首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study on the bone system state in healthy volunteers has been performed before and after 105-day experiment in hermetically isolated environment (the Mars-105 experiment) using dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT). The values of bone mineral density (BMD), volumetric bone mineral density (VBMD), and bone structural characteristics of distal segments in radius and tibia have been evaluated. No significant DXA changes have been revealed in segments of skeleton critically important in terms of biomechanics. Microarchitectural deterioration (a decrease in the trabecula number and increase in the bone tissue heterogeneity) has been found using the pQCT technique in the radius of the majority of subjects. A VBMD decrease has been revealed for both cortical and trabecular bones in tibia, along with an unexpected trabecular bone improvement in the form of an increase in the trabecula quantity and decrease in bone tissue heterogeneity. Comprehensive studies, including estimation of projective and volumetric bone mineral densities (the bone mineral content) and bone structural characteristics (bone quality) are required to have a clear view on the changes in the bone system under the conditions of a simulation experiment.  相似文献   

2.

Objective

This study compared the capabilities of dual-energy X-ray absorptiometry (DXA) and dental cone-beam computed tomography (CBCT) for predicting the cortical bone strength of rat femurs and tibias.

Materials and Methods

Specimens of femurs and tibias obtained from 14 rats were first scanned with DXA to obtain the areal bone mineral density (BMD) of the midshaft cortical portion of the bones. The bones were then scanned using dental CBCT to measure the volumetric cortical bone mineral density (vCtBMD) and the cross-sectional moment of inertia (CSMI) for calculating the bone strength index (BSI). A three-point bending test was conducted to measure the fracture load of each femur and tibia. Bivariate linear Pearson analysis was used to calculate the correlation coefficients (r values) among the CBCT measurements, DXA measurements, and three-point bending parameters.

Results

The correlation coefficients for the associations of the fracture load with areal BMD (measured using DXA), vCtBMD (measured using CBCT), CSMI (measured using CBCT), and BSI were 0.585 (p = 0.028) and 0.532 (p = 0.050) (for the femur and tibia, respectively), 0.638 (p = 0.014) and 0.762 (p = 0.002), 0.778 (p = 0.001) and 0.792 (p<0.001), and 0.822 (p<0.001) and 0.842 (p<0.001), respectively.

Conclusions

CBCT was found to be superior to DXA for predicting cortical bone fracture loads in rat femurs and tibias. The BSI, which is a combined index of densitometric and geometric parameters, was especially useful. Further clinical studies are needed to validate the predictive value of BSI obtained from CBCT and should include testing on human cadaver specimens.  相似文献   

3.
Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.  相似文献   

4.
This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.  相似文献   

5.
In growing children, lumbar and femoral areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), is influenced by skeletal growth and bone size. Correction of lumbar bone mineral density (BMD) for bone volume (volumetric BMD [vBMD]), by the use of mathematical extrapolations, reduces the confounding effect of bone size, but vBMD remains dependent on age and bone size during growth. Femoral (neck and mid-shaft) vBMD, assessed by DXA, is independent of age prior to puberty, but a slight increase occurs in late puberty and after menarche. Femoral (mid-shaft) cortical bone density and radial cortical and trabecular bone densities, assessed by quantitative computed tomography (QCT), show no peak during childhood or adolescence. Bone strength index, calculated by peripheral QCT, increases with age and correlates with handgrip strength, bone cross-sectional area and cortical area. Puberty is one of the main factors that influences lumbar bone mineral content and aBMD accumulation, but a high incidence of fractures occurs during this period of life, which may be associated with a reduced aBMD.  相似文献   

