首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiazolidinediones (TZD) have been shown to have anti-diabetic effects including the ability to decrease fasting hyperglycemia and hyperinsulinemia, increase insulin-mediated glucose disposal rate (M) and decrease hepatic glucose production, but the mechanisms of action are not well established. To determine whether a TZD (R-102380, Sankyo Company Ltd., Tokyo, Japan) could improve insulin action on skeletal muscle glycogen synthase (GS), the rate-limiting enzyme in glycogen synthesis, 4 insulin-resistant obese monkeys were given I mg/kg/ day R-102380 p.o. for a 6-week period. Skeletal muscle GS activity and glucose 6-phosphate (G6P) content were compared between pre-dosing and dosing periods before and during the maximal insulin-stimulation of a euglycemic hyperinsulinemic clamp.Compared to pre-dosing, insulin-stimulated GS activity and G6P content were increased by this TZD: GS independent activity (p = 0.02), GS total activity (p = 0.005), GS fractional activity (p = 0.06) and G6P content (p = 0.02). The change in GS activity induced by in vivo insulin (insulin-stimulated minus basal) was also increased by this TZD: GS independent activity (p = 0.03) and GS fractional activity (p = 0.04).We conclude that the TZD R-102380 improves insulin action at the skeletal muscle in part by increasing the activity of glycogen synthase. This improvement in insulin sensitivity may be a key factor in the anti-diabetic effect of the thiazolidinedione class of agents.  相似文献   

2.
We examined the effects of high-fat diet (HFD) and exercise training on insulin-stimulated whole body glucose fluxes and several key steps of glucose metabolism in skeletal muscle. Rats were maintained for 3 wk on either low-fat (LFD) or high-fat diet with or without exercise training (swimming for 3 h per day). After the 3-wk diet/exercise treatments, animals underwent hyperinsulinemic euglycemic clamp experiments for measurements of insulin-stimulated whole body glucose fluxes. In addition, muscle samples were taken at the end of the clamps for measurements of glucose 6-phosphate (G-6-P) and GLUT-4 protein contents, hexokinase, and glycogen synthase (GS) activities. Insulin-stimulated glucose uptake was decreased by HFD and increased by exercise training (P < 0.01 for both). The opposite effects of HFD and exercise training on insulin-stimulated glucose uptake were associated with similar increases in muscle G-6-P levels (P < 0.05 for both). However, the increase in G-6-P level was accompanied by decreased GS activity without changes in GLUT-4 protein content and hexokinase activities in the HFD group. In contrast, the increase in G-6-P level in the exercise-trained group was accompanied by increased GLUT-4 protein content and hexokinase II (cytosolic) and GS activities. These results suggest that HFD and exercise training affect insulin sensitivity by acting predominantly on different steps of intracellular glucose metabolism. High-fat feeding appears to induce insulin resistance by affecting predominantly steps distal to G-6-P (e.g., glycolysis and glycogen synthesis). Exercise training affected multiple steps of glucose metabolism both proximal and distal to G-6-P. However, increased muscle G-6-P levels in the face of increased glucose metabolic fluxes suggest that the effect of exercise training is quantitatively more prominent on the steps proximal to G-6-P (i.e., glucose transport and phosphorylation).  相似文献   

