首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival, growth and sex ratios of gynogenetic diploid honmoroko   总被引:1,自引:0,他引:1  
Survival, growth and sex ratios of gynogenetic diploid honmoroko Gnathopogon caerulescens induced by blocking the release of the second polar body were examined. Mean survival of gynogenetic juveniles at 130 days after hatching was about 33% lower than that of the controls. No significant difference was seen in early growth between control and gynogenetic diploids. Standard length and body weight in six groups of gynogenetic progeny were significantly greater but in two groups were significantly smaller than in the controls. Although 69% of gynogenetic diploids had well-developed gonads, the remaining 30% had undeveloped gonads (small in size or thread-like), and those gonads were divided into four types. The mean proportion of females in the 10 gynogenetic groups was 87·2% which was significantly ( P <0·01) higher than in the controls (44·7%). Gynogenetic diploids included 3·0–35·3% males. Most of those males produced a high proportion of female progeny, but the proportion of male offspring varied widely. From these results, the sex determining mechanism in honmoroko was presumed to be female homogamety, but other factors resulted in the production of males.  相似文献   

2.
Males and females frequently have different fitness optima for shared traits, and as a result, genotypes that are high fitness as males are low fitness as females, and vice versa. When this occurs, biasing of offspring sex-ratio to reduce the production of the lower-fitness sex would be advantageous, so that for example, broods produced by high-fitness females should contain fewer sons. We tested for offspring sex-ratio biasing consistent with these predictions in broad-horned flour beetles. We found that in both wild-type beetles and populations subject to artificial selection for high- and low-fitness males, offspring sex ratios were biased in the predicted direction: low-fitness females produced an excess of sons, whereas high-fitness females produced an excess of daughters. Thus, these beetles are able to adaptively bias sex ratio and recoup indirect fitness benefits of mate choice.  相似文献   

3.
Abstract. 1. Females of the multivoltine carpenter bee Xylocopa sulcutipes (Maa) (Hymenoptera: Anthophoridae) usually excavate a straight tunnel in dead twigs and mass provision a linear array of up to ten brood cells with pollen and nectar. An egg is deposited upon each food mass within one cell.
2. Female offspring generally receive a higher provisioning mass (0.180 ± 0.048 g) than males, a significant difference ( P > 0.001). There are, however, male larvae that receive as much food or more as their sisters or female larvae reared in another nest.
3. There is a close positive association between the size of a mother and the weight of provisions for individual daughters, but not for sons.
4. Female offspring are positioned in the innermost brood cells (Gositions 1, 2 and 3). The sex ratio of the outer cells is either significantly male biased (positions 4–6) or skewed towards males (positions 8 and 9). Positions 7 and 10 are in equilibrium.
5. Solitary females produce a significantly female biased sex ratio ( P < 0.01). Sex ratio in social nests is skewed toward females, but not significantly so ( P < 0.2). There is no significant difference between the sex ratio of solitary and social nests ( P = 0.361). The population sex ratio (pooled sex ratio of all broods produced) is significantly female biased ( P = 0.003).
6. Females kept in the laboratory produced female biased sex ratios whilst unmated females produced all-male broods indicating that insemination and ovarian development are not causally related.
7. The expected sex ratio (ESR) under equal investment, calculated as 1/CR (CR = mean male provision weight/mean female provision weight), is 137.5:117.5 (males:females), and differs significantly from that observed, 104:151 (males:females) ( P < 0.001). The 'Local Resource Enhlancement' hypothesis best explains the female biased sex ratio found in X.sulcatipes and its maintenance in the population.  相似文献   

