首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscle strength and proprioception deficits have been recognized in knee OA. Pain is the symptomatic hallmark of knee OA. Indirect evidence suggests that muscle strength and proprioception deficits may be interrelated and that pain may have a confounding influence on the measurement of these factors in knee OA. However, these relationships have never been clearly evaluated. Therefore, the purpose of this investigation was to investigate relationships between pain, muscle strength, and proprioception in subjects with knee OA before and after an 8-week home exercise program. This study evaluated thirty-eight subjects with knee OA. Subjects were taught standard quadriceps strengthening exercises that were to be performed daily at home. Pain, muscle strength, and proprioceptive function were measured at baseline and after 8 weeks of therapy. Significant improvements in pain (42%, p<0.001) and quadriceps muscle strength (30%, p<0.001) were noted. Significant indirect associations were observed between pain and both muscle strength (rho=-0.39, p=0.01) and proprioceptive acuity (rho=-0.35, p=0.03) at baseline. Changes in pain were directly associated with changes in muscle strength (rho=0.45, p=0.005) and proprioceptive acuity (rho=0.41, p=0.01) with exercise. The association of pain with both muscle strength and proprioception should prompt future studies to consider and adjust for the influence of pain on neuromuscular factors in knee OA.  相似文献   

2.
AimLoss of muscle strength and balance are main characteristics of physical frailty in old age. Postural sway is associated with muscle contractile capacity and to the ability of rapidly correcting ankle joint changes. Thus, resistance training would be expected to improve not only strength but also postural balance.MethodsIn this study, age-matched older individuals (69.9±1.3 years) were randomly assigned to flywheel (n=12), or weight-lifting (n=12) groups, training the knee extensors thrice weekly for 12 weeks. The hypotheses were that owing to a larger eccentric loading of the knee extensors, flywheel training would result in (a) greater gains in quadriceps strength; (b) greater improvements in balance performance compared with weight-lifting training. Isokinetic dynamometry, B-mode ultrasonography, electromyography, percutaneous muscle stimulation and magnetic resonance imaging were employed to acquire the parameters of interest.ResultsFollowing training, knee extensors peak isokinetic power increased by 28% (P<0.01) in the flywheel group with no change in the weight-lifting group. Adaptations of the gastrocnemius muscle also occurred in both groups. The gastrocnemius characteristic with the highest response to training was tendon stiffness, with increases of 54% and 136% in the weight-lifting and flywheel groups, respectively (P<0.01). The larger increase in tendon stiffness in the flywheel group was associated with an improvement in postural balance (P<0.01).ConclusionQuadriceps flywheel loading not only produces a greater increase in power than weight training but its physiological benefits also transfer/overspill to the plantarflexor muscle–tendon unit resulting in a significantly improved balance. These findings support our initial hypotheses.  相似文献   

3.
Our previous study showed that relatively low-intensity (approximately 50% one-repetition maximum [1RM]) resistance training (knee extension) with slow movement and tonic force generation (LST) caused as significant an increase in muscular size and strength as high-intensity (approximately 80% 1RM) resistance training with normal speed (HN). However, that study examined only local effects of one type of exercise (knee extension) on knee extensor muscles. The present study was performed to examine whether a whole-body LST resistance training regimen is as effective on muscular hypertrophy and strength gain as HN resistance training. Thirty-six healthy young men without experience of regular resistance training were assigned into three groups (each n = 12) and performed whole-body resistance training regimens comprising five types of exercise (vertical squat, chest press, latissimus dorsi pull-down, abdominal bend, and back extension: three sets each) with LST (approximately 55-60% 1RM, 3 seconds for eccentric and concentric actions, and no relaxing phase); HN (approximately 80-90% 1RM, 1 second for concentric and eccentric actions, 1 second for relaxing); and a sedentary control group (CON). The mean repetition maximum was eight-repetition maximum in LST and HN. The training session was performed twice a week for 13 weeks. The LST training caused significant (p < 0.05) increases in whole-body muscle thickness (6.8 +/- 3.4% in a sum of six sites) and 1RM strength (33.0 +/- 8.8% in a sum of five exercises) comparable with those induced by HN training (9.1 +/- 4.2%, 41.2 +/- 7.6% in each measurement item). There were no such changes in the CON group. The results suggest that a whole-body LST resistance training regimen is as effective for muscular hypertrophy and strength gain as HN resistance training.  相似文献   

