首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient targeted manipulation of complex genomes requires highly specific endonucleases to generate double-strand breaks at defined locations (Bibikova et al., 2003; Bogdanove and Voytas, 2011). The predominantly engineered nucleases, zinc-finger nucleases (ZFNs), and TAL effector nucleases (TALENs) use the catalytic domain of FokI as the nuclease portion. This domain, however, functions as a dimer to nonspecifically cleave DNA meaning that ZFNs and TALENs must be designed in head-to-head pairs to target a desired sequence. To overcome this limitation and expand the toolbox of genome editing reagents, we used the N-terminal catalytic domain and interdomain linker of the monomeric GIY-YIG homing endonuclease I-TevI to create I-TevI-zinc-fingers (Tev-ZFEs), and I-TevI-TAL effectors (Tev-TALs) (Kleinstiver et al. 2012). We also made I-TevI fusions to LAGLIDADGs homing endonucleases (I-Tev-LHEs). All the three fusions showed activity on model substrates on par with ZFNs and TALENs in yeast-based recombination assays. These proof-of-concept experiments demonstrate that the catalytic domain of GIY-YIG homing endonucleases can be targeted to relevant loci by fusing the domain to characterize DNA-binding platforms. Recent efforts have focused on improving the Tev-TAL platform by (1) understanding the spacing requirements between the nuclease cleavage site and the DNA binding site, (2) probing the DNA binding requirements of the I-TevI linker domain, and (3) demonstrating activity in mammalian systems.  相似文献   

2.
I-TevI, a member of the GIY-YIG family of homing endonucleases, consists of an N-terminal catalytic domain and a C-terminal DNA-binding domain joined by a flexible linker. The GIY-YIG motif is in the N-terminal domain of I-TevI, which corresponds to a phylogenetically widespread catalytic cartridge that is often associated with mobile genetic elements. The crystal structure of the catalytic domain of I-TevI, the first of any GIY-YIG endonuclease, reveals a novel alpha/beta-fold with a central three-stranded antiparallel beta-sheet flanked by three helices. The most conserved and putative catalytic residues are located on a shallow, concave surface and include a metal coordination site. Similarities in the three-dimensional arrangement of the catalytically important residues and the cation-binding site with those of the His-Cys box endonuclease I-PpoI suggest the possibility of mechanistic relationships among these different families of homing endonucleases despite completely different folds.  相似文献   

3.
I-TevI is a member of the GIY-YIG family of homing endonucleases. It is folded into two structural and functional domains, an N-terminal catalytic domain and a C-terminal DNA-binding domain, separated by a flexible linker. In this study we have used genetic analyses, computational sequence analysis andNMR spectroscopy to define the configuration of theN-terminal domain and its relationship to the flexible linker. The catalytic domain is an alpha/beta structure contained within the first 92 amino acids of the 245-amino acid protein followed by an unstructured linker. Remarkably, this structured domain corresponds precisely to the GIY-YIG module defined by sequence comparisons of 57 proteins including more than 30 newly reported members of the family. Although much of the unstructured linker is not essential for activity, residues 93-116 are required, raising the possibility that this region may adopt an alternate conformation upon DNA binding. Two invariant residues of the GIY-YIG module, Arg27 and Glu75, located in alpha-helices, have properties of catalytic residues. Furthermore, the GIY-YIG sequence elements for which the module is named form part of a three-stranded antiparallel beta-sheet that is important for I-TevI structure and function.  相似文献   

4.
5.
The GIY-YIG nuclease domain has been identified in homing endonucleases, DNA repair and recombination enzymes, and restriction endonucleases. The Type II restriction enzyme Eco29kI belongs to the GIY-YIG nuclease superfamily and, like most of other family members, including the homing endonuclease I-TevI, is a monomer. It recognizes the palindromic sequence 5′-CCGC/GG-3′ (“/” marks the cleavage position) and cuts it to generate 3′-staggered ends. The Eco29kI monomer, which contains a single active site, either has to nick sequentially individual DNA strands or has to form dimers or even higher-order oligomers upon DNA binding to make a double-strand break at its target site. Here, we provide experimental evidence that Eco29kI monomers dimerize on a single cognate DNA molecule forming the catalytically active complex. The mechanism described here for Eco29kI differs from that of Cfr42I isoschisomer, which also belongs to the GIY-YIG family but is functional as a tetramer. This novel mechanism may have implications for the function of homing endonucleases and other enzymes of the GIY-YIG family.  相似文献   

6.

