for genetic dissection of the vertebrate genome functions. Manipulation of medaka embryos, such as dechorionation, mounting embryos for imaging and cell transplantation, are key procedures to work on both medaka and zebrafish in a laboratory. Cell transplantation examines cell autonomy of medaka mutations. Chimeras are generated by transplanting labeled cells from donor embryos into unlabeled recipient embryos. Donor cells can be transplanted to specific areas of the recipient embryos based on the fate maps 3 so that clones from transplanted cells can be integrated in the tissue of interest during development. Due to the hard chorion and soft embryos, manipulation of medaka embryos is more involved than in zebrafish. In this video, we show detailed procedures to manipulate medaka embryos.Download video file.(55M, mov)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号