4.
Previous studies show that cessation of resistance training, commonly known as "detraining," is associated with strength loss, decreased neural drive, and muscular atrophy. Detraining may also increase the expression of fast muscle myosin heavy chain (MHC) isoforms. The present study examined the effect of detraining subsequent to resistance training on contractile performance during slow-to-medium velocity isokinetic muscle contraction vs. performance of maximal velocity "unloaded" limb movement (i.e., no external loading of the limb). Maximal knee extensor strength was measured in an isokinetic dynamometer at 30 and 240 degrees/s, and performance of maximal velocity limb movement was measured with a goniometer during maximal unloaded knee extension. Muscle cross-sectional area was determined with MRI. Electromyographic signals were measured in the quadriceps and hamstring muscles. Twitch contractions were evoked in the passive vastus lateralis muscle. MHC isoform composition was determined with SDS-PAGE. Isokinetic muscle strength increased 18% (P < 0.01) and 10% (P < 0.05) at slow and medium velocities, respectively, along with gains in muscle cross-sectional area and increased electromyogram in response to 3 mo of resistance training. After 3 mo of detraining these gains were lost, whereas in contrast maximal unloaded knee extension velocity and power increased 14% (P < 0.05) and 44% (P < 0.05), respectively. Additionally, faster muscle twitch contractile properties along with an increased and decreased amount of MHC type II and MHC type I isoforms, respectively, were observed. In conclusion, detraining subsequent to resistance training increases maximal unloaded movement speed and power in previously untrained subjects. A phenotypic shift toward faster muscle MHC isoforms (I --> IIA --> IIX) and faster electrically evoked muscle contractile properties in response to detraining may explain the present results.  相似文献   

5.
Impaired proprioception and poor muscular stabilization in the frontal plane may lead to knee instability during functional activities, a common complaint in persons with knee osteoarthritis (KOA). Understanding these frontal plane neuromechanical properties in KOA will help elucidate the factors contributing to knee instability and aid in the development of targeted intervention strategies. The objectives of the study were to compare knee varus–valgus proprioception, isometric muscle strength, and active muscular contribution to stability between persons with medial KOA and healthy controls. We evaluated knee frontal plane neuromechanical parameters in 14 participants with medial KOA and 14 age- and gender-matched controls, using a joint driving device (JDD) with a customized motor and a 6-axis force sensor. Analysis of covariance with BMI as a covariate was used to test the differences in varus–valgus neuromechanical parameters between these two groups. The KOA group had impaired varus proprioception acuity (1.08±0.59° vs. 0.69±0.49°, p<0.05), decreased normalized varus muscle strength (1.31±0.75% vs. 1.79±0.84% body weight, p<0.05), a trend toward decreased valgus strength (1.29±0.67% vs. 1.88±0.99%, p=0.054), and impaired ability to actively stabilize the knee in the frontal plane during external perturbation (4.67±2.86 vs. 8.26±5.95 Nm/degree, p<0.05). The knee frontal plane sensorimotor control system is compromised in persons with medial KOA. Our findings suggest varus–valgus control deficits in both the afferent input (proprioceptive acuity) and muscular effectors (muscle strength and capacity to stabilize the joint).  相似文献   