3.
Insulin stimulates muscle glucose disposal via both glycolysis and glycogen synthesis. Insulin activates glycogen synthase (GS) in skeletal muscle by phosphorylating PKB (or Akt), which in turn phosphorylates and inactivates glycogen synthase kinase 3 (GSK-3), with subsequent activation of GS. A rapamycin-sensitive pathway, most likely acting via ribosomal 70-kDa protein S6 kinase (p70(S6K)), has also been implicated in the regulation of GSK-3 and GS by insulin. Amino acids potently stimulate p70(S6K), and recent studies on cultured muscle cells suggest that amino acids also inactivate GSK-3 and/or activate GS via activating p70(S6K). To assess the physiological relevance of these findings to normal human physiology, we compared the effects of amino acids and insulin on whole body glucose disposal, p70(S6K), and GSK-3 phosphorylation, and on the activity of GS in vivo in skeletal muscle of 24 healthy human volunteers. After an overnight fast, subjects received intravenously either a mixed amino acid solution (1.26 micromol.kg(-1).min(-1) x 6 h, n = 9), a physiological dose of insulin (1 mU.kg(-1).min(-1) euglycemic hyperinsulinemic clamp x 2 h, n = 6), or a pharmacological dose of insulin (20 mU.kg(-1).min(-1) euglycemic hyperinsulinemic clamp x 2 h, n = 9). Whole body glucose disposal rates were assessed by calculating the steady-state glucose infusion rates, and vastus lateralis muscle was biopsied before and at the end of the infusion. Both amino acid infusion and physiological hyperinsulinemia enhanced p70(S6K) phosphorylation without affecting GSK-3 phosphorylation, but only physiological hyperinsulinemia also increased whole body glucose disposal and GS activity. In contrast, a pharmacological dose of insulin significantly increased whole body glucose disposal, p70(S6K), GSK-3 phosphorylation, and GS activity. We conclude that amino acids at physiological concentrations mediate p70(S6K) but, unlike insulin, do not regulate GSK-3 and GS phosphorylation/activity in human skeletal muscle.  相似文献   

4.
Chronic caloric restriction (CR) prevents the development of obesity and maintains health, slows aging processes, and prevents or substantially delays the development of non-insulin-dependent diabetes. Because changes in energy metabolism could be involved in all of these positive effects of CR, we examined glycogen synthase (GS) and glycogen phosphorylase (GP) activities and glucose 6-phosphate (G6P) and glycogen concentrations in skeletal muscle samples before and during a euglycemic hyperinsulinemic clamp in 6 older aged monkeys in which CR had been continued for 10.4 ± 2.1 years. Basal GS activity (fractional velocity and independent) was significantly higher in the CR monkeys than has been previously shown in normal, hyperinsulinemic and diabetic monkeys. The normal effect of insulin to activate GS was absent in the CR group due to the paradoxical finding in some of these monkeys of a reduction in GS activity by insulin. Insulin also had the unexpected effect of increasing the independent activity of GP above basal activity (p<0.05). There was an inverse relationship between the change (insulin-stimulated minus basal) in GS fractional velocity and GP activity ratio (r=-0.91, p<0.005). The basal independent activities of GS and GP were also inversely correlated (r=-0.79, p<0.05). The insulin-stimulated concentration of G6P tended to be higher than the basal concentration (p<0.06) and was significantly higher than that previously shown in normal monkeys (p<0.05). We suggest that long-term calorie restriction (1) results in alterations in glycogen metabolism that may be important to the anti-diabetogenic and anti-aging effects of CR and (2) unmasks early defects which may indicate the likelihood of ultimately developing obesity and diabetes.  相似文献   

5.
K-111, formerly BM 17.0744, (2,2-dichloro-12-(4-chlorophenyl)-dodecanoic acid) is a new insulin-sensitizer with peroxisome proliferator-activated receptor (PPAR) alpha activity but without PPAR gamma activity. We determined the efficacy of K-111 in non-human primates in increasing insulin-stimulated glucose uptake and improving metabolic syndrome, assessing the general health-related effects. Six adult male obese normoglycemic prediabetic and insulin-resistant rhesus monkeys were studied on vehicle and following K-111 treatment (four-week chronic dosing each of 3 doses: 1, 3, and 10 mg/kg/d) with assessment of changes in substrate, hormone, and blood pressure measurements and alterations in insulin sensitivity using the euglycemic, hyperinsulinemic clamp technique. K-111 led to significantly decreased body weight and improved hyperinsulinemia, insulin sensitivity, hypertriglyceridemia, and HDL-cholesterol levels without adipogenesis or significant effects on fasting glucose, 24-hour urine glucose excretion, systolic or diastolic blood pressure, plasma fibrinogen, total cholesterol, or chemistry and hematology profile. These benefits are similar to the health-improving effects of calorie restriction, providing preliminary evidence that K-111 has excellent potential as a calorie-restriction mimetic agent. These results indicate the necessity of future study of K-111 for metabolic syndrome in humans, and suggest potential in reducing the risks of diabetes and cardiovascular disease.  相似文献   