4.
Mixed populations of the twospotted spider mite (TSM),Tetranychus urticae (Koch), and the Banks grass mite (BGM),Oligonychus pratensis (Banks), occur on corn and sorghum plants in late summer in the Great Plains. Interspecific matings between these arrhenotokous species occur readily in the laboratory but yield no female offspring. The effect of interspecific mating on female: male sex ratios was measured by examining the F1 progeny of females that mated with both heterospecific and conspecific males in no-choice situations. TSM females that mated first with BGM males and then with TSM males produced a smaller percentage of female offspring than TSM females that mated only with TSM males (43.1±5.8 and 78.9±2.8% females, respectively). Similarly, BGM females mated with heterospecific males and then with conspecific males produced fewer female offspring than females mated only with BGM males (55.7±5.2 and 77.5±2.5%, respectively). Lower female: male sex ratios were produced also by BGM females that mated with TSM males after first mating with conspecifics (62.4±3.4%). In mixed populations containing males of both species, females also produced lower female: male sex ratios, but these ratios were not as low as expected based on mating propensities and progeny sex ratios observed in no-choice tests. These data suggest that interspecific mating may substantially reduce female fitness in both mite species by reducing the output of female offspring, but in mixed populations this effect is mitigated by unidentified behavioral mechanisms.  相似文献   

5.
Egg sex ratio and paternal traits: using within-individual comparisons   总被引:9,自引:3,他引:6  
Empirical studies of sex ratios in birds have been limited dueto difficulties in determining offspring sex. Since molecularsexing techniques removed this constraint, the last 5 yearshas seen a great increase in studies of clutch sex ratio manipulationby female birds. Typically these studies investigate variationin clutch sex ratios across individuals in relation to environmentalcharacteristics or parental traits, and often they find no relationships. In this study we also found that clutch sex ratiosdid not vary in relation to a number of biological and environmentalfactors for 238 great tit Parus major nests. However, interestingsex ratio biases were revealed when variation in clutch sexratios was analyzed within individual females breeding in successiveyears. There was a significant positive relationship betweenthe change in sex ratio of a female's clutch from one yearto the next and the relative body condition of her partner.Females mating with males of higher body condition in yearx + 1 produced relatively male-biased sex ratios, and the oppositewas true for females mated with lower condition males. Within-individualanalysis also allowed investigations of sex ratio in relationto partner change. There was no change in sex ratios of femalespairing with the same male; however, females pairing with anew male produced clutches significantly more female biased. Comparisons of clutch sex ratios within individuals may be apowerful method for detecting sex ratio variation, and perhapsfemale birds may indeed manipulate egg sex but require personalcontextual experience for such decisions.  相似文献   

6.
Mate choice may have important consequences for offspring sex ratio and fitness of haplodiploid insects. Mate preference of females of the solitary larval parasitoid Microplitis croceipes (Cresson) (Hymenoptera: Braconidae) for virgin and mated males, and vice versa, and the reproductive consequences (i.e., the sex ratio expressed as the proportion of male offspring) were examined in choice and non‐choice experiments. In addition, the effect of repeated rapid and daily copulation of an individual male on the sex ratio of offspring of the female mates was assessed. Males preferred virgins over mated females, whereas females copulated with a male irrespective of his mating status. In both the rapid and daily copulation assay, females copulating with a male that had copulated five times or more produced a higher sex ratio than females that had copulated with a virgin male. Females that copulated with virgin males once or twice produced a significantly and considerably lower sex ratio than females that first copulated with a sperm‐depleted male followed by a virgin male. This indicates that copulating with a sperm‐depleted male has costs and limits acquisition by the female of sperm from virgin males.  相似文献   