6.
Aging is associated with lower muscle mass and an increase in body fat. We examined whether creatine monohydrate (CrM) and conjugated linoleic acid (CLA) could enhance strength gains and improve body composition (i.e., increase fat-free mass (FFM); decrease body fat) following resistance exercise training in older adults (>65 y). Men (N = 19) and women (N = 20) completed six months of resistance exercise training with CrM (5g/d)+CLA (6g/d) or placebo with randomized, double blind, allocation. Outcomes included: strength and muscular endurance, functional tasks, body composition (DEXA scan), blood tests (lipids, liver function, CK, glucose, systemic inflammation markers (IL-6, C-reactive protein)), urinary markers of compliance (creatine/creatinine), oxidative stress (8-OH-2dG, 8-isoP) and bone resorption (Nu-telopeptides). Exercise training improved all measurements of functional capacity (P<0.05) and strength (P<0.001), with greater improvement for the CrM+CLA group in most measurements of muscular endurance, isokinetic knee extension strength, FFM, and lower fat mass (P<0.05). Plasma creatinine (P<0.05), but not creatinine clearance, increased for CrM+CLA, with no changes in serum CK activity or liver function tests. Together, this data confirms that supervised resistance exercise training is safe and effective for increasing strength in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six-month period. Trial Registration. ClinicalTrials.gov NCT00473902.  相似文献   

7.
The purpose of this study was to investigate the effects of a light, high-repetition resistance-training program on skinfold thicknesses and muscular strength in women. Thirty-nine active women (mean age 38.64 +/- 4.97 years) were randomly placed into a resistance-training group (RT; n = 20) or a control group (CG; n = 19). The RT group performed a resistance-training program called Bodymax for 1 hour, 3 d.wk(-1), which incorporated the use of variable free weights and high repetitions in a group setting. The CG group continued its customary aerobic training for 1 hour 3 d.wk(-1). Five skinfold and 7 muscular strength measures were determined pretraining and after 12 weeks of training. Sum of skinfolds decreased (-17 mm; p < 0.004) and muscular strength increased (+57.4 kg; p < 0.004) in the RT group. Effect sizes for individual skinfold sites and strength measures were "medium" and "high," respectively. Bodymax is an effective resistance-training program for reducing skinfold thickness and increasing muscular strength in active women. Therefore, women with a similar or lower-activity status should consider incorporating such training into their regular fitness programs.  相似文献   

8.
Preparing for the stress of total knee arthroplasty (TKA) surgery by exercise training (prehabilitation) may improve strength and function before surgery and, if effective, has the potential to contribute to postoperative recovery. Subjects with severe osteoarthritis (OA), pain intractable to medicine and scheduled for TKA were randomized into a usual care (UC) group (n = 36) or usual care and exercise (UC + EX) group (n = 35). The UC group maintained normal daily activities before their TKA. The UC + EX group performed a comprehensive prehabilitation program that included resistance training using bands, flexibility, and step training at least 3 times per week for 4-8 weeks before their TKA in addition to UC. Leg strength (isokinetic peak torque for knee extension and flexion) and ability to perform functional tasks (6-minute walk, 30 second sit-to-stand repetitions, and the time to ascend and descend 2 flights of stairs) were assessed before randomization at baseline (T1) and 1 week before the subject's TKA (T2). Repeated-measures analysis of variance indicated a significant group by time interaction (p < 0.05) for the 30-second sit-to-stand repetitions, time to ascend the first flight of stairs, and peak torque for knee extension in the surgical knee. Prehabilitation increased leg strength and the ability to perform functional tasks for UC + EX when compared to UC before TKA. Short term (4-8 weeks) of prehabilitation was effective for increasing strength and function for individuals with severe OA. The program studied is easily transferred to a home environment, and clinicians working with this population should consider prehabilitation before TKA.  相似文献   

9.
The purpose of this study was to develop a subject-specific 3-D model of the lower extremity to predict neuromuscular control effects on 3-D knee joint loading during movements that can potentially cause injury to the anterior cruciate ligament (ACL) in the knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the lower extremity, scaled to represent a specific subject. Inputs of the model were the initial position and velocity of the skeletal elements, and the muscle stimulation patterns. Outputs of the model were movement and ground reaction forces, as well as resultant 3-D forces and moments acting across the knee joint. An optimization method was established to find muscle stimulation patterns that best reproduced the subject's movement and ground reaction forces during a sidestepping task. The optimized model produced movements and forces that were generally within one standard deviation of the measured subject data. Resultant knee joint loading variables extracted from the optimized model were comparable to those reported in the literature. The ability of the model to successfully predict the subject's response to altered initial conditions was quantified and found acceptable for use of the model to investigate the effect of altered neuromuscular control on knee joint loading during sidestepping. Monte Carlo simulations (N = 100,000) using randomly perturbed initial kinematic conditions, based on the subject's variability, resulted in peak anterior force, valgus torque and internal torque values of 378 N, 94 Nm and 71 Nm, respectively, large enough to cause ACL rupture. We conclude that the procedures described in this paper were successful in creating valid simulations of normal movement, and in simulating injuries that are caused by perturbed neuromuscular control.  相似文献   

