共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible glutathionylation of complex I increases mitochondrial superoxide formation 总被引:1,自引:0,他引:1
Taylor ER Hurrell F Shannon RJ Lin TK Hirst J Murphy MP 《The Journal of biological chemistry》2003,278(22):19603-19610
Increased production of reactive oxygen species (ROS) by mitochondria is involved in oxidative damage to the organelle and in committing cells to apoptosis or senescence, but the mechanisms of this increase are unknown. Here we show that ROS production by mitochondrial complex I increases in response to oxidation of the mitochondrial glutathione pool. This correlates with thiols on the 51- and 75-kDa subunits of complex I forming mixed disulfides with glutathione. Glutathionylation of complex I increases superoxide production by the complex, and when the mixed disulfides are reduced, superoxide production returns to basal levels. Within intact mitochondria oxidation of the glutathione pool to glutathione disulfide also leads to glutathionylation of complex I, which correlates with increased superoxide formation. In this case, most of this superoxide is converted to hydrogen peroxide, which can then diffuse into the cytoplasm. This mechanism of reversible mitochondrial ROS production suggests how mitochondria might regulate redox signaling and shows how oxidation of the mitochondrial glutathione pool could contribute to the pathological changes that occur to mitochondria during oxidative stress. 相似文献
2.
Lambertucci RH Hirabara SM Silveira Ldos R Levada-Pires AC Curi R Pithon-Curi TC 《Journal of cellular physiology》2008,216(3):796-804
The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA. 相似文献
3.
Jing-Xian Wang Yuan Yang Wen-Ying Li 《Experimental biology and medicine (Maywood, N.J.)》2021,246(8):877
Retinal pigment epithelial cells are closely associated with the pathogenesis of diabetic retinopathy. The mechanism by which diabetes impacts retinal pigment epithelial cell function is of significant interest. Sirtuins are an important class of proteins that primarily possess nicotinamide adenine dinucleotide-dependent deacetylases activity and involved in various cellular physiological and pathological processes. Here, we aimed to examine the role of sirtuins in the induction of diabetes-associated retinal pigment epithelial cell dysfunction. High glucose and platelet-derived growth factor (PDGF) treatment induced epithelial–mesenchymal transition and the migration of retinal pigment epithelial cells, and decreased sirtuin-3 expression. Sirtuin-3 knockdown using siRNA increased epithelial–mesenchymal transition and migration of retinal pigment epithelial cells. In contrast, sirtuin-3 overexpression attenuated the effects caused by high glucose and PDGF on epithelial–mesenchymal transition and migration of retinal pigment epithelial cells, suggesting that sirtuin-3 deficiency contributed to retinal pigment epithelial cell dysfunction induced by high glucose and PDGF. Mechanistically, sirtuin-3 deficiency induced retinal pigment epithelial cell dysfunction by the overproduction of mitochondrial reactive oxygen species. These results suggest that sirtuin-3 deficiency mediates the migration of retinal pigment epithelial cells, at least partially by increasing mitochondrial oxidative stress, and shed light on the importance of sirtuin-3 and mitochondrial reactive oxygen species as potential targets in diabetic retinopathy therapy. 相似文献
4.
Lee I Lee H Kim JM Chae EH Kim SJ Chang N 《Bioscience, biotechnology, and biochemistry》2007,71(5):1203-1210
Hyperhomocysteinemia is associated with an increase in the incidence of vascular diseases, including retinal vascular diseases. We examined the effects of high plasma levels of homocysteine on retinal glial cells and vascular endothelial growth factor (VEGF) expression. Male Sprague-Dawley rats were fed either a 3.0 g/kg homocystine diet or a control diet for 2 week. The homocystine-diet group had higher plasma levels of homocysteine and thiobarbituric acid reactive substances (TBARSs) and lower plasma levels of folate, retinol, alpha-tocopherol, and retinal expression of CuZn superoxide dismutase (SOD) than the controls. The rats fed the homocystine-diet showed an increase in vimentin, glial fibrillary acidic protein (GFAP), and VEGF immunoreactivity in the retina as compared to the controls. The increase in vimentin immunoreactivity in the hyperhomocysteinemic rats was correlated with changes in GFAP immunoreactivity in astrocytes within the ganglion cell layer. We found for the first time that short-term hyperhomocysteinemia-induced oxidative stress activates retinal glial cells and increases VEGF expression in the retina. 相似文献
5.