7.
Groups of sexually undifferentiated sea bass Dicentrarchus labrax were fed with the androgen 17α-methyltestosterone (MT) during sex differentiation. MT treatment increased males from 79±3% in the controls (the usual 3:1 male:female sex ratio of cultured sea bass) to 100±0%, implying that in the treated groups one out of each five resulting males was a masculinized female (neomale). Thirteen males from the MT treated groups were taken as the parental generation and their sperm used to individually fertilize a pool of eggs from unrelated females. The probability of having at least one neomale was 95% and most probably two or three of the males used were neomales. The offspring from each family were reared separately under the same environmental conditions. Samples were taken at 11 and 15 months of age, during and after sex differentiation, respectively. Results showed that females predominated among the larger fish whereas males and undifferentiated fish predominated among the smaller ones. Intersexes exhibited an intermediate size. All fish with a body length smaller than 12 cm were undifferentiated. These results suggest that sex differentiation is more dependent on length than on age. At 15 months, sex ratios were male-biased in all families, except one (females ranged from 5 to 50%) and only two families had sex ratios not significantly different from 1:1, suggesting that the mechanism of sex determination in the sea bass is not of a XX/XY or ZW/ZZ type since no family exhibited a female-biased progeny, as would be expected from both types. Results support the hypothesis that factors other than genetic, i.e., environmental, may act epigenetically on the sex determination mechanisms of sea bass, as has been demonstrated in other fishes.  相似文献   

8.
The interests of males and females over reproduction rarely coincide and conflicts between the sexes over mate choice, mating frequency, reproductive investment, and parental care are common in many taxa. In Drosophila melanogaster, the optimum mating frequency is higher for males than it is for females. Furthermore, females that mate at high frequencies suffer significant mating costs due to the actions of male seminal fluid proteins. Sexual conflict is predicted to lead to sexually antagonistic coevolution, in which selection for adaptations that benefit males but harm females is balanced by counterselection in females to minimize the extent of male-induced harm. We tested the prediction that elevated sexual conflict should select for increased female resistance to male-induced harm and vice versa. We manipulated the intensity of sexual conflict by experimentally altering adult sex ratio. We created replicated lines of D. melanogaster in which the adult sex ratio was male biased (high conflict lines), equal (intermediate conflict lines), or female biased (low conflict lines). As predicted, females from high sexual conflict lines lived significantly longer in the presence of males than did females from low conflict lines. Our conclusion that the evolutionary response in females was to the level of male-induced harm is supported by the finding that there were no female longevity differences in the absence of males. Differences between males in female harming ability were not detected. This suggests that the response in females was to differences between selection treatments in mating frequency, and not to differences in male harmfulness.  相似文献   

9.
Inclusive fitness theory predicts that sex investment ratios in eusocial Hymenoptera are a function of the relatedness asymmetry (relative relatedness to females and males) of the individuals controlling sex allocation. In monogynous ants (with one queen per colony), assuming worker control, the theory therefore predicts female‐biased sex investment ratios, as found in natural populations. Recently, E.O. Wilson and M.A. Nowak criticized this explanation and presented an alternative hypothesis. The Wilson–Nowak sex ratio hypothesis proposes that, in monogynous ants, there is selection for a 1 : 1 numerical sex ratio to avoid males remaining unmated, which, given queens exceed males in size, results in a female‐biased sex investment ratio. The hypothesis also asserts that, contrary to inclusive fitness theory, queens not workers control sex allocation and queen–worker conflict over sex allocation is absent. Here, I argue that the Wilson–Nowak sex ratio hypothesis is flawed because it contradicts Fisher's sex ratio theory, which shows that selection on sex ratio does not maximize the number of mated offspring and that the sex ratio proposed by the hypothesis is not an equilibrium for the queen. In addition, the hypothesis is not supported by empirical evidence, as it fails to explain ‘split’ (bimodal) sex ratios or data showing queen and worker control and ongoing queen–worker conflict. By contrast, these phenomena match predictions of inclusive fitness theory. Hence, the Wilson–Nowak sex ratio hypothesis fails both as an alternative hypothesis for sex investment ratios in eusocial Hymenoptera and as a critique of inclusive fitness theory.  相似文献   