6.
7.
OBJECTIVE: To investigate the effect of dexamethasone eye drops on bone metabolism in newborn rabbits. METHODS: Thirty-four 3-week-old rabbits had unilateral clear lens extraction and were randomized into three groups. Postoperatively, group 1 received high-dose and group 2 low-dose dexamethasone eye drops (average doses 0.27 and 0.10 mg/kg body weight/day, respectively). These rabbits also received a postoperative subconjunctival injection of betamethasone. Group 3 (control) received vehicle eye drops only. After 8 weeks of treatment, all animals were killed and the left femurs were isolated and subjected to peripheral quantitative computerized tomography (pQCT) and dual X-ray absorptiometry (DXA) analyses. RESULTS: DXA showed that rabbits treated with either a high or low dose of dexamethasone eye drops had significantly reduced areal bone mineral density (BMD), area and total bone mineral content (BMC) of the femur. Measurements with pQCT demonstrated a dose-dependent reduction in cortical BMC, cortical volumetric BMD and cortical area. These effects were associated with an inhibition of radial femur growth, cortical thickness and periosteal and endosteal circumferences. CONCLUSION: Dexamethasone eye drops have systemic effects affecting several bone parameters in young rabbits. Any long-term systemic effects of ocular glucocorticoids need to be further studied.  相似文献   

8.
Projectional bone mineral density measurement so far used extensively in radiogrammetry and single and dual source absorptiometry is confronted with a serious limitation for the accurate evaluation of true density artifactually providing higher values along with the increase of body size and bone depth on account of the omission of one dimension. Computed tomography is capable of measuring true volumetric density and also accomplishes a separate measurement of trabecular and cortical bone especially on application to the distal and mid-radius with abundant cortical bone in peripheral computed tomography (pQCT). New lines of information may be obtained by such separate trabecular and cortical bone measurement in decreases of bone density due to various causes, estrogen withdrawal, corticosteroid, diabetes mellitus, renal failure, etc. Dynamic analysis of the result of pQCT may also make it possible to assess bone strength and resistance to fracture.  相似文献   

9.
We analyzed bone changes in a series of hemodialysis patients followed up for a maximum of 299 months by assessing bone mineral density (BMD) and architectural parameters of the distal radius using peripheral quantitative computed tomography (pQCT), and determined the predictors of skeletal changes in these patients. No significant differences in trabecular BMD (BMD(T)) were found compared with BMD(T) of the normal control. In contrast, cortical BMD (BMD(C)) was significantly decreased compared with BMD(C) of the normal controls. Hemodialysis patients had significantly lower values for cortical bone area, cortical thickness, moment of inertia, and polar moment of inertia than the age-matched controls. From single and multiple regression analysis, the most significant predictor of metabolic bone disease in these cases was found to be duration of hemodialysis. In addition, increases in serum alkaline phosphatase and intact parathyroid hormone in secondary hyperparathyroidism were found to correlate with a decrease in pQCT values in cortical bone; as such, these increases were also found to be a predictive. The present study confirms that the reduction in both BMD(C) and architectural parameters in hemodialysis patients occurs partly because of prolonged hemodialysis and secondary hyperparathyroidism. In addition, immobilization, dietary factors, daily intake of calcium or vitamin D, and so on must be taken into account when clarifying the causes of skeletal complications resulting from hemodialysis.  相似文献   

10.

Introduction

Suspected osteopathology in chronically ill children often necessitates the assessment of bone mineral density. The most frequently used methods are dual-energy X-ray-absorption (DXA) and peripheral quantitative computed tomography (pQCT). The BoneXpert software provides an automated radiogrammatic method to assess skeletal age from digitalized X-rays of the left hand. Furthermore, the program calculates the Bone Health Index (BHI), a measure of cortical thickness and mineralization, which is obtained from indices of three metacarpal bones. In our study, we analyzed the manner in which BHI information provided by BoneXpert compares with DXA or pQCT measurements in youths.

Study Design

The BHI was retrospectively obtained using digitalized X-rays of the left hand and compared with the results of 203 corresponding DXA readings (Lunar Prodigy, GE Healthcare) of the lumbar vertebrae and femur as well as 117 pQCT readings (XCT 900, Stratec) of the distal radius.