Background

The majority of experimentally determined crystal structures of Type II restriction endonucleases (REases) exhibit a common PD-(D/E)XK fold. Crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI), and bioinformatics analyses supported by mutagenesis suggested that some REases belong to the HNH fold. Our previous bioinformatic analysis suggested that REase R.Eco29kI shares sequence similarities with one more unrelated nuclease superfamily, GIY-YIG, however so far no experimental data were available to support this prediction. The determination of a crystal structure of the GIY-YIG domain of homing endonuclease I-TevI provided a template for modeling of R.Eco29kI and prompted us to validate the model experimentally.

Results

Using protein fold-recognition methods we generated a new alignment between R.Eco29kI and I-TevI, which suggested a reassignment of one of the putative catalytic residues. A theoretical model of R.Eco29kI was constructed to illustrate its predicted three-dimensional fold and organization of the active site, comprising amino acid residues Y49, Y76, R104, H108, E142, and N154. A series of mutants was constructed to generate amino acid substitutions of selected residues (Y49A, R104A, H108F, E142A and N154L) and the mutant proteins were examined for their ability to bind the DNA containing the Eco29kI site 5'-CCGCGG-3' and to catalyze the cleavage reaction. Experimental data reveal that residues Y49, R104, E142, H108, and N154 are important for the nuclease activity of R.Eco29kI, while H108 and N154 are also important for specific DNA binding by this enzyme.

Conclusion

Substitutions of residues Y49, R104, H108, E142 and N154 predicted by the model to be a part of the active site lead to mutant proteins with strong defects in the REase activity. These results are in very good agreement with the structural model presented in this work and with our prediction that R.Eco29kI belongs to the GIY-YIG superfamily of nucleases. Our study provides the first experimental evidence for a Type IIP REase that does not belong to the PD-(D/E)XK or HNH superfamilies of nucleases, and is instead a member of the unrelated GIY-YIG superfamily.  相似文献   

7.
Homing endonucleases are sequence-tolerant DNA endonucleases that act as mobile genetic elements. The ability of homing endonucleases to cleave substrates with multiple nucleotide substitutions suggests a high degree of adaptability in that changing or modulating cleavage preference would require relatively few amino acid substitutions. Here, using directed evolution experiments with the GIY-YIG homing endonuclease I-TevI that targets the thymidylate synthase gene of phage T4, we readily isolated variants that dramatically broadened I-TevI cleavage preference, as well as variants that fine-tuned cleavage preference. By combining substitutions, we observed an ∼10 000-fold improvement in cleavage on some substrates not cleaved by the wild-type enzyme, correlating with a decrease in readout of information content at the cleavage site. Strikingly, we were able to change the cleavage preference of I-TevI to that of the isoschizomer I-BmoI which targets a different cleavage site in the thymidylate synthase gene, recapitulating the evolution of cleavage preference in this family of homing endonucleases. Our results define a strategy to isolate GIY-YIG nuclease domains with distinct cleavage preferences, and provide insight into how homing endonucleases may escape a dead-end life cycle in a population of saturated target sites by promoting transposition to different target sites.  相似文献   

8.
Phage T4 endonuclease II (EndoII), a GIY-YIG endonuclease lacking a carboxy-terminal DNA-binding domain, was subjected to site-directed mutagenesis to investigate roles of individual amino acids in substrate recognition, binding, and catalysis. The structure of EndoII was modeled on that of UvrC. We found catalytic roles for residues in the putative catalytic surface (G49, R57, E118, and N130) similar to those described for I-TevI and UvrC; in addition, these residues were found to be important for substrate recognition and binding. The conserved glycine (G49) and arginine (R57) were essential for normal sequence recognition. Our results are in agreement with a role for these residues in forming the DNA-binding surface and exposing the substrate scissile bond at the active site. The conserved asparagine (N130) and an adjacent proline (P127) likely contribute to positioning the catalytic domain correctly. Enzymes in the EndoII subfamily of GIY-YIG endonucleases share a strongly conserved middle region (MR, residues 72 to 93, likely helical and possibly substituting for heterologous helices in I-TevI and UvrC) and a less strongly conserved N-terminal region (residues 12 to 24). Most of the conserved residues in these two regions appeared to contribute to binding strength without affecting the mode of substrate binding at the catalytic surface. EndoII K76, part of a conserved NUMOD3 DNA-binding motif of homing endonucleases found to overlap the MR, affected both sequence recognition and catalysis, suggesting a more direct involvement in positioning the substrate. Our data thus suggest roles for the MR and residues conserved in GIY-YIG enzymes in recognizing and binding the substrate.  相似文献   