10.
The purpose of this study was to compare the extent of muscular activation during maximal voluntary knee extension contractions in old and young individuals and to examine the effects of resistance training on muscular activation in each group. The interpolated twitch technique was used to estimate muscular activation during two pre-training baseline tests, and after two and six weeks of resistance training. Throughout the study, the older group was 30% less strong than the young group (p=0.02). The training protocol was effective in both groups with overall isometric strength gains of 30 and 36% in the older (p=0.01) and young (p<0.01) groups, respectively. 10-RM training loads increased by 66% in the old group (p<0.01) and by 77% in the young group (p<0.01) throughout training. At the first baseline test, a 2% difference in muscular activation between groups (p=0.3) did not explain the large disparity in strength. Muscular activation increased by 2% in both groups throughout training (p<0.01). Despite considerably less muscular strength in the older group, muscular activation was greater than 95% of maximum and appears to be equal in both young and older individuals. Both groups demonstrated similar but small increases in muscular activation throughout training.  相似文献   

11.

Introduction

High joint loading, knee muscle weakness, and poor proprioceptive acuity are important factors that have been linked to knee osteoarthritis (OA). We previously reported that those with unilateral hip OA and bilateral asymptomatic knees are more predisposed to develop progressive OA in the contralateral knee relative to the ipsilateral knee. In the present study, we evaluate asymmetries in muscle strength and proprioception between the limbs and also evaluate relationships between these factors and joint loading that may be associated with the asymmetric evolution of OA in this group.

Methods

Sixty-two participants with symptomatic unilateral hip OA and asymptomatic knees were evaluated for muscle strength, joint position sense and dynamic joint loads at the knees. Muscle strength and proprioception were compared between limbs and correlations between these factors and dynamic joint loading were evaluated. Subgroup analyses were also performed in only those participants that fulfilled criteria for severe hip OA.

Results

Quadriceps muscle strength was 15% greater, and in the severe subgroup, proprioceptive acuity was 25% worse at the contralateral compared to ipsilateral knee of participants with unilateral hip OA (P <0.05). In addition, at the affected limb, there was an association between decreased proprioceptive acuity and higher knee loading (Spearman’s rho = 0.377, P = 0.007) and between decreased proprioceptive acuity and decreased muscle strength (Spearman’s rho = −0.328, P = 0.016).

Conclusions

This study demonstrated asymmetries in muscle strength and proprioception between the limbs in a unilateral hip OA population. Early alterations in these factors suggest their possible role in the future development of OA at the contralateral ‘OA-predisposed knee’ in this group. Furthermore, the significant association observed between proprioception, loading, and muscle strength at the affected hip limb suggests that these factors may be interrelated.  相似文献   

12.
The purpose of this study was to determine the effects of an 18-week strength training program on variables related to low-handicap golfers' performance. Ten right-handed male golfers, reporting a handicap of 5 or less, were randomly divided into two groups: the control group (CG) (N = 5, age: 23.9 ± 6.7 years) and the treatment group (TG) (N = 5, age: 24.2 ± 5.4 years). CG players followed the standard physical conditioning program for golf, which was partially modified for the TG. The TG participated in an 18-week strength training program divided into three parts: maximal strength training including weightlifting exercises (2 days a week for 6 weeks), explosive strength training with combined weights and plyometric exercises (2 days a week for 6 weeks), and golf-specific strength training, including swings with a weighted club and accelerated swings with an acceleration tubing system (3 days a week for 6 weeks). Body mass, body fat, muscle mass, jumping ability, isometric grip strength, maximal strength (RM), ball speed, and golf club mean acceleration were measured on five separate occasions. The TG demonstrated significant increases (p < 0.05) in maximal and explosive strength after 6 weeks of training and in driving performance after 12 weeks. These improvements remained unaltered during the 6-week golf-specific training period and even during a 5-week detraining period. It may be concluded that an 18-week strength training program can improve maximal and explosive strength and these increases can be transferred to driving performance; however, golfers need time to transfer the gains.  相似文献   

13.
This study examined the effects of resistance training (RT) on knee extensor peak torque (KEPT) and fat-free mass (FFM) in older women. Seventy-eight volunteers (67.1 ± 5.9 years old) underwent 24 weeks of progressive RT (RTG) while 76 (67.4 ± 5.9 years old) were studied as controls (CG). Dominant knee extension peak torque was assessed using an isokinetic dynamometer (Biodex System 3) and FFM measurements were performed by dual-energy x-ray absorptiometry. Muscle strength and FFM were evaluated before and after the intervention in all volunteers. Participants in the RTG trained major muscle groups 3 times per week during 24 weeks. Training load was kept at 60% of 1 repetition maximum in the first 4 weeks, 70% in the following 4 weeks, and 80% in the remaining 16 weeks, with repetitions, respectively, decreasing from 12, 10, and 8. A Split-plot analysis of variance was performed to examine between- and within-group differences, and the level of significance was accepted at p ≤ 0.05. It was observed that the RTG showed significant increases in KEPT (from 89.9 ± 21.8 to 102.8 ± 22.6 N·m; p < 0.05) and FFM (from 36.4 ± 4.0 to 37.1 ± 4.2 kg, p < 0.05). Appendicular FFM was also significantly increased after the intervention period in the RTG (13.9 ± 1.8 to 14.2 ± 1.9 kg, p < 0.05). None of these changes were observed for the CG. Consistent with the literature, it is concluded that a progressive RT program promotes not only increases in muscle strength, as evaluated by an isokinetic dynamometer, but also in FFM as evaluated by the DXA, in elderly women.  相似文献   

14.
We have investigated the adaptations of the cytoskeletal proteins desmin and dystrophin in relationship to known muscular adaptations of resistance exercise. We measured desmin, dystrophin, and actin protein contents, myosin heavy chain (MHC) isoform distribution, muscle strength, and muscle cross-sectional area (CSA) during 8 wk of progressive resistance training or after a single bout of unaccustomed resistance exercise. Muscle biopsies were taken from the vastus lateralis of 12 untrained men. For the single-bout group (n=6) biopsies were taken 1 wk before the single bout of exercise (week 0) and 1, 2, 4, and 8 wk after this single bout of exercise. For the training group (n=6), biopsies were taken 1 wk before the beginning of the program (week 0) and at weeks 1, 2, 4, and 8 of the progressive resistance training program. Desmin, dystrophin, and actin protein levels were determined with immunoblotting, and MHC isoform distribution was determined using SDS-PAGE at each time point for each group. In the training group, desmin was significantly increased compared with week 0 beginning at week 4 (182% of week 0; P<0.0001) and remained elevated through week 8 (172% of week 0; P<0.0001). Desmin did not change at any time point for the single-bout group. Actin and dystrophin protein contents were not changed in either group at any time point. The percentage of MHC type IIa increased and MHC type IIx decreased at week 8 in the training group with no changes occurring in the single-bout group. Strength was significantly increased by week 2 (knee extension) and week 4 (leg press), and it further increased at week 8 for both these exercises in the training group only. Muscle CSA was significantly increased at week 4 for type II fibers in the training group only (5,719+/-382 and 6,582+/-640 microm2, weeks 0 and 4, respectively; P<0.05). Finally, a significant negative correlation was observed between the desmin-to-actin ratio and the percentage of MHC IIx (R=-0.31; P<0.05, all time points from both groups). These data demonstrate a time course for muscular adaptation to resistance training in which desmin increases shortly after strength gains and in conjunction with hypertrophy, but before changes in MHC isoforms, whereas dystrophin remains unchanged.  相似文献   