Gupta S Chough E Daley J Oates P Tornheim K Ruderman NB Keaney JF 《American journal of physiology. Cell physiology》2002,282(3):C560-C566
Nitric oxide (NO) plays an important role in the control of numerous vascular functions including basal Na+-K+-ATPase activity in arterial tissue. Hyperglycemia inhibits Na+-K+-ATPase activity in rabbit aorta, in part, through diminished bioactivity of NO. The precise mechanism(s) for such observations, however, are not yet clear. The purpose of this study was to examine the role of superoxide in modulating NO-mediated control of Na+-K+-ATPase in response to hyperglycemia. Rabbit aorta incubated with hyperglycemic glucose concentrations (44 mM) demonstrated a 50% reduction in Na+-K+-ATPase activity that was abrogated by superoxide dismutase. Hyperglycemia also produced a 50% increase in steady-state vascular superoxide measured by lucigenin-enhanced chemiluminescence that was closely associated with reduced Na+-K+-ATPase activity. Specifically, the hyperglycemia-induced increase in vascular superoxide was endothelium dependent, inhibited by L-arginine, and stimulated by N(omega)-nitro-L-arginine. Aldose reductase inhibition with zopolrestat also inhibited the hyperglycemia-induced increase in vascular superoxide. In each manipulation of vascular superoxide, a reciprocal change in Na+-K+-ATPase activity was observed. Finally, a commercially available preparation of Na+-K+-ATPase was inhibited by pyrogallol, a superoxide generator. These data suggest that hyperglycemia induces an increase in endothelial superoxide that inhibits the stimulatory effect of NO on vascular Na+-K+-ATPase activity. 相似文献
6.
The retina experiences mitochondrial dysfunction in diabetes, superoxide levels are elevated, and mitochondrial superoxide dismutase (MnSOD) activity is decreased. Inhibition of superoxide accumulation in diabetes prevents mitochondrial dysfunction, apoptosis of retinal capillary cells, and the development of retinal histopathology. The purpose of this study is to examine the effect of overexpression of MnSOD on oxidative stress, DNA damage, and nitrative stress in the retina of diabetic mice. After 7 weeks of diabetes in MnSOD overexpressing (hemizygous) mice (MnSOD-Tg) and in their age-matched nontransgenic mice, parameters of oxidative stress and nitrative stress were measured in the retina. Overexpression of MnSOD prevented diabetes-induced decreases in retinal GSH levels and the total antioxidant capacity. In the same retina, MnSOD overexpression also inhibited diabetes-induced increases in the levels of 8-OHdG and nitrotyrosine. This suggests that MnSOD could be implicated in the pathogenesis of retinopathy by protecting the retina from increased oxidative damage experienced in diabetic conditions. Thus, understanding how changes in mitochondrial function result in the development of diabetic retinopathy could help identify SOD mimics to inhibit its development. 相似文献
7.
《Insect Biochemistry》1988,18(3):313-321
Treatment of Drosophila melanogaster Kc 0% cells with juvenile hormone (JH), which is of crucial importance to insect physiology, leads to a specific, early apparent increase in mitochondrial protein synthesis and to a later increase in cytochrome oxidase activity. This increase is at a maximum after a 12-h treatment with JH concentrations ranging from 10−12 to 10−9 M. Electrophoretic analysis of the mitochondrial translation products shows that all the mitochondria but a stimulating effect by a simultaneously. We saw no hormonal effect on isolated mitochondria but a stimulating effect by a post-mitochondrial supernatant from induced cells, strongly suggests that the action of JH is indirect and may result from a nuclear effect. 2-D electrophoretic analysis of the total mitochondrial proteins shows that at least two polypeptides coded by nuclear genome are affected. Such results suggest that despite the absence of morphological cellular modification, JH does have an active influence on energy metabolism. 相似文献
8.
9.
Kong YX Van Bergen N Trounce IA Bui BV Chrysostomou V Waugh H Vingrys A Crowston JG 《Aging cell》2011,10(4):572-583
Mouse models that accumulate high levels of mitochondrial DNA (mtDNA) mutations owing to impairments in mitochondrial polymerase γ (PolG) proofreading function have been shown to develop phenotypes consistent with accelerated aging. As increase in mtDNA mutations and aging are risk factors for neurodegenerative diseases, we sought to determine whether increase in mtDNA mutations renders neurons more vulnerable to injury. We therefore examined the in vivo functional activity of retinal neurons and their ability to cope with stress in transgenic mice harboring a neural‐targeted mutant PolG gene with an impaired proofreading capability (Kasahara, et al. (2006) Mol Psychiatry 11 (6):577–93, 523). We confirmed that the retina of these transgenic mice have increased mtDNA deletions and point mutations and decreased expression of mitochondrial oxidative phosphorylation enzymes. Associated with these changes, the PolG transgenic mice demonstrated accelerated age‐related loss in retinal function as measured by dark‐adapted electroretinogram, particularly in the inner and middle retina. Furthermore, the retinal ganglion cell–dominant inner retinal function in PolG transgenic mice showed greater vulnerability to injury induced by raised intraocular pressure, an insult known to produce mechanical, metabolic, and oxidative stress in the retina. These findings indicate that an accumulation of mtDNA mutations is associated with impairment in neural function and reduced capacity of neurons to resist external stress in vivo, suggesting a potential mechanism whereby aging central nervous system can become more vulnerable to neurodegeneration. 相似文献
10.