9.
GIY-YIG homing endonucleases are modular enzymes consisting of a well-defined N-terminal catalytic domain connected to a variable C-terminal DNA-binding domain. Previous studies have revealed that the role of the DNA-binding domain is to recognize and bind intronless DNA substrate, positioning the N-terminal catalytic domain such that it is poised to generate a staggered double-strand break by an unknown mechanism. Interactions of the N-terminal catalytic domain with intronless substrate are therefore a critical step in the reaction pathway but have been difficult to define. Here, we have taken advantage of the reduced activity of I-BmoI, an isoschizomer of the well-studied bacteriophage T4 homing endonuclease I-TevI, to examine double-strand break formation by I-BmoI. We present evidence demonstrating that I-BmoI generates a double-strand break by two sequential but chemically independent nicking reactions where divalent metal ion is a limiting factor in top-strand nicking. We also show by in-gel footprinting that contacts by the I-BmoI catalytic domain induce significant minor groove DNA distortions that occur independently of bottom-strand nicking. Bottom-strand contacts are critical for accurate top-strand nicking, whereas top-strand contacts have little influence on the accuracy of bottom-strand nicking. We discuss our results in the context of current models of GIY-YIG endonuclease function, with emphasis on the role of divalent metal ion and strand-specific contacts in regulating the activity of a single active site to generate a staggered double-strand break.  相似文献   

10.
To maximize spread of their host intron or intein, many homing endonucleases recognize nucleotides that code for important and conserved amino acid residues of the target gene. Here, we examine the cleavage requirements for I-TevI, which binds a stretch of thymidylate synthase (TS) DNA that codes for functionally critical residues in the TS active site. Using an in vitro selection scheme, we identified two base-pairs in the I-TevI cleavage site region as important for cleavage efficiency. These were confirmed by comparison of I-TevI cleavage efficiencies on mutant and on wild-type substrates. We also showed that nicking of the bottom strand by I-TevI is not affected by mutation of residues surrounding the bottom-strand cleavage site, unlike other homing endonucleases. One of these two base-pairs is universally conserved in all TS sequences, and is identical with a previously identified cleavage determinant of I-BmoI, a related GIY-YIG endonuclease that binds a homologous stretch of TS-encoding DNA. The other base-pair is conserved only in a subset of TS genes that includes the I-TevI, but not the I-BmoI, target sequence. Both the I-TevI and I-BmoI cleavage site requirements correspond to functionally critical residues involved in an extensive hydrogen bond network within the TS active site. Remarkably, these cleavage requirements correlate with TS phylogeny in bacteria, suggesting that each endonuclease has individually adapted to efficiently cleave distinct TS substrates.  相似文献   

11.
Evidence for a domain structure of cellobiohydrolase II (CBH II, 58 kDa) from Trichoderma reesei (Teeri et al., 1987; Tomme et al., 1988) is corroborated by results from SAXS experiments. They indicate a 'tadpole' structure for the intact CBH II in solution (Dmax = 21.5 +/- 0.5 nm; Rg = 5.4 +/- 0.1 nm) and a more isotropic, ellipsoid shape for the core protein (Dmax = 6.0 +/- 0.3 nm; Rg = 2.1 +/- 0.1 nm). The latter was obtained by partial proteolysis with papain which cleaves the native CBH II to give two fragments (Tomme et al., 1988): the core (45 kDa) with the active (hydrolytic) domain and a smaller fragment (11 kDa) coinciding with the tail part of the model and containing the binding domain for unsoluble cellulose. This peptide fragment is conserved in most cellulolytic enzymes from Trichoderma reesei (Teeri et al., 1987). It contains a conserved region (block A) and glycosylated parts (blocks B and B' duplicated and located N-terminally in CBH II). In spite of different domain arrangements in CBH I (blocks B-A at C-terminals) SAXS measurements (Abuja et al., 1988) indicate similar tertiary structures for both cellobiohydrolases although discrete differences in the tail parts exist.  相似文献   

12.
I-TevI is a site-specific, sequence-tolerant intron endonuclease. The crystal structure of the DNA-binding domain of I-TevI complexed with the 20 bp primary binding region of its DNA target reveals an unusually extended structure composed of three subdomains: a Zn finger, an elongated segment containing a minor groove-binding alpha-helix, and a helix-turn-helix. The protein wraps around the DNA, mostly following the minor groove, contacting the phosphate backbone along the full length of the duplex. Surprisingly, while the minor groove-binding helix and the helix-turn- helix subdomain make hydrophobic contacts, the few base-specific hydrogen bonds occur in segments that lack secondary structure and flank the intron insertion site. The multiple base-specific interactions over a long segment of the substrate are consistent with the observed high site specificity in spite of sequence tolerance, while the modular composition of the domain is pertinent to the evolution of homing endonucleases.  相似文献   

13.
The GIY-YIG nuclease domain is found within protein scaffolds that participate in diverse cellular pathways and contains a single active site that hydrolyzes DNA by a one-metal ion mechanism. GIY-YIG homing endonucleases (GIY-HEs) are two-domain proteins with N-terminal GIY-YIG nuclease domains connected to C-terminal DNA-binding and they are thought to function as monomers. Using I-BmoI as a model GIY-HE, we test mechanisms by which the single active site is used to generate a double-strand break. We show that I-BmoI is partially disordered in the absence of substrate, and that the GIY-YIG domain alone has weak affinity for DNA. Significantly, we show that I-BmoI functions as a monomer at all steps of the reaction pathway and does not transiently dimerize or use sequential transesterification reactions to cleave substrate. Our results are consistent with the I-BmoI DNA-binding domain acting as a molecular anchor to tether the GIY-YIG domain to substrate, permitting rotation of the GIY-YIG domain to sequentially nick each DNA strand. These data highlight the mechanistic differences between monomeric GIY-HEs and dimeric or tetrameric GIY-YIG restriction enzymes, and they have implications for the use of the GIY-YIG domain in genome-editing applications.  相似文献   

14.
The structure of I-HmuI, which represents the last family of homing endonucleases without a defining crystallographic structure, has been determined in complex with its DNA target. A series of diverse protein structural domains and motifs, contacting sequential stretches of nucleotide bases, are distributed along the DNA target. I-HmuI contains an N-terminal domain with a DNA-binding surface found in the I-PpoI homing endonuclease and an associated HNH/N active site found in the bacterial colicins, and a C-terminal DNA-binding domain previously observed in the I-TevI homing endonuclease. The combination and exchange of these features between protein families indicates that the genetic mobility associated with homing endonucleases extends to the level of independent structural domains. I-HmuI provides an unambiguous structural connection between the His-Cys box endonucleases and the bacterial colicins, supporting the hypothesis that these enzymes diverged from a common ancestral nuclease.  相似文献   

15.
16.
Domain 1 of the cell adhesion protein CD2 (CD2-1) has an all β-structure typical of proteins belonging to the immunoglobin superfamily. It has a remarkable, ability to fold as a native monomer or a metastable intertwined dimer. To understand the origin of structural rearrangements of CD2-1, we have studied equilibrium unfolding of the protein using various biophysical spectroscopic techniques. At temperatures above approx 68°C, a partially folded state of CD2-1 (H state) with a distinct secondary structure, involving largely exposed aromatic and hydrophobic residues and a substantially perturbed tertiary structure, is observed. In contrast, an unfolded state (D state) of CD2-1 with random-coil-like secondary and tertiary structures is observed in 6 M GuHCl. This partially folded high-temperature state has increased negative molar ellipticity at 222 nm in far-ultraviolet CD spectra, implying formation of a non-native helical conformation. The existence of this non-native high-temperature intermediate is consistent with relatively high intrinsic helical propensities in the primary sequence of CD2-1. This conformation flexibility may be important in the observed domain swapping of CD2-1.  相似文献   

17.
Coliphage T4 endonuclease II (EndoII), encoded by gene denA, is a small (16 kDa, 136 aa) enzyme belonging to the GIY-YIG family of endonucleases, which lacks a C-terminal domain corresponding to that providing most of the binding energy in the structurally characterized GIY-YIG endonucleases, I-TevI and UvrC. In vivo, it is involved in degradation of host DNA, permitting scavenging of host-derived nucleotides for phage DNA synthesis. EndoII primarily catalyzes single-stranded nicking of DNA; 5- to 10-fold less frequently double-stranded breaks are produced. The Glu118Ala mutant of EndoII was crystallized in space group P21 with four monomers in the asymmetric unit. The fold of the EndoII monomer is similar to that of the catalytic domains of UvrC and I-TevI. In contrast to these enzymes, EndoII forms a striking X-shaped tetrameric structure composed as a dimer of dimers, with a protruding hairpin domain not present in UvrC or I-TevI providing most of the dimerization and tetramerization interfaces. A bound phosphate ion in one of the four active sites of EndoII likely mimics the scissile phosphate in a true substrate complex. In silico docking experiments showed that a protruding loop containing a nuclease-associated modular domain 3 element is likely to be involved in substrate binding, as well as residues forming a separate nucleic acid binding surface adjacent to the active site. The positioning of these sites within the EndoII primary dimer suggests that the substrate would bind to a primary EndoII dimer diagonally over the active sites, requiring significant distortion of the enzyme or the substrate DNA, or both, for simultaneous nicking of both DNA strands. The scarcity of potential nucleic acid binding residues between the active sites indicates that EndoII may bind its substrate inefficiently across the two sites in the dimer, offering a plausible explanation for the catalytic preponderance of single-strand nicks. Mutations analyzed in earlier functional studies are discussed in their structural context.  相似文献   

18.
The secondary and tertiary structure of recombinant human acidic fibroblast growth factor (aFGF) has been characterized by a variety of spectroscopic methods. Native aFGF consists of ca. 55% beta-sheet, 20% turn, 10% alpha-helix, and 15% disordered polypeptide as determined by laser Raman, circular dichroism, and Fourier transform infrared spectroscopy; the experimentally determined secondary structure content is in agreement with that calculated by the semi-empirical methods of Chou and Fasman (Chou, P. Y., and Fasman, G. C., 1974, Biochemistry 13, 222-244) and Garnier et al. (Garnier, J. O., et al., 1978, J. Mol. Biol. 120, 97-120). Using the Garnier et al. algorithm, the major secondary structure components of aFGF have been assigned to specific regions of the polypeptide chain. The fluorescence spectrum of native aFGF is unusual in that it is dominated by tyrosine fluorescence despite the presence of a tryptophan residue in the protein. However, tryptophan fluorescence is resolved upon excitation above 295 nm. The degree of tyrosine and tryptophan solvent exposure has been assessed by a combination of ultraviolet absorption, laser Raman, and fluorescence spectroscopy; the results suggest that seven of the eight tyrosine residues are solvent exposed while the single tryptophan is partially inaccessible to solvent in native aFGF, consistent with recent crystallographic data. Denaturation of aFGF by extremes of temperature or pH leads to spectroscopically distinct conformational states in which contributions of tyrosine and tryptophan to the fluorescence spectrum of the protein vary. The protein is unstable at physiological temperatures. Addition of heparin or other sulfated polysaccharides does not affect the spectroscopic characteristics of native aFGF. These polymers do, however, dramatically stabilize the native protein against thermal and acid denaturation as determined by differential scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The interaction of aFGF with such polyanions may play a role in controlling the activity of this growth factor in vivo.  相似文献   

19.
Nucleotide excision repair is a highly conserved DNA repair mechanism present in all kingdoms of life. The incision reaction is a critical step for damage removal and is accomplished by the UvrC protein in eubacteria. No structural information is so far available for the 3' incision reaction. Here we report the crystal structure of the N-terminal catalytic domain of UvrC at 1.5 A resolution, which catalyzes the 3' incision reaction and shares homology with the catalytic domain of the GIY-YIG family of intron-encoded homing endonucleases. The structure reveals a patch of highly conserved residues surrounding a catalytic magnesium-water cluster, suggesting that the metal binding site is an essential feature of UvrC and all GIY-YIG endonuclease domains. Structural and biochemical data strongly suggest that the N-terminal endonuclease domain of UvrC utilizes a novel one-metal mechanism to cleave the phosphodiester bond.  相似文献   

20.
Natively unfolded proteins range from molten globules to disordered coils. They are abundant in eukaryotic genomes and commonly involved in molecular interactions. The essential N-terminal translocation domains of colicin toxins from Escherichia coli are disordered bacterial proteins that bind at least one protein of the Tol or Ton family. The colicin N translocation domain (ColN-(1-90)), which binds to the C-terminal domain of TolA (TolA-(296-421)), shows a disordered far-UV CD spectrum, no near-UV CD signal, and non-cooperative thermal unfolding. As expected, TolA-(296-421) displays both secondary structure in far-UV CD and tertiary structure in near-UV CD. Furthermore it shows a cooperative unfolding transition at 65 degrees C. CD spectra of the 1:1 complex show both increased secondary structure and colicin N-specific near-UV CD signals. A new cooperative thermal transition at 35 degrees C is followed by the unchanged unfolding behavior of TolA-(296-421). Fluorescence and surface plasmon resonance confirm that the new unfolding transition accompanies dissociation of ColN-(1-90). Hence upon binding the disordered structure of ColN-(1-90) converts to a cooperatively folded domain without altering the TolA-(296-421) structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号