Results

The BHI values showed a strong positive correlation with the DXA readings at each and all lumbar vertebrae (L1 –L4: r = 0.73; P < 0.0001). The age-adjusted Z-score of L1 –L4 and the height-adjusted score showed a positive correlation with the BHI-SDS (standard deviation score, r = 0.23; P < 0.002 and r = 0.27; P < 0.001, respectively). Total bone mineral density, as assessed via pQCT, also positively correlated with the BHI (r = 0.39; P < 0.0001), but the trabecular values displayed only a weak correlation.

Conclusions

The BHI obtained using BoneXpert can be a useful parameter in the assessment of bone health in children in most cases. This technique provides observer-independent information on cortical thickness and mineralization based on X-ray imaging of the hands.  相似文献   

11.
This study compared the capabilities of micro-computed tomography (micro-CT) and dental cone-beam computed tomography (CBCT) in assessing trabecular bone parameters and cortical bone strength. Micro-CT and CBCT scans were applied to 28 femurs from 14 rats to obtain independent measurements of the volumetric cancellous bone mineral density (vCanBMD) in the femoral head, volumetric cortical bone mineral density (vCtBMD) in the femoral diaphysis, cross-sectional moment of inertia (CSMI), and bone strength index (BSI) (=CSMI×vCtBMD). Five structural parameters of the trabecular bone of the femoral head were calculated from micro-CT images. A three-point bending test was then conducted to measure the fracture load of each femur. Bivariate linear Pearson analysis was conducted to calculate the correlation coefficients (r values) of the micro-CT, dental CBCT, and three-point bending measurements. The statistical analyses showed a strong correlation between vCanBMD values obtained using micro-CT and dental CBCT (r=0.830). There were strong or moderate correlation between vCanBMD measured using dental CBCT and five parameters of trabecular structure measured using micro-CT. Additionally, the results were satisfactory regardless of whether micro-CT or dental CBCT was used to measure the femoral diaphysis vCtBMD (r=0.733 and 0.680, respectively), CSMI (r=0.756 and 0.726, respectively), or BSI (r=0.846 and 0.847, respectively) to predict fracture loads. This study has yielded a new method for using dental CBCT to evaluate bone parameters and bone strength; however, further studies are necessary to validate the use of dental CBCT on humans.  相似文献   

12.
Hormone replacement therapy (HRT) produces a small increase in bone mineral density (BMD) when measured by dual energy X-ray absorptiometry (DXA). The corresponding decrease in fracture risk is more impressive, implying that other factors that contribute to bone strength are favourably modified by HRT. We investigated, using peripheral quantitated computed tomography (pQCT), the changes produced by HRT in both the distribution of mineral between cortical and trabecular bone and the changes produced by HRT in the apparent structure of trabecular bone, expressed as average hole area and apparent connectivity. Twenty-one postmenopausal women starting HRT and 32 control women were followed for 2 years, with distal radius pQCT measurements every 6 months. HRT prevented the loss of total bone mass seen in controls (p < 0.02). HRT also produced an apparent rapid loss of trabecular bone mass within the first 6 months of the study (p < 0.02), with an associated rapid loss in the apparent connectivity (p = 0.034). Average hole area also increased but not to a statistically significant extent. Exogenous estrogen apparently fills small marrow pores close to the endocortical surface, such that the pQCT-defined boundary between trabecular and cortical bone is shifted in favour of cortical bone. Trabecular bone structure indices are adversely affected, as the central, poorly interconnected trabecular bone with greater than average marrow spaces constitutes a greater fraction of the remaining trabecular bone. This study suggests that the improvements in fracture risk resulting from HRT are explained by a reversal of net endocortical resorption of bone.  相似文献   

13.
Objective:We examined the role of vitamin D on volumetric bone mineral density (vBMD) and architecture during the first week’s post-fracture in postmenopausal women (PMW) with distal radial fractures (DRF) treated conservatively using peripheral Quantitative Computed Tomography (pQCT).Methods:Patients were classified into 2 groups according to initial median 25(OH)D level; Group A (25(OH)D ≥15 ng/ml) and group B (25(OH)D <15 ng/ml). All patients were followed for 12 weeks at three visits: baseline, 6 weeks and 12 weeks post fracture. pQCT was performed at baseline in fractured and contralateral non-fractured radius and at 6th and 12th week on the fractured side.Results:39 patients completed the protocol. Mean 25(OH)D levels were 15.60±7.35 ng/ml (3.5-41.7). Trabecular (trab) bone mineral content (BMC) and trabvBMD increased at 6 wk. vs. baseline (p<0.001). Cortical BMC, cortvBMD and cross- sectional area (CSA) progressively decreased (p<0.001) during the 12 weeks. There was no interaction between baseline 25(OH)D levels and changes in trabecular and cortical BMC, vBMD and CSA. Advanced age and higher CTX and P1NP were associated with higher cortical bone loss.Conclusion:Vitamin D deficiency does not affect the early architectural changes after a DRF. Advanced age and higher bone remodeling were associated with higher cortical bone loss, probably related to immobilization and independent of vitamin D levels.  相似文献   

14.
We investigated the effects of grape seed proanthocyanidins extract (GSPE) on bone formation by examining total and cortical bone mass, density, architecture, and strength non-invasively using mandibular condyles of Ca-restricted rats. Forty Wistar male rats, each 5 weeks old, were divided into control (C), low-Ca diet (LCaD), low-Ca diet-standard diet (LcaD x SD), and low-Ca diet x Estandard diet with supplementary GSPE (LcaD x SD+GSPE) groups. In LCaD x SD group, after the bone debility was induced by low-Ca diet, a standard diet therapy was given. In LCaD x SD+GSPE group, after the bone debility was induced by low-Ca diet, a standard diet therapy with supplementary GSPE was given. Each mandibular condyle was examined using peripheral quantitative computed tomography (pQCT). There were no significant inter-group differences in body weight seen throughout the experimental period. In LcaD x SD+GSPE, cortical bone cross-sectional area and mineral content were not significantly different from C, while bone mineral content was significantly higher in LcaD x SD+GSPE than in LcaD x SD. Cortical bone density of LcaD x SD+GSPE was not significantly different from that of C, however, that value in LCaD and LcaD x SD was significantly lower than that. The cross-sectional (bending) moment of inertia values in LcaD x SD+GSPE were the highest among all groups, though they did not differ significantly from those in C. Further, the cross-sectional (bending) Stress/Strain Index (SSI) values in LcaD x SD+GSPE were statistically similar to those in C, however, not significant higher than in LcaD x SD. These results suggest that GSPE treatment would increase both bone mass and bone strength on the rat mandibular condyles.  相似文献   

15.
There is increasing evidence that serotonin may regulate bone metabolism. However, its role remains to be clarified. Serotonin seems to be either beneficial or detrimental for bone tissues depending on the pharmacological manipulation used. In this study we evaluated the impact of a reduction of serotonergic stores induced by chronic tryptophan (TRP) depletion on various bone parameters in growing rats. For this purpose rats received a TRP‐free diet for 60 days. Bone mass, mineral content and density were measured by DXA and by pQCT in the appendicular skeleton. Bone metabolic markers included urinary deoxypyridinoline and serum osteocalcin measurements. IGF‐I levels were also evaluated. In TRP‐free diet rats, we found a decrease in body weight, a delayed femoral bone growth and bone mineral content as measured by DXA. pQCT analysis showed that these effects were related to a reduction of both cortical and trabecular bone and are associated with a reduction of bone strength. These effects are due to a negative shift in the balance between bone formation and resorption with a significant decrease in bone formation as evidenced by a reduction both in osteocalcin and IGF‐I levels. The present data extend our overall knowledge on the participation of serotonin in the regulation of growing bone and could be of interest in studying the impairment of bone growth in depressed subjects under particular condition of rapid bone accrual such as childhood and adolescence. J. Cell. Biochem. 107: 890–898, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
ObjectivePredominance of bone loss in cortical sites with relative preservation of trabecular bone, even in postmenopausal women, has been described in primary hyperparathyroidism (PHPT). The aim of this study was to evaluate bone microarchitectural differences using dual-energy x-ray absorptiometry (DXA), trabecular bone score (TBS), and DXA-based 3-dimensional (3D) modeling (3D-DXA) between postmenopausal women diagnosed with PHPT (PM-PHPT) and healthy postmenopausal controls.MethodsThis retrospective study included 44 women with PM-PHPT (9 of whom had fractures) and 48 healthy women matched by age, body mass index, and years since menopause treated at Hospital Universitario Fundación Jiménez Díaz between 2008 and 2017. The bone mineral density (BMD) of the lumbar spine (LS), femoral neck, total hip (TH), and 1/3 radius was assessed using DXA, and trabecular volumetric BMD (vBMD), cortical vBMD, integral vBMD, cortical thickness, and cortical surface BMD at TH were assessed using a 3D-DXA software and TBS at LS.ResultsThe mean adjusted BMD values at LS, the femoral neck, and TH; TBS at LS; and TH 3D-DXA parameters (trabecular vBMD, integral vBMD, cortical thickness, and cortical surface BMD) were significantly reduced in women with PM-PHPT compared with those in the controls. However, differences in mean cortical vBMD were not statistically significant (P = .078). There were no significant differences in mean BMD, TBS, or the 3D-DXA parameters between patients with fractures and those without fractures. The 25-hydroxyvitamin D level appeared to be associated with TBS but not with DXA and 3D-DXA measurements.ConclusionPM-PHPT has significant involvement of the trabecular and cortical compartments of the bone, as determined by DXA, TBS, and 3D-DXA.  相似文献   

17.
Three different regions of interest (ROIs) were defined in pQCT scans (XCT-3000 machine, Stratec, Germany) taken at the tibial mid-diaphyses of 12 pre-menopausal (pre-MP) and 12 post-menopausal (post-MP) women who were otherwise normal, according to the volumetric bone mineral density (vBMD) value of their corresponding pixels (voxels) as assessed by their respective attenuation values. They were classified as "low-vBMD" (LD-ROI, with a vBMD of 200-400 mg/cm(3)), corresponding chiefly to trabecular-subcortical bone; "medium-vBMD" (MD-ROI, vBMD = 400-800 mg/cm(3)), corresponding mainly to porous cortical bone or cortical-subcortical bone, and "high-vBMD" (HD-ROI, vBMD higher than 800 mg/cm(3)), corresponding to dense cortical bone. The fraction of the total cross-sectional bone area covered by the HD-ROI was 16% higher, and that covered by the MD-ROI 20% lower, in pre-MP than post-MP women. No differences concerning the LDROIs were found. A close, linearly negative relationship was found between the MD- and HD-ROI fractions in all the women together, with no inter-group differences in slope. The Stress-Strain Index (an indicator of the torsional stiffness and strength of the whole bones that involved both the vBMD and the spatial disposition of the HD bone in the cross-section - torsional moment of inertia -) correlated linearly and positively with the cross-sectional area of the HD-ROI, with a higher slope for pre-MP than post-MP women. Qualitatively, a. post-MP women showed a significantly more prevalent discontinuity of the voxels in the HD-ROI than pre-MP women, and b. the tendency of LD-ROIs to accumulate along the mechanically lesseffective (antero-posterior) axis of the image - a characteristic of pre-MP bones - was visually less evident in post-MP bones. These features describe non-invasively some changes induced by menopause in the human tibia that may be critical for defining the skeletal condition and to monitor the effects of treatments addressed either to protect or to improve mechanically the bone structure, beyond the possibilities of standard densitometry.  相似文献   

18.
Long-term diabetes mellitus can induce osteopenia and osteoporosis, an increase in the incidence of low-stress fractures, and/or delayed fracture healing. Strontium ranelate (SrR) is a dual-action anti-osteoporotic agent whose use in individuals with diabetic osteopathy has not been adequately evaluated. In this study, we studied the effects of an oral treatment with SrR and/or experimental diabetes on bone composition and biomechanics. Young male Wistar rats (half non-diabetic, half with streptozotocin/nicotinamide-induced diabetes) were either untreated or orally administered 625 mg/kg/day of SrR for 6 weeks. After sacrifice, femora from all animals were evaluated by a multi-scale approach (X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma optical-emission spectrometry, static histomorphometry, pQCT, and mechanical testing) to determine chemical, crystalline, and biomechanical properties. Untreated diabetic animals (versus untreated non-diabetic) showed a decrease in femoral mineral carbonate content, in cortical thickness and BMC, in trabecular osteocyte density, in maximum load supported at rupture and at yield point, and in overall toughness at mid-shaft. Treatment of diabetic animals with SrR further affected several parameters of bone (some already impaired by diabetes): crystallinity index (indicating less mature apatite crystals); trabecular area, BMC, and vBMD; maximum load at yield point; and structural elastic rigidity. However, SrR was also able to prevent the diabetes-induced decreases in trabecular osteocyte density (completely) and in bone ultimate strength at rupture (partially). Our results indicate that SrR treatment can partially but significantly prevent some bone structural mechanical properties as previously affected by diabetes, but not others (which may even be worsened).  相似文献   

19.
Although the role of PTH (parathyroid hormone) has been debated in glucocorticoid (GC)-induced osteoporosis (GIO), clinical data about the relation of endogenous PTH to bone metabolism in patients treated with GC are still lacking. The present study was performed to examine the relationship of PTH to bone metabolic indices, bone mineral density (BMD), and bone geometry in 174 female patients treated with oral GC for more than 6 months. Dual-energy X-ray absorptiometry and peripheral quantitative computed tomography (pQCT) were employed for the assessment of BMD and bone geometry. No elevation of serum PTH levels was observed in patients treated with GC. Although serum levels of osteocalcin were not related to serum PTH levels, urinary levels of deoxypiridinoline were positively correlated. Serum PTH levels were negatively related to BMD at any site. In pQCT, serum PTH levels were negatively correlated to both trabecular and cortical volumetric BMD. As for bone morphometric indices, serum PTH levels were significantly related to endocortical circumferences, cortical thickness, and cortical area. Moreover, serum PTH levels were significantly higher in patients with vertebral fractures, compared with those without vertebral fractures in GC-treated patients. In the present study, serum PTH levels were related to the elevation of bone resorption marker, decreased BMD, cortical thinning, and an increase of vertebral fracture risk. The elevation of sensitivity to PTH in bone might play some role in the pathogenesis of GIO.  相似文献   

20.
There are substantial changes in skeletal and mineral metabolism during pregnancy and lactation. The purpose of this study was to determine the changes in intracortical bone remodeling and turnover during lactation in beagle dogs. A femur and rib were obtained from dogs near the end of lactation or soon after weaning and compared with nonlactating controls. Rib cortical bone had much higher bone turnover rates than did femoral diaphyseal cortical bone. The number of single-labeled osteons and the number of resorption spaces were significantly greater during lactation in both the rib and the femur. Additionally, the mineral apposition rate, basic multicellular unit activation frequency, and bone turnover rates were greater in the femoral cortical bone from the lactating dogs than from the controls. These data demonstrate that during lactation, intracortical bone remodeling increases, and this may provide a mechanism for the skeleton to be responsive to the calcium requirements of the mother. In addition, these data may help explain the transient decreases in cortical bone mineral density that are reported to occur during human lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号