6.
Our objective was to compare the effects of in vivo insulin on skeletal muscle glycogen synthase (GS) activity in normal (NGT) vs. impaired glucose-tolerant (IGT) obese postmenopausal women and to determine whether an increase in insulin activation of GS is associated with an improvement in insulin sensitivity (M) following calorie restriction (CR) and/or aerobic exercise plus calorie restriction (AEX + CR) in women with NGT and IGT. We did a longitudinal, clinical intervention study of CR compared with AEX + CR. Overweight and obese women, 49-76 yr old, completed 6 mo of CR (n = 46) or AEX + CR (n = 50) with Vo(2?max), body composition, and glucose tolerance testing. Hyperinsulinemic euglycemic (80 mU·m(-2)·min(-1)) clamps (n = 73) and skeletal muscle biopsies (before and during clamp) (n = 58) were performed before and after the interventions (n = 50). After 120 min of hyperinsulinemia during the clamp, GS fractional activity and insulin's effect to increase GS fractional activity (insulin - basal) were significantly lower in IGT vs. NGT (P < 0.01) at baseline. GS total activity increased during the clamp in NGT (P < 0.05), but not IGT, at baseline. CR and AEX + CR resulted in a significant 8% weight loss with reductions in total fat mass, visceral fat, subcutaneous fat, and intramuscular fat. Overall, M increased (P < 0.01), and the change in M (postintervention - preintervention) was associated with the change in insulin-stimulated GS fractional activity (partial r = 0.44, P < 0.005). In IGT, the change (postintervention - preintervention) in insulin-stimulated GS total activity was greater following AEX + CR than CR alone (P < 0.05). In IGT, insulin-stimulated GS-independent (P < 0.005) and fractional activity (P = 0.06) increased following AEX + CR. We conclude that the greatest benefits at the whole body and cellular level (insulin activation of GS) in older women at highest risk for diabetes are derived from a lifestyle intervention that includes exercise and diet.  相似文献   

7.
The impact of increased GlcN availability on insulin-stimulated p85/p110 phosphatidylinositol 3-kinase (PI3K) activity in skeletal muscle was examined in relation to GlcN-induced defects in peripheral insulin action. Primed continuous GlcN infusion (750 micromol/kg bolus; 30 micromol/kg.min) in conscious rats limited both maximal stimulation of muscle PI3K by acute insulin (I) (1 unit/kg) bolus (I + GlcN = 1.9-fold versus saline = 3.3-fold above fasting levels; p < 0.01) and chronic activation of PI3K following 3-h euglycemic, hyperinsulinemic (18 milliunits/kg.min) clamp studies (I + GlcN = 1.2-fold versus saline = 2.6-fold stimulation; p < 0.01). To determine the time course of GlcN-induced defects in insulin-stimulated PI3K activity and peripheral insulin action, GlcN was administered for 30, 60, 90, or 120 min during 2-h euglycemic, hyperinsulinemic clamp studies. Activation of muscle PI3K by insulin was attenuated following only 30 min of GlcN infusion (GlcN 30 min = 1.5-fold versus saline = 2.5-fold stimulation; p < 0.05). In contrast, the first impairment in insulin-mediated glucose uptake (Rd) developed following 110 min of GlcN infusion (110 min = 39.9 +/- 1.8 versus 30 min = 42.8 +/- 1.4 mg/kg.min, p < 0.05). However, the ability of insulin to stimulate phosphatidylinositol 3,4, 5-trisphosphate production and to activate glycogen synthase in skeletal muscle was preserved following up to 180 min of GlcN infusion. Thus, increased GlcN availability induced (a) profound and early inhibition of proximal insulin signaling at the level of PI3K and (b) delayed effects on insulin-mediated glucose uptake, yet (c) complete sparing of insulin-mediated glycogen synthase activation. The pattern and time sequence of GlcN-induced defects suggest that the etiology of peripheral insulin resistance may be distinct from the rapid and marked impairment in insulin signaling.  相似文献   

8.
Insulin action is decreased by high muscle glycogen concentrations in skeletal muscle. Patients with McArdle's disease have chronic high muscle glycogen levels and might therefore be at risk of developing insulin resistance. In this study, six patients with McArdle's disease and six matched control subjects were subjected to an oral glucose tolerance test and a euglycemic-hyperinsulinemic clamp. The muscle glycogen concentration was 103 +/- 45% higher in McArdle patients than in controls. Four of six McArdle patients, but none of the controls, had impaired glucose tolerance. The insulin-stimulated glucose utilization and the insulin-stimulated increase in glycogen synthase activity during the clamp were significantly lower in the patients than in controls (51.3 +/- 6.0 vs. 72.6 +/- 13.1 micromol x min(-1) x kg lean body mass(-1), P < 0.05, and 53 +/- 15 vs. 79 +/- 9%, P < 0.05, n = 6, respectively). The difference in insulin-stimulated glycogen synthase activity between the pairs was significantly correlated (r = 0.96, P < 0.002) with the difference in muscle glycogen level. The insulin-stimulated increase in Akt phosphorylation was smaller in the McArdle patients than in controls (45 +/- 13 vs. 76 +/- 13%, P < 0.05, respectively), whereas basal and insulin-stimulated glycogen synthase kinase 3alpha and protein phosphatase-1 activities were similar in the two groups. Furthermore, the ability of insulin to decrease and increase fat and carbohydrate oxidation, respectively, was blunted in the patients. In conclusion, these data show that patients with McArdle's glycogen storage disease are insulin resistant in terms of glucose uptake, glycogen synthase activation, and alterations in fuel oxidation. The data further suggest that skeletal muscle glycogen levels play an important role in the regulation of insulin-stimulated glycogen synthase activity.  相似文献   

9.
The molecular mechanism of insulin resistance induced by high-fructose feeding is not fully understood. The present study investigated the role of downstream signaling molecules of phosphatidylinositol 3-kinase (PI3K) in the insulin-stimulated skeletal muscle of high-fructose-fed rats. Rats were divided into chow-fed and fructose-fed groups. The results of the euglycemic clamp study (insulin infusion rates: 6 mU/kg BW/min) showed a significant decrease in the glucose infusion rate (GIR) and the metabolic clearance rate of glucose (MCR) in fructose-fed rats compared with chow-fed rats. In skeletal muscle removed immediately after the clamp procedure, high-fructose feeding did not alter protein levels of protein kinase B (PKB/Akt), protein kinase C zeta (PKCzeta), or glucose transporter 4 (GLUT4). However, insulin-stimulated phosphorylation of Akt and PKCzeta and GLUT4 translocation to the plasma membrane were reduced. Our findings suggest that insulin resistance in fructose-fed rats is associated with impaired Akt and PKCzeta activation and GLUT4 translocation in skeletal muscle.  相似文献   

10.
Role of glycogen content in insulin resistance in human muscle cells   总被引:1,自引:0,他引:1  
We have used primary human muscle cell cultures to investigate the role of glycogen loading in cellular insulin resistance. Insulin pre-treatment for 2 h markedly impaired insulin signaling, as assessed by protein kinase B (PKB) phosphorylation. In contrast, insulin-dependent glycogen synthesis, glycogen synthase (GS) activation, and GS sites 3 de-phosphorylation were impaired only after 5 h of insulin pre-treatment, whereas 2-deoxyglucose transport was only decreased after 18 h pre-treatment. Insulin-resistant glycogen synthesis was associated closely with maximal glycogen loading. Both glucose limitation and 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) treatment during insulin pre-treatment curtailed glycogen accumulation, and concomitantly restored insulin-sensitive glycogen synthesis and GS activation, although GS de-phosphorylation and PKB phosphorylation remained impaired. Conversely, glycogen super-compensation diminished insulin-sensitive glycogen synthesis and GS activity. Insulin acutely promoted GS translocation to particulate subcellular fractions; this was abolished by insulin pre-treatment, as was GS dephosphorylation therein. Limiting glycogen accumulation during insulin pre-treatment re-instated GS dephosphorylation in particulate fractions, whereas glycogen super-compensation prevented insulin-stimulated GS translocation and dephosphorylation. Our data suggest that diminished insulin signaling alone is insufficient to impair glucose disposal, and indicate a role for glycogen accumulation in inducing insulin resistance in human muscle cells.  相似文献   

11.
Effect of exercise on insulin action in human skeletal muscle   总被引:10,自引:0,他引:10  
The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2 consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp even though indirect estimates indicated net glycogen synthesis. In contrast, in exercised muscle estimated and biopsy-verified increases in muscle glycogen concentration agreed. Local contraction-induced increases in insulin sensitivity and responsiveness play an important role in postexercise recovery of human skeletal muscle.  相似文献   

12.
We examined whether acute activation of 5'-AMP-activated protein kinase (AMPK) by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) ameliorates insulin resistance in isolated rat skeletal muscle. Insulin resistance was induced in extensor digitorum longus (EDL) muscles by prolonged exposure to 1.6 mM palmitate, which inhibited insulin-stimulated glycogen synthesis to 51% of control after 5 h of incubation. Insulin-stimulated glucose transport was less affected (22% of control). The decrease in glycogen synthesis was accompanied by decreased glycogen synthase (GS) activity and increased GS phosphorylation. When including 2 mM AICAR in the last hour of the 5-h incubation with palmitate, the inhibitory effect of palmitate on insulin-stimulated glycogen synthesis and glucose transport was eliminated. This effect of AICAR was accompanied by activation of AMPK. Importantly, AMPK inhibition was able to prevent this effect. Neither treatment affected total glycogen content. However, glucose 6-phosphate was increased after inclusion of AICAR, indicating increased influx of glucose. No effect of AICAR on the inhibited insulin-stimulated GS activity or increased GS phosphorylation by palmitate could be detected. Thus the mechanism by which AMPK activation ameliorates the lipid-induced insulin resistance probably involves induction of compensatory mechanisms overriding the insulin resistance. Our results emphasize AMPK as a promising molecular target for treatment of insulin resistance.  相似文献   

13.
Leptin has been proposed to be a sensor of energy storage in adipose tissues, and is capable of mediating a feedback signal to the hypothalamus, which is involved in the regulation of energy homeostasis and body weight. In order to investigate the issue of whether resistance to the activity of leptin on insulin sensitivity is observed in young Otsuka Long-Evans Tokushima Fatty (OLETF) rats at 8 weeks of age, leptin (50 nmol/kg/h) was administered intravenously for 16 h to OLETF and Long-Evans Tokushima Otsuka (LETO) (lean controls) rats, followed by a measurement of insulin-stimulated glucose uptake in hindlimb muscles during hyperinsulinemic euglycemic clamp technique. In the case of LETO rats, the administration of leptin significantly decreased plasma insulin levels prior to the clamp test, but did not change plasma glucose levels. Furthermore, leptin led to an increase in insulin-stimulated glucose uptake in hindlimb muscles. However, in the case of OLETF rats, leptin administration changed neither plasma insulin levels nor insulin-stimulated glucose uptake. These data demonstrate that OLETF rats at 8 weeks of age have already become resistant to high concentration of peripheral leptin.  相似文献   

14.
The purpose of the present study was to determine in human skeletal muscle whether a single exercise bout and 7 days of consecutive endurance (cycling) training 1) increased insulin-stimulated Akt pSer(473) and 2) altered the abundance of the protein tyrosine phosphatases (PTPases), PTP1B and SHP2. In healthy, untrained men (n = 8; 24 +/- 1 yr), glucose infusion rate during a hyperinsulinemic euglycemic clamp, when compared with untrained values, was not improved 24 h following a single 60-min bout of endurance cycling but was significantly increased ( approximately 30%; P < 0.05) 24 h following completion of 7 days of exercise training. Insulin-stimulated Akt pSer(473) was approximately 50% higher (P < 0.05) 24 h following the acute bout of exercise, with this effect remaining after 7 days of training (P < 0.05). Insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation were not altered 24 h after acute exercise and short-term training. Insulin did not acutely regulate the localization of the PTPases, PTP1B or SHP2, although cytosolic protein abundance of SHP2 was increased (P < 0.05; main effect) 24 h following acute exercise and short-term training. In conclusion, insulin-sensitive Akt pSer(473) and cytosolic SHP2 protein abundance are higher after acute exercise and short-term training, and this effect appears largely due to the residual effects of the last bout of prior exercise. The significance of exercise-induced alterations in cytosolic SHP2 and insulin-stimulated Akt pSer(473) on the improvement in insulin sensitivity requires further elucidation.  相似文献   

15.
Although chronic hyperinsulinemia has been shown to induce insulin resistance, the basic cellular mechanisms responsible for this phenomenon are unknown. The present study was performed 1) to determine the time-related effect of physiological hyperinsulