首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Predicting the population dynamics of insects in natural conditions is essential for their management or preservation, and temperature‐dependent development models contribute to achieving this. In this research the effects of temperature and soil moisture content on egg development and hatching of Clavipalpus ursinus (Blanchard) were evaluated. The eggs were exposed to seven temperature treatments with averages of 7.2, 13.0, 15.5, 19.7, 20.6, 22.0 and 25.3°C, in combination with three soil moisture contents of 40%, 60% and 80%. A linear and two non‐linear (Lactin and Briere) models were evaluated in order to determine the thermal requirements of this developmental stage. Temperature affected significantly the time of development and egg hatching, while no significant effect was observed for moisture content. Thermal requirements were set as: 7.2°C for lower developmental threshold, 20.6°C for optimum developmental threshold, 25.3°C for maximum temperature and 344.83 degree‐days for the thermal constant. The linear model described satisfactorily egg development at intermediate temperatures; nevertheless, a slightly better fit of the observed data was obtained with the Lactin model. Egg development took place inside a narrow range of temperatures. Consequently, an increment of soil temperature could generate a negative impact on the population size of this species or changes in its biological parameters.  相似文献   

2.
Accurate models of temperature-dependent embryonic developmental rates are important to assess the effects of a changing climate on insect life cycles and to suggest methods of population management by habitat manipulation. Embryonic development determines the life cycle of many species of grasshoppers, which, in cold climates, spend two winters in the egg stage. Increasing temperatures associated with climate change in the subarctic could potentiate a switch to a univoltine life cycle. However, egg hatch could be delayed by maintaining a closed vegetative canopy, which would lower soil temperatures by shading the soil surface. Prediapause and postdiapause embryonic developmental rates were measured in the laboratory over a wide range of temperatures for Melanoplus borealis Fieber and Melanoplus sanguinipes F. (Orthoptera: Acrididae) A model was fit to the data and used to predict dates of egg hatch in the spring and prediapause development in the fall under different temperature regimens. Actual soil temperatures were recorded at several locations over 5 yr. To simulate climate warming, 2, 3, or 4°C was added to each hourly recorded temperature. Results suggest that a 2, 3, or 4°C increase in soil temperatures will result in eggs hatching ≈ 3, 5, or 7 d earlier, respectively. An increase of 3°C would be required to advance prediapause development enough to allow for a portion of the population to be univoltine in warmer years. To simulate shading, 2 and 4°C were subtracted from observed temperatures. A 4°C decrease in temperatures could potentially delay hatch by 8 d.  相似文献   

3.
4.
Eggs of the Indianmeal moth, Plodia interpunctella (Hübner), were exposed to the labeled rate of hydroprene (1.9 x 10(-3) mg [AI]/cm2) sprayed on concreted petri dishes. These eggs were exposed for 1, 3, 6, 12, and 18 h and until hatching (continuous exposure) at temperatures of 16, 20, 24, 28, and 32 degrees C and 57% RH until the emergence of first instars. The developmental time and egg mortality were significantly influenced by temperature and exposure periods. At 16 degrees C, hydroprene did not cause differences in developmental time when eggs were exposed for different periods. At temperatures >16 degrees C, both exposure period and temperature influenced developmental time. The maximum developmental time (15.0 +/- 0.2 d) occurred at 16 degrees C, and the minimum developmental time (3.2 +/- 0.3 d) occurred at 32 degrees C. Mortality increased when eggs were exposed to hydroprene for longer periods at all of the five tested temperatures. The greatest mortality (81.6 +/- 2.1%) occurred when eggs were continuously exposed on treated surfaces at 32 degrees C. We used developmental time instead of rate (1/ developmental time) to fit simple linear or polynomial regression models to the development data. Appropriate models for developmental time and mortality were chosen based upon lack-of-fit tests. The regression models can be used in predictive simulation models for the population dynamics of Indianmeal moth to aid in optimizing use of hydroprene for insect management.  相似文献   

5.
The primitive pulmonate snail Amphibola crenata embeds embryos within a smooth mud collar on exposed estuarine mudflats in New Zealand. Development through hatching of free-swimming veliger larvae was monitored at 15 salinity and temperature combinations covering the range of 2-30 ppt salinity and 15-25 °C. The effect of exposure to air on developmental rate was also assessed. There were approximately 18,000 embryos in each egg collar. The total number of veligers released from standard-sized egg collar fragments varied with both temperature and salinity: embryonic survival was generally higher at 15 and 20 °C than at 25 °C; moreover, survival was generally highest at intermediate salinities, and greatly reduced at 2 ppt salinity regardless of temperature. Even at 2 ppt salinity, however, about one-third of embryos were able to develop successfully to hatching. Embryonic tolerance to low salinity was apparently a property of the embryos themselves, or of the surrounding egg capsules; there was no indication that the egg collars protected embryos from exposure to environmental stress. Mean hatching times ranged between 7 and 22 days, with reduced developmental rates both at lower temperature and lower salinity. At each salinity tested, developmental rate to hatching was similar at 20 and 25 °C. At 15 °C, time to hatching was approximately double that recorded at the two higher exposure temperatures. Exposing the egg collars to air for 6-9 h each day at 20 °C (20 ppt salinity) accelerated hatching by about 24 h, suggesting that developmental rate in this species is limited by the rates at which oxygen or wastes can diffuse into and from intact collars, respectively. Similarly, veligers from egg capsules that were artificially separated from egg collars at 20 °C developed faster than those within intact egg collars. The remarkable ability of embryos of A. crenata to hatch over such a wide range of temperatures and salinities, and to tolerate a considerable degree of exposure to air, explains the successful colonization of this species far up into New Zealand estuaries.  相似文献   

6.
SUMMARY. 1. The eggs of a planktonic, predatory water mile Piona exigua Viets were reared in the laboratory at constant temperatures ranging from 10°C to 280C. Egg development rates increased with increase in temperature.
2. Five models describing the effect of temperature on egg development times were fitted to the data.
3. The variances of the egg hatching times at each temperature differed widely, but these variances were not made more equal by In-transformation.
4. A simple power curve, fitted to the raw data, accounted for ≥.97% of the variation in the data. Two further models, both of which included a third parameter, provided a better fit at the temperature extremes.
5. Close examination of the patterns of variance at difference temperatures may provide information relating to the pattern of emergence of aquatic poikilotherms.
6. At temperatures below 230C. eggs of Piona exigua developed more rapidly than eggs of Piona constricta , from Heney Lake. Quebec (Riessen, 1982)  相似文献   

7.
The objective of this study was to predict interannual fluctuations in the emergence period of sea trout fry, using models developed from field data for 70 excavated redds, and laboratory data on egg and alevin development at 30 constant temperatures (range 1·5–10·5° C with 100 naturally fertilized eggs at each temperature). Egg weight and numbers per redd both increased with female length; a power function described the relationship. Early spawners were the largest females laying the largest and most numerous eggs, whilst late spawners were the smallest females laying the smallest and least numerous eggs; middle spawners being intermediate between these two extremes. Mean values for egg weight and numbers of eggs per redd were obtained for these three groups. Hatching and emergence times in the laboratory decreased with increasing temperature. Of five models tested for hatching time, the best fit was provided by a three-parameter hyperbolic model which formed the asis of the individual-based model used to predict egg hatching and fry emergence. Model development was described in detail and the final equations predicted the times taken for 5, 50 and 95% of the fry to emerge, and hence the period over which 90% of the fry emerged. Analogous models were obtained for egg hatching. All models were excellent fits to the laboratory data. Hatching times for eggs kept in perforated boxes in the stream were almost identical to those kept at similar mean temperatures in the laboratory. Model predictions of fry emergence times were validated by field data for 8 years (1967–1971, 1974, 1975, 1980). The chief objective was therefore fulfilled, and predictions for the 30-year study (1967–1996) revealed a large variation in the timing of emergence (extremes: 11 March–4 April 1989, 15–20 May 1979). Most of the variation in median emergence date was due to variations in water temperature, with spawning dates as a secondary factor; the latter, however, had a greater effect on the length of the emergence period.  相似文献   

8.
研究了温度、相对湿度和光照时间对真水狼蛛(Pirata piraticus)胚胎发育的影响。结果表明,温度不仅影响真水狼蛛胚胎发育的全过程,也对胚胎发育的各阶段有影响,在20℃-35℃范围内,随着温度的升高,胚胎发育加快,卵的发育起点温度为11.9℃,低温下,卵的孵化整齐度高温下要高,28℃时,孵化率最高。为探讨真水狼蛛胚胎发育的影响因子和合适条件,考虑温度、相对湿度和光照时间3个因子的综合作用,按照二次正交旋转组合设计的要求安排实验,得出了影响胚胎发育历期、胚胎成形率和孵化率的二次回归模型,并分析了其影响因子,利用孵化率的回归模型,得到了真水狼蛛卵孵化的最优条件为温度为27℃-28.5℃,相对湿度为94%-97%,光照时间为14-17h。  相似文献   

9.
Larvae of WCR are feeding on the roots of corn while plants fall down. The egg hatching is continuous and soil insecticides are not effective to kill larvae. Unfortunately the recent control methods while we incorporate disinfectors Into the soil under seeding are not able to give enough effect on larvae of WCR under the whole period of larval development. We use to saw corn in the middle of April but eggs hatching start in the middle of May. The effectiveness of insecticides takes about one month so they are not able to protect plants from larvae are feeding on roots (Luckman et al., 1974 and Luckmann et al., 1975). They cause yield losses or in case of plant fall we can not harvest the corn. We have tested a material in greenhouse screening and field trips that is able to absorb insecticides and bind them into its body. This material is able to emit the agents continuously under the vegetation and we can protect our plants against the damages of WCR larvae. Our results shows that the material is able to elongate the effectiveness of the pesticides over 60 days and able to push the number of larvae under the economical threshold.  相似文献   

10.
The present study investigates the time of hatching of the migratory locust Locusta migratoria using egg pods that are artificially buried in the soil under outdoor conditions. Most eggs hatch in the mid‐morning, with a peak between 11.00 and 12.00 h, and none hatch before 09.00 or after 16.00 h. Furthermore, most egg pods complete hatching within a day, although some take 2 or 3 days, and egg hatching is interrupted by rain. There are no large differences in hatching time from May to September. Laboratory experiments in which the eggs are exposed to temperatures simulating outdoor conditions show that soil temperature is the main factor controlling hatching activity. The increase in temperature in the morning appears to trigger egg hatching, as confirmed by laboratory experiments, which may explain the similar hatching times between seasons. The seasonal patterns of temperature variation and hatching time suggest that the hatching time of L. migratoria eggs may be adjusted to allow the hatchlings to be exposed to high temperatures in the afternoon so that they can harden their bodies quickly.  相似文献   

11.
Varied egg incubation temperatures can result in immediate effects on the phenotype of reptiles, and also latent effects that can augment or contradict effects evident at egg hatching. I examined the effects of incubation temperature on embryonic development, hatching morphology, and subsequent growth in multiple populations of the lizard Anolis carolinensis. Eggs from wild-caught females in four populations were incubated at up to three temperatures, 23.5, 27, and 30 degrees C. Measures of body size were collected immediately after hatching and weekly thereafter, while juveniles were maintained in a common laboratory environment for 8 weeks. Cooler incubation temperatures resulted in longer incubation periods but did not affect conversion of egg mass to hatchling mass. Incubation temperature did not affect hatchling mass or snout vent length (SVL), but did affect subsequent growth in both mass and SVL, which varied by population. Cooler incubation temperatures generally resulted in greater overall growth over 8 weeks of housing all juveniles in a common environment. In A. carolinensis, egg incubation temperature had latent effects on juvenile growth despite the absence of any detected immediate effects on hatchling phenotype. Therefore, the total impact and evolutionary importance of developmental environment should not be assessed or assumed based solely on the phenotype of reptiles at birth or hatching.  相似文献   

12.
13.
As a part of ecological studies onHaemaphysalis longicornis, the effects of controlled temperatures (12, 15, 20, 25 and 30°C; 100% RH) on development and growth of the tick were investigated and the critical low temperature for each stage in the life cycle was estimated. As the temperature became low, the periods of preoviposition, oviposition, egg hatching (incubation) and moulting were prolonged. At 12°C, however, oviposition, egg hatching and moulting of the larva and nymph did not occur. The critical low temperatures for oviposition, egg hatching (developmental zero) and larval and nymphal moulting which were calculated theoretically from the regression equations, were 11.1, 12.2, 10.2 and 11.8°C, respectively. The temperature also affected the egg productivity and hatch-ratio. The number of deposited eggs per mg of body weight decreased markedly at 15°C, and the hatch-ratio was lowered with dropped temperatures.  相似文献   

14.
In birds, the adaptive significance of hatching asynchrony has been under debate for many years and the parental effects on hatching asynchrony have been largely assumed but not often tested. Some authors suggest that hatching asynchrony depends on the incubation onset and many factors have been shown to influence hatching asynchrony in different species. Our objective was to analyze the exact timing of the onset of incubation and if this affects hatching asynchrony; and, in addition, which other factors (brood patch development, incubation position, adult body condition, intra‐clutch egg dimorphism, laying date and year) affect hatching asynchrony in Magellanic penguins Spheniscus magellanicus. We first estimated the eggshell temperature at which embryo development starts, with a non‐destructive and novel method. We then recorded individual egg temperatures in 61 nests during incubation, and related them, and other breeding parameters, to hatching asynchrony. We also observed incubation positions in 307 nests. We found a significant positive relationship between hatching asynchrony and the temperature that the first‐laid egg experienced during egg laying and between hatching asynchrony and the initial brood patch area. We also found a negative relationship between hatching asynchrony and the difference in temperature between second and first‐laid eggs within a clutch, measured after the egg‐laying period was finished. We ruled out position of the eggs during incubation, adult body condition, egg volume, laying date, and study year as factors influencing hatching asynchrony. The egg temperature during laying and the difference in temperature between eggs of a clutch are determinants of hatching asynchrony in Magellanic penguins.  相似文献   

15.
Egg hatch was greatest (78.33%) for eggs not previously desiccated. A reduction in numbers hatched occurred as the relative humidity at which they were dried decreased. Some eggs hatched (0.67–79.33%) at pH levels of 3.10–10.01 with the highest hatch at pH 5.60. Water temperature greatly affected egg hatch. No hatch occurred until temperatures were above 14°C. A constant 29°C significantly inhibited hatching. Egg hatch increased 13.00 to 43.42% as salinity decreased from 2200 to 9.24 micromhos/cm. As little as 13 mm of flooded soil covering the eggs prevented them from hatching for 14 days. Eighteen percent hatch resulted when soil and eggs were redistributed to a 1 mm soil layer. Egg samples from the same parent, even though treated similarly, often hatched at greatly varying rates and only rarely was hatching 100% within a replication.  相似文献   

16.
Incubation temperature affects developmental rates and defines many phenotypes and fitness characteristics of reptilian embryos. In turtles, eggs are deposited in layers within the nest, such that thermal gradients create independent developmental conditions for each egg. Despite differences in developmental rate, several studies have revealed unexpected synchronicity in hatching, however, the mechanisms through which synchrony are achieved may be different between species. Here, we examine the phenomenon of synchronous hatching in turtles by assessing proximate mechanisms in an Australian freshwater turtle (Emydura macquarii). We tested whether embryos hatch prematurely or developmentally compensate in response to more advanced embryos in a clutch. We established developmental asynchrony within a clutch of turtle eggs and assessed both metabolic and heart rates throughout incubation in constant and fluctuating temperatures. Turtles appeared to hatch at similar developmental stages, with less-developed embryos in experimental groups responding to the presence of more developed eggs in a clutch by increasing both metabolic and heart rates. Early hatching did not appear to reduce neuromuscular ability at hatching. These results support developmental adjustment mechanisms of the 'catch-up hypothesis' for synchronous hatching in E. macquarii and implies some level of embryo-embryo communication. The group environment of a nest strongly supports the development of adaptive communication mechanisms between siblings and the evolution of environmentally cued hatching.  相似文献   

17.
We explored the adaptive significance of developmental plasticity in the tropical butterfly Bicyclus anynana using two experiments including temperature changes during ontogeny. In contrast to previous findings on adult acclimation, we could not find any evidence in support of adaptive developmental plasticity, as survival until adulthood was not enhanced when larval rearing temperatures matched the temperatures experienced during prepupal or pupal development. Extreme temperatures substantially reduced survival, supporting the ‘optimal developmental temperature’ hypothesis. Metamorphosis was more efficient at the higher rearing temperature of 27 °C, where egg hatching success was also higher, indicating that the lower temperature of 20 °C is already slightly stressful for this tropical butterfly.  相似文献   

18.
A series of incubation and broiler growth studies were conducted using one strain of broiler chicken (fast feathering dam line) observing incubation effects on femoral bone ash % at hatch and the ability of the bird to remain standing at 6 weeks of age (Latency-To-Lie). Egg shell temperatures during incubation were consistently recorded. Parsimonious models were developed across eight studies using stepwise multiple linear regression of egg shell temperatures over 3-day periods and both bone ash at hatch and Latency-To-Lie. A model for bone ash at hatch explained 70% of the variation in this factor and revealed an association with lower egg shell temperatures during days 4–6 and 13–15 and higher egg shell temperatures during days 16–18 of incubation. Bone ash at hatch and subsequent Latency-To-Lie were positively correlated (r = 0.57, P<0.05). A model described 66% of the variation Latency-To-Lie showing significant association of the interaction of femoral ash at hatch and lower average egg shell temperatures over the first 15 days of incubation. Lower egg shell temperature in the early to mid incubation process (days 1–15) and higher egg shell temperatures at a later stage (days 16–18) will both tend to delay the hatch time of incubating eggs. Incubation profiles that resulted in later hatching chicks produced birds which could remain standing for a longer time at 6 weeks of age. This supports a contention that the effects of incubation observed in many studies may in fact relate more to earlier hatching and longer sojourn of the hatched chick in the final stage incubator. The implication of these outcomes are that the optimum egg shell temperature during incubation for broiler leg strength development may be lower than that regarded as ideal (37.8°C) for maximum hatchability and chick growth.  相似文献   

19.
Selective mortality within a population, based on the phenotype of individuals, is the foundation of the theory of natural selection. We examined temperature-induced shifts in the relationships among early life history traits and survivorship over the embryonic and larval stages of a tropical damselfish, Pomacentrus amboinensis. Our experiments show that temperature determines the intensity of selective mortality, and that this changes with ontogeny. The size of energy stores determined survival through to hatching, after which egg size became a good indicator of fitness as predicted by theoretical models. Yet, the benefits associated with egg size were not uniform among test temperatures. Initial egg size positively influenced larval survival at control temperature (29 °C). However, this embryonic trait had no effect on post-hatching longevity of individuals reared at the higher (31 °C) and lower (25 °C) end of the temperature range. Overall, our findings indicate that the outcome of selective mortality is strongly dependent on the interaction between environment conditions and intrinsic developmental schedules.  相似文献   

20.
Abstract Why is the sex of many reptiles determined by the temperatures that these animals experience during embryogenesis, rather than by their genes? The Charnov‐Bull model suggests that temperature‐dependent sex determination (TSD) can enhance maternal fitness relative to genotypic sex determination (GSD) if offspring traits affect fitness differently for sons versus daughters and nest temperatures either determine or predict those offspring traits. Although potential pathways for such effects have attracted much speculation, empirical tests largely have been precluded by logistical constraints (i.e., long life spans and late maturation of most TSD reptiles). We experimentally tested four differential fitness models within the Charnov‐Bull framework, using a short‐lived, early‐maturing Australian lizard (Amphibolurus muricatus) with TSD. Eggs from wild‐caught females were incubated at a range of thermal regimes, and the resultant hatchlings raised in large outdoor enclosures. We applied an aromatase inhibitor to half the eggs to override thermal effects on sex determination, thus decoupling sex and incubation temperature. Based on relationships between incubation temperatures, hatching dates, morphology, growth, and survival of hatchlings in their first season, we were able to reject three of the four differential fitness models. First, matching offspring sex to egg size was not plausible because the relationship between egg (offspring) size and fitness was similar in the two sexes. Second, sex differences in optimal incubation temperatures were not evident, because (1) although incubation temperature influenced offspring phenotypes and growth, it did so in similar ways in sons versus daughters, and (2) the relationship between phenotypic traits and fitness was similar in the two sexes, at least during preadult life. We were unable to reject a fourth model, in which TSD enhances offspring fitness by generating seasonal shifts in offspring sex ratio: that is, TSD allows overproduction of daughters (the sex likely to benefit most from early hatching) early in the nesting season. In keeping with this model, hatching early in the season massively enhanced body size at the beginning of the first winter, albeit with a significant decline in probability of survival. Thus, the timing of hatching is likely to influence reproductive success in this short‐lived, early maturing species; and this effect may well differ between the sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号