Hepatocyte growth factor/scatter factor (HGF) is a multifunctional growth factor that is linked to the initiation and/or progression of numerous malignancies. HGF also alters cancer cell responses to DNA damaging cytotoxic agents. Many cell responses to Met activation require alterations in metabolic activity but how the metabolic machinery responds to Met activation remains poorly defined. Treating human glioblastoma cells with HGF followed by the topoisomerase inhibitor camptothecin was found to increase the activity per cell of the mitochondrial respiratory chain enzyme succinate-tetrazolium reductase (>80% increase, p < 0.05) and the tricarboxylic acid cycle enzyme succinate dehydrogenase (>25% increase, p < 0.05). Treatment with either HGF or camptothecin alone had no effect on enzyme activity. The mitochondrial enzymatic response to HGF was dose- and time-dependent with the maximum increase occurring in cells pre-treated with 30 ng/ml HGF for 48h prior to camptothecin exposure. This enzymatic response was associated with a concurrent increase in mitochondrial mass of comparable magnitude (approximately 56%, p < 0.05) as measured by fluorescent mitochondrial staining and flow cytometry. The mitochondrial mass response to HGF was prevented by the MAP-kinase pathway inhibitor PD98059 and was unaffected by the phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin. These findings suggest that HGF influences cell responses to chemotherapeutic stress, in part, by altering mitochondrial functions through a MAP-kinase dependent increase in mitochondrial mass. 相似文献
11.
《生物化学与生物物理学报:疾病的分子基础》2020,1866(10):165843
Age related macular degeneration (AMD) is a multifactorial disease with genetic, biochemical and environmental risk factors. We observed a significant increase in copper levels in choroid-RPE from donor eyeballs with AMD. Adult retinal pigment epithelial cells (ARPE19 cells) exposed to copper in-vitro showed a 2-fold increase in copper influx transporter CTR1 and copper uptake at 50 μM concentration. Further there was 2-fold increase in cytochrome C oxidase activity and a 2-fold increase in the mRNA expression of NRF 2 with copper treatment. There was a significant increase in mitochondrial biogenesis markers PGC1β and TFAM which was confirmed by mitochondrial mass and copy number. On the contrary, in AMD choroid-RPE, the CTR1 mRNA was found to be significantly down-regulated compared to its respective controls. SCO1 and PGC1β mRNA showed an increase in choroid–RPE. Our study proposes copper to play an important role in mitochondrial biogenesis in RPE cells. 相似文献
12.
Interplexiform cells of the mammalian retina and their comparison with catecholamine-containing retinal cells. 总被引:1,自引:0,他引:1
B B Boycott J E Dowling S K Fisher H Kolb A M Laties 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1975,191(1104):353-368
13.
Park SY Chang I Kim JY Kang SW Park SH Singh K Lee MS 《The Journal of biological chemistry》2004,279(9):7512-7520
We have shown that mitochondrial DNA-depleted (rho(0)) SK-Hep1 hepatoma cells are resistant to apoptosis, contrary to previous papers reporting normal apoptotic susceptibility of rho(0) cells. We studied the changes of gene expression in SK-Hep1 rho(0) cells. DNA chip analysis showed that MnSOD expression was profoundly increased in rho(0) cells. O(2)(.) contents increased during rho(0) cell derivation but became normalized after establishment of rho(0) phenotypes, suggesting that MnSOD induction is an adaptive process to increased O(2)(.). rho(0) cells were resistant to menadione, paraquat, or doxorubicin, and O(2)(.) contents after treatment with them were lower in rho(0) cells compared with parental cells because of MnSOD overexpression. Expression levels and activity of glutathione peroxidases were also increased in rho(0) cells, rendering them resistant to exogenous H(2)O(2). rho(0) cells were resistant to p53, and intracellular ROS contents after p53 expression were lower compared with parental cells. Other types of rho(0) cells also showed increased MnSOD expression and resistance against ROS. Heme oxygenase-1 expression was increased in rho(0) cells, and a heme oxygenase-1 inhibitor decreased the induction of MnSOD in rho(0) cells and their resistance against ROS donors. These results indicate that rho(0) cells are resistant to cell death contrary to previous reports and suggest that an adaptive increase in the expression of antioxidant enzymes renders cancer cells or aged cells with frequent mitochondrial DNA mutations to resist against oxidative stress, host anti-cancer surveillance, or chemotherapeutic agents, conferring survival advantage on them. 相似文献
14.
Brodsky SV Gao S Li H Goligorsky MS 《American journal of physiology. Heart and circulatory physiology》2002,283(5):H2130-H2139
The accumulated ultrastructural and biochemical evidence is highly suggestive of the existence of mitochondrial nitric oxide (NO) synthase (mtNOS), where local production of NO regulates the electron transport along the respiratory chain. Here, the functional competence of mtNOS in situ in a living cell was examined using an intravital fluorescent NO indicator, 4,5-diaminofluorescein, employing a new procedure for loading it into the mitochondria to demonstrate local NO generation in undisrupted endothelial cells and in isolated mitochondria as well as in human embryonic kidney cells stably expressing endothelial NOS. With the use of this approach, we showed that endothelial cells incubated in the presence of high concentration of D-glucose (but not L-glucose) are characterized by the reduced NO synthetic function of mitochondria despite the unaltered abundance of the enzyme. In parallel, mitochondrial generation of superoxide was augmented in endothelial cells incubated in the presence of a high concentration of D-glucose. Both the NO generation and superoxide production in hyperglycemic environment could be restored to control levels by treating cells with a cell-permeable superoxide dismutase mimetic. In addition, enhanced mitochondrial superoxide production could be suppressed with an inhibitor of NOS in stimulated endothelial cells. In conclusion, the data 1) provide direct evidence of mitochondrial NO production in endothelial cells, 2) demonstrate its suppression and enhanced superoxide generation in hyperglycemic environment, and 3) provide evidence that "uncoupled" mtNOS represents an important source of superoxide anions in endothelial cells incubated in high glucose-containing medium. 相似文献
15.
Medhora M Chen Y Gruenloh S Harland D Bodiga S Zielonka J Gebremedhin D Gao Y Falck JR Anjaiah S Jacobs ER 《American journal of physiology. Lung cellular and molecular physiology》2008,294(5):L902-L911
Reactive oxygen species (ROS) signal vital physiological processes including cell growth, angiogenesis, contraction, and relaxation of vascular smooth muscle. Because cytochrome P-450 family 4 (CYP4)/20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to enhance angiogenesis, pulmonary vascular tone, and endothelial nitric oxide synthase function, we explored the potential of this system to stimulate bovine pulmonary artery endothelial cell (BPAEC) ROS production. Our data are the first to demonstrate that 20-HETE increases ROS in BPAECs in a time- and concentration-dependent manner as detected by enhanced fluorescence of oxidation products of dihydroethidium (DHE) and dichlorofluorescein diacetate. An analog of 20-HETE elicits no increase in ROS and blocks 20-HETE-evoked increments in DHE fluorescence, supporting its function as an antagonist. Endothelial cells derived from bovine aortas exhibit enhanced ROS production to 20-HETE quantitatively similar to that of BPAECs. 20-HETE-induced ROS production in BPAECs is blunted by pretreatment with polyethylene-glycolated SOD, apocynin, inhibition of Rac1, and a peptide-based inhibitor of NADPH oxidase subunit p47(phox) association with gp91. These data support 20-HETE-stimulated, NADPH oxidase-derived, and Rac1/2-dependent ROS production in BPAECs. 20-HETE promotes translocation of p47(phox) and tyrosine phosphorylation of p47(phox) in a time-dependent manner as well as increased activated Rac1/2, providing at least three mechanisms through which 20-HETE activates NADPH oxidase. These observations suggest that 20-HETE stimulates ROS production in BPAECs at least in part through activation of NADPH oxidase within minutes of application of the lipid. 相似文献
16.
Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells 下载免费PDF全文
Sandra Atienzar‐Aroca Miguel Flores‐Bellver Gemma Serrano‐Heras Natalia Martinez‐Gil Jorge M. Barcia Silvia Aparicio Daniel Perez‐Cremades Jose M. Garcia‐Verdugo Manuel Diaz‐Llopis Francisco J. Romero Javier Sancho‐Pelluz 《Journal of cellular and molecular medicine》2016,20(8):1457-1466
The retinal pigment epithelium (RPE), a monolayer located between the photoreceptors and the choroid, is constantly damaged by oxidative stress, particularly because of reactive oxygen species (ROS). As the RPE, because of its physiological functions, is essential for the survival of the retina, any sustained damage may consequently lead to loss of vision. Exosomes are small membranous vesicles released into the extracellular medium by numerous cell types, including RPE cells. Their cargo includes genetic material and proteins, making these vesicles essential for cell‐to‐cell communication. Exosomes may fuse with neighbouring cells influencing their fate. It has been observed that RPE cells release higher amounts of exosomes when they are under oxidative stress. Exosomes derived from cultured RPE cells were isolated by ultracentrifugation and quantified by flow cytometry. VEGF receptors (VEGFR) were analysed by both flow cytometry and Western blot. RT‐PCR and qPCR were conducted to assess mRNA content of VEGFRs in exosomes. Neovascularization assays were performed after applying RPE exosomes into endothelial cell cultures. Our results showed that stressed RPE cells released a higher amount of exosomes than controls, with a higher expression of VEGFR in the membrane, and enclosed an extra cargo of VEGFR mRNA. Angiogenesis assays confirmed that endothelial cells increased their tube formation capacity when exposed to stressed RPE exosomes. 相似文献
17.
Retinal progenitor cells are believed to display altered proliferation and differentiation during retinal development, suggesting that retinal progenitor cell populations are not homogeneous. However, the composition of progenitor cell populations is not known, due in part to the lack of known surface markers identifying distinct stages of retinal progenitor cells. We found a dramatic change in the expression profile of the cell surface antigens c-kit and stage-specific embryonic antigen-1 (SSEA-1) in retinal progenitor cells during development. While SSEA-1 was expressed early in development, c-kit expression peaked in late stage progenitor cells. The identification of these developmental markers enabled us to characterize distinct sub-populations of retinal progenitor cells. Progenitor cell subpopulations expressing either SSEA-1, c-kit, or both showed different proliferation and differentiation abilities. Although SSEA-1-positive cells were augmented by beta-catenin signaling, c-kit-positive cells were positively regulated by Notch signaling. Taken together, our data suggest that c-kit and SSEA-1 can be used to spatiotemporally differentiate retinal progenitor populations that have intrinsically distinct characteristics. Prolonged expression of c-kit by a retrovirus resulted in the promotion of proliferation and the appearance of nestin-positive cells in the presence of the c-kit ligand, stem cell factor (SCF). This suggests a role for c-kit, Notch, and the beta-catenin signaling network in retinal development. 相似文献
18.
Falzano L Rivabene R Santini MT Fabbri A Fiorentini C 《Biochemical and biophysical research communications》2001,283(5):1026-1030
Cytotoxic Necrotizing Factor 1 (CNF1) is a protein toxin from Escherichia coli that induces the activation of Rho, Rac, and Cdc42 GTPases, all involved in actin reorganization. Rac plays a further role in oxidase function. In epithelial cells, CNF1 has been reported to induce a phagocytic-like behavior in terms of a ruffle-driven ingestion of large material. We herein show that CNF1-activated epithelial cells may exert additional cell responses typical of professional phagocytes following stimulation, i.e., an increase in oxygen consumption and the generation of superoxide anions. Such effects were triggered by the contact of latex beads with epithelial cells and were significantly augmented by CNF1-induced Rac activation. Altogether our data indicate that Rac, one of the targets of CNF1, plays a pivotal role in these phenomena, suggesting the involvement in epithelial cells of a Rac-dependent NADPH-oxidase complex similar to that employed by professional phagocytes. 相似文献
19.
To examine the relationship between retinal ageing and superoxide dismutase, the distribution and expression of the dismutase was studied in the retina of 2-year-old Sprague--Dawley albino rats with immunohistochemistry and immunochemical quantitative analysis. Eight-week-old Sprague--Dawley albino rats were used as controls. In 2-year-old rats, manganese superoxide dismutase (Mn-SOD) immunoreactivities in the photoreceptor inner segments, the outer nuclear layer and the inner plexiform layer were stronger than those in 8-week-old rats. Copper--zinc superoxide dismutase (CuZn-SOD) immunoreactivities in the outer nuclear layer and inner plexiform layer of 2-year-old rats were stronger than those in 8-week-old rats. Faint CuZn-SOD immunoreactivity became visible in the photoreceptor inner segments of 2-year-old rats, whereas no CuZn-SOD immunoreactivity was observed in 8-week-old rats. Our immunochemical quantitative analysis also showed an increase in the immunoreactivities of superoxide dismutases in the sensory retina with age. The transition of the dismutases may have some relationship with retinal ageing. © 1998 Chapman & Hall 相似文献
20.