15.
The purpose of the present study was to determine whether knee extension strength gain in middle-aged and elderly persons is associated with improvement in the limits of stability when leaning his/her body in various directions. The resistance training group (EXT; 4 males, 17 females) completed two bilateral knee extension training sessions, consisting of one set of exercises, per week for 10 weeks. The non-training control group (CONT; 4 males, 3 females) were instructed not to train their legs during the 10-week control period. One set of exercises consisted of 8-12 repetitions of a dynamic resistance exercise until volitional fatigue for knee extension. The initial load for training was set at 70% of the one-repetition maximum (1-RM). The thickness of the rectus femoris (RF) and vastus lateralis (VL) muscles were measured using a B-mode ultrasound apparatus. The postural control measures, obtained using the Balance Master system, included the percentage limits-of-stability (%LOS) and path length (%Path). The 1-RM in EXT was increased significantly by resistance training (p < 0.001). In addition, significant differences were observed between the percentage increase of 1-RM in EXT and those in CONT at wk 5 and at wk 10 of resistance training (p < 0.001). However, no significant increase in muscle thickness of RF or VL was found in EXT. The %LOS to the rear target in EXT was increased significantly by resistance training (p < 0.05-0.01). In addition, the percentage change in %Path was decreased significantly by resistance training (p < 0.001). Therefore, strength gain in quadriceps femoris appears to be associated with improvement in the %LOS and %Path for the rear. In conclusion, strength gain in quadriceps femoris is thought to possibly enable accurate movement of the COG farther from the center target towards the rear, suggesting that strength gain has a positive influence on a person's perception of their ability to avoid falls.  相似文献   

16.
ABSTRACT: Bryanton, MA, Kennedy, MD, Carey, JP, and Chiu, LZF. Effect of squat depth and barbell load on relative muscular effort in squatting. J Strength Cond Res 26(10): 2820-2828, 2012-Resistance training is used to develop muscular strength and hypertrophy. Large muscle forces, in relation to the muscle's maximum force-generating ability, are required to elicit these adaptations. Previous biomechanical analyses of multi-joint resistance exercises provide estimates of muscle force but not relative muscular effort (RME). The purpose of this investigation was to determine the RME during the squat exercise. Specifically, the effects of barbell load and squat depth on hip extensor, knee extensor, and ankle plantar flexor RME were examined. Ten strength-trained women performed squats (50-90% 1 repetition maximum) in a motion analysis laboratory to determine hip extensor, knee extensor, and ankle plantar flexor net joint moment (NJM). Maximum isometric strength in relation to joint angle for these muscle groups was also determined. Relative muscular effect was determined as the ratio of NJM to maximum voluntary torque matched for joint angle. Barbell load and squat depth had significant interaction effects on hip extensor, knee extensor, and ankle plantar flexor RME (p < 0.05). Knee extensor RME increased with greater squat depth but not barbell load, whereas the opposite was found for the ankle plantar flexors. Both greater squat depth and barbell load increased hip extensor RME. These data suggest that training for the knee extensors can be performed with low relative intensities but require a deep squat depth. Heavier barbell loads are required to train the hip extensors and ankle plantar flexors. In designing resistance training programs with multi-joint exercises, how external factors influence RME of different muscle groups should be considered to meet training objectives.  相似文献   

17.
Eight men (20-23 years) weight trained 3 days.week-1 for 19 weeks. Training sessions consisted of six sets of a leg press exercise (simultaneous hip and knee extension and ankle plantar flexion) on a weight machine, the last three sets with the heaviest weight that could be used for 7-20 repetitions. In comparison to a control group (n = 6) only the trained group increased (P less than 0.01) weight lifting performance (heaviest weight lifted for one repetition, 29%), and left and right knee extensor cross-sectional area (CAT scanning and computerized planimetry, 11%, P less than 0.05). In contrast, training caused no increase in maximal voluntary isometric knee extension strength, electrically evoked knee extensor peak twitch torque, and knee extensor motor unit activation (interpolated twitch method). These data indicate that a moderate but significant amount of hypertrophy induced by weight training does not necessarily increase performance in an isometric strength task different from the training task but involving the same muscle group. The failure of evoked twitch torque to increase despite hypertrophy may further indicate that moderate hypertrophy in the early stage of strength training may not necessarily cause an increase in intrinsic muscle force generating capacity.  相似文献   

18.
The object of this study was to examine changes in muscular strength, power, and resting hormonal concentrations during 6 weeks of detraining (DTR) in recreationally strength-trained men. Each subject was randomly assigned to either a DTR (n = 9) or resistance training (RT; n = 7) group after being matched for strength, body size, and training experience. Muscular strength and power testing, anthropometry, and blood sampling were performed before the experimental period (T1), after 3 weeks (T2), and after the 6-week experimental period (T3). One-repetition maximum (1RM) shoulder and bench press increased in RT at T3 (p 相似文献   

19.
The purpose was to determine if creatine supplementation, consumed immediately before and immediately after exercise, with different dosing frequency (i.e., 2 or 3 d wk) could enhance the gains in muscle size and strength from resistance training (RT) in young adults. A group of 38 physically active, nonresistance trained university students (21-28 years) was randomly allocated to 1 of 4 groups: CR2 (0.15 g·kg creatine during 2 d wk of RT; 3 sets of 10 repetitions; n = 11, 6 men, 5 women), CR3 (0.10 g·kg creatine during 3 d wk of RT; 2 sets of 10 repetitions; n = 11, 6 men, 5 women;), PLA2 (placebo during 2 d wk of RT; n = 8, 5 men, 3 women), and PLA3 (placebo during 3 d wk of RT; n = 8, 4 men, 4 women) for 6 weeks. Before and after training, measurements were taken for muscle thickness of the elbow and knee flexor and extensor muscle groups (ultrasound), 1-repetition maximumleg press and chest press strength, and kidney function (urinary microalbumin). Repeated-measures analysis of variance showed that strength and muscle thickness increased in all groups with training (p < 0.05). The CR2 (0.6 ± 0.9 cm or 20%; p < 0.05) and CR3 groups (0.4 ± 0.6 cm or 16.4%; p < 0.05) experienced greater change in muscle thickness of the elbow flexors compared to the PLA2 (0.05 ± 0.5 cm or 2.3%) and PLA3 groups (0.13 ± 0.7 cm or 6.3%). Men supplementing with creatine experienced a greater increase in leg press strength (77.3 ± 51.2 kg or 62%) compared to women on creatine (21.3 ± 10 kg or 34%, p < 0.05). We conclude that creatine supplementation during RT has a small beneficial effect on regional muscle thickness in young adults but that giving the creatine over 3 d wk did not differ from giving the same dose over 2 d wk.  相似文献   

20.
Four men isometrically trained their stronger leg for 19 weeks (attempted knee extension against a restraining strap incrementally increasing to 30 brief maximal contractions X 6 wk-1). Five others similarly trained dynamically (repeated knee extension against a 63 N resistance force, incrementally increasing to 300 extensions X 6 wk-1). Before, at regular intervals during training and after de-training (between 7-11 weeks) measurements were made using trained and control legs of: Maximum Voluntary Isometric Contraction (M.V.C.), Endurance at 60% M.V.C., Knee Extension Performance Test (K.E.P.T.) and One-legged Work Test. Isometric training produced a 30% (p less than 0.01) increase in M.V.C. with a 15% (p less than 0.05) increase in the control leg. These changes persisted with some deterioration after the de-training period. Endurance at 60% M.V.C. remained unchanged, even though M.V.C. was increasing in both trained and control legs. There was some evidence that isometric training improved the cardio-vascular response to one-legged exercise. Dynamic training did not result in changes in M.V.C., Endurance at 60% M.V.C. or the One-legged work Test, but K.E.P.T. (time taken for 50 knee extensions at a comfortable pace against 63 N resistance) improved by 33% (p less than 0.01) and 28% (p less than 0.01) in the trained and control legs respectively. Isometric training resulted in similar improvements in performance of K.E.P.T. (28%, p less than 0.05, trained leg; 18%, p less than 0.05 control leg). For similar time spent in training, isometric work appeared more effective than dynamic work in improving the parameters of muscle function, these improvements appeared to be both centrally (C.N.S.) and locally mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号