10.
The sex ratio behavior of parasitoid wasps in the genus Melittobia is scandalous. In contrast to the prediction of Hamilton's local mate competition theory, and the behavior of numerous other species, their extremely female‐biased sex ratios (1–5% males) change little in response to the number of females that lay eggs on a patch. We examined the mating structure and fitness consequences of adjusting the sex ratio in M. australica and found that (1) the rate of inbreeding did not differ from that expected with random mating within each patch; (2) the fitness of females that produced less female‐biased sex ratios (10 or 20% males) was greater than that of females who produced the sex ratio normally observed in M. australica. These results suggest that neither assortative mating nor asymmetrical competition between males can explain the extreme sex ratios. More generally, the finding that the sex ratios produced by females led to a decrease in their fitness suggests that the existing theory fails to capture a key aspect of the natural history of Melittobia, and emphasizes the importance of examining the fitness consequences of different sex ratio strategies, not only whether observed sex ratios correlate with theoretical predictions.  相似文献   

11.
1. Offspring sex ratios in the yellow dung fly Scatophaga stercoraria were examined in the laboratory. 2. Previous work indicated that females using previously stored sperm to fertilise their eggs produced male‐biased sex ratios. This result may have been due to female influences or the effects of sperm storage per se. 3. This pattern was not reproduced in the study presented here. Females that were allowed to mate just prior to oviposition produced similarly male‐biased sex ratios to those females that used previously stored sperm to fertilise their clutch. 4. Captive‐reared females may have perceived a lack of males in the population and thus produced a male‐biased offspring sex ratio. Alternatively, gamete ageing or extra‐chromosomal sex ratio distorters may have produced the male bias.  相似文献   

12.
Male soapberry bugs (Jadera haematoloma)face severe mating competition at the northern edge of their range due to male-biased adult sex ratios. Copulations lasting up to 11 days may serve a mate guarding function (encompassing four or more ovipositions), but copulation duration is highly variable, with some pairings lasting as little as 10 min. Data were gathered to describe factors that influence the reproductive costs and benefits of prolonged copulation. Estimated copulation durations (mean ± SD) were 20 ± 23 h in the lab and 50 ± 8 h in the field and were only weakly affected by sex ratio. Females mated for 5 min produced as many fertile eggs as those mated for 600 min laid; they became depleted of fertile sperm after about 25 days. In twicemated females, the first male's paternity was reduced by about 60%, and all females (N = 13) whose mates were removed experimentally mated again within an average of 6 min. The outcome of sperm competition on a perclutch basis was not highly predictable. The possibility of increased sperm displacement in longer copulations was not tested. Males often guarded females during oviposition and successfully defended them from intruding single males by recopulating. Such intrusions occurred in the majority of oviposition attempts observed in nature. Even though most females mated promiscuously, in a focal aggregation with a mean sex ratio of 2.2 ± 0.4 males/female, the interval between matings by males was commonly several days. Males appeared to respond facultatively to several aspects of the distribution and availability of females. The intensities of mating competition and sperm competition indicate that monogamous mate guarding should be favored over nonguarding in nature. Unpredicted brief. pairings may result from assessment by males of female reproductive value or of their own physical condition, or from female resistance.  相似文献   

13.
Oreochromis aureus exposed during the first 28 days of exogenous feeding to constant 35° C, or fluctuating temperatures (day at 35° C, night at 27° C, and vice versa) showed significantly ( P <0·05) faster growth, least size heterogeneity and better survival rates than siblings under constant 27° C. Constant high temperatures had a strong masculinizing effect (M: F sex ratios of 7·33–19·00: 1·00 v . 0·75–0·82: 1·00 in controls reared at 27° C). Fluctuating temperatures had less masculinizing potential but still produced sex ratios significantly skewed to the detriment of females (M: F sex ratios of 2·33–11·50: 1·00). This suggests that ambient temperature may have represented a sufficient environmental pressure for the selection of thermolabile sex-determinism in this species, and presumably in other Oreochromis spp. The evolutionary advantage of thermosensitivity in Oreochromis spp. is discussed, considering a framework where individual advantages oppose, to some degree, to the population or species interest.  相似文献   

14.
The theory of constrained sex allocation posits that when a fraction of females in a haplodiploid population go unmated and thus produce only male offspring, mated females will evolve to lay a female-biased sex ratio. I examined evidence for constrained sex ratio evolution in the parasitic hymenopteran Uscana semifumipennis. Mated females in the laboratory produced more female-biased sex ratios than the sex ratio of adults hatching from field-collected eggs, consistent with constrained sex allocation theory. However, the male with whom a female mated affected her offspring sex ratio, even when sperm was successfully transferred, suggesting that constrained sex ratios can occur even in populations where all females succeed in mating. A positive relationship between sex ratio and fecundity indicates that females may become sperm-limited. Variation among males occurred even at low fecundity, however, suggesting that other factors may also be involved. Further, a quantitative genetic experiment found significant additive genetic variance in the population for the sex ratio of offspring produced by females. This has only rarely been demonstrated in a natural population of parasitoids, but is a necessary condition for sex ratio evolution. Finally, matings with larger males produced more female-biased offspring sex-ratios, suggesting positive selection on male size. Because the great majority of parasitic hymenoptera are monandrous, the finding of natural variation among males in their capacity to fertilize offspring, even after mating successfully, suggests that females may often be constrained in the sex allocation by inadequate number or quality of sperm transferred.  相似文献   

15.
1. The adaptive significance of the observed variations in sex ratios in non‐marine ostracods is unclear. This study quantified the fecundity of females taken from a presumed fully sexual Eucypris virens population that were experimentally combined with different proportions of males (male : female sex ratios: 1 : 1, 1 : 2, 1 : 4, 1 : 8 and 0 : 1). 2. The results yielded no indications that female fecundity is altered by short‐term variations in the proportion of males, at least not within the range of sex ratios that are common in natural ostracod populations. Complete removal of males, however, did strongly reduce hatching success of dried eggs. This suggests the need for multiple mating events during the reproductive lifetime of the female. It also emphasizes the need for a minimum number of males, although this minimum number evidently may be rather low, as we found a high number of spermatozoa in the seminal receptacles after a single mating event. 3. The sex ratio in the source population was strongly female biased (1 : 3.4; n = 514), whereas in the hatchling assemblages reared in the laboratory, males and females were found in equal proportions (1 : 1.0; n = 1516), irrespective of the prevailing sex ratio. This clear discrepancy is intriguing, and points to the importance of epigenetic factors for the determination of field sex ratios.  相似文献   

16.
According to theory, in species in which male variance in reproductive success exceeds that of the females, sons are more costly to produce; females mated with high quality males or those in better condition should produce more sons. In monogamous species, however, the variance in the reproductive success of the two sexes is often similar and mate choice is often mutual, making predictions regarding sex allocation more difficult. In the rock sparrow Petronia petronia, both males and females have a sexually selected yellow patch on the breast, whose size correlates with individual body condition. We investigated whether the brood sex ratio co‐varies with the size of the yellow patch of the father and the mother in a sample of 173 broods (818 chicks) over 8 breeding seasons. While the size of the yellow patch of the mother and the father did not predict per se a deviation from the expected 1:1 sex ratio, brood sex ratios were predicted by the interaction of male and female yellow patch size. This result is surprising, as the ornament is sexually selected by both males and females as an indicator of quality in both sexes and should therefore be inherited by all offspring irrespective of their sex. It indirectly suggests that other sex‐specific traits associated with patch size (e.g. polygyny in males and fecundity in females) may explain the sex allocation bias observed in rock sparrows. Thus, female individual quality alone, as expressed through the size of the yellow patch, was not associated with the biases in sex ratios reported in this study. Our results rather suggest that sex allocation occurs in response to male attractiveness in interaction with female attractiveness. In other words, females tend to preferentially allocate towards the sex of the parent with more developed ornament within the pair.  相似文献   

17.
Sex ratio and sexual dimorphism in physiology and growth were studied in the dioecious tree Ilex aquifolium at two localities in northern Spain. Genet sex ratio was significantly male biased in one locality but not in the other. However, ramet and flowering ramet sex ratios were male biased at both study sites. Males had significantly thicker main trunks than females in one locality and produced more ramets in the other. Growth rate, estimated from mean width of annual rings, did not differ between localities, but males produced wider rings than females at both sites. Mean annual growth rates over the last 10, 20, and 30 yr were significantly higher for males. Measurements of chlorophyll fluorescence indicated that the efficiency of photosynthesis of leaves on nonfruiting branches of females was higher than for leaves on branches of male plants under low-light conditions, though not under saturating-light conditions. Efficiency of photosynthesis was significantly lower on fruiting branches of female plants than on nonfruiting branches. We discuss whether the observed between-sex differences are attributable to the higher cost of reproduction in females and/or to pollen competition.  相似文献   

18.
The sex allocation hypothesis predicts that females manipulate the offspring sex ratios according to mate attractiveness. Although there is increasing evidence to support this prediction, it is possible that paternal effects may often obscure the relationship between female control of offspring sex ratios and male attractiveness. In the present study, we examined whether females played a primary role in the manipulation their offspring sex ratios based on male attractiveness, in the guppy Poecilia reticulata, a live‐bearing fish. We excluded the paternal effects by controlling the relative sexual attractiveness of the male by presenting them to the females along with a more attractive or less attractive stimulus male. The test male was perceived to be relatively more attractive by females when it was presented along with a less attractive stimulus male, or vice versa. Subsequently, test male was mated in two different roles (relatively more and less attractive) with two females. If females were responsible for offspring sex ratio manipulation, the sex ratio of the brood would be altered on the basis of the relative attractiveness of the test male. On the other hand, if males play a primary role in offspring sex ratio manipulation, the sex ratios would not differ with the relative attractiveness of the test male. We found that females gave birth to more male‐biased broods when they mated with test males in the attractive role than when they mated with males in the less attractive role. This finding suggests that females are responsible for the manipulation of offspring sex ratios based on the attractiveness of their mates.  相似文献   

19.
Mastrus ridens (Horstmann) (Hymenoptera: Ichneumonidae) was imported into quarantine as a potential biocontrol agent for codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Mating behaviour of the parasitoid and its effect on progeny sex ratio (as a proportion of males) were studied to help sustain the laboratory culture. Both females and males were reproductively active soon after emergence. Unmated females produced only male progeny, confirming males developed from unfertilized eggs. The proportion of males in a progeny was independent of the copulation period (24–40 s) of the parents. The progeny sex ratios from three parent ratios (f:m 2:1, 1:1 and 1:2) were not significantly different. Females effectively mated only once but males mated frequently in their lifetime. The progeny sex ratios from single females with a known single mating and possible multiple matings (through exposure to two males for 18 days) were not significantly different. However, when males copulated with five virgin females in sequence over a 2 h period, the fifth female produced more males than the preceding four, presumably due to sperm depletion. Results of this study provide data on progeny sex allocation of M. ridens that help to prevent the development of a male-biased sex ratio that could threaten the maintenance of the culture over time.  相似文献   

20.
We studied the correlations between offspring sex ratio, UV coloration and overwinter survival in a population of blue tits, breeding in Gotland, Sweden, over three consecutive breeding seasons. In 2 of 3 years, we found that females paired to males with relatively brighter UV-coloration produced a greater proportion of sons in their broods, and that this effect was significant with all 3 years combined, despite a significant year by male UV interaction. In addition, we found other correlates of sex ratio (breeding time, female age and clutch size) in some, but not all years, and some of these showed significantly different relationships with sex ratio between years. In both years for which data were available, there were indications that males with relatively brighter UV coloration, and that paired with females that produced male-biased clutches, were more likely to survive to the next year. In addition, we also found that in both males and females, individuals produced similar sex ratios in consecutive years. Because correlations with the sex ratio may be expected to be weak, variation in results between years within the same population may be explained by low statistical power or genuine biological differences. Our results suggest that conclusions about sex ratio variation in birds should be based on multiple years. The correlations that we found in some years of this study are consistent with models of adaptive sex ratio adjustment in response to mate quality. However, careful experimental work is required to provide tests of the assumptions of these models, and should be a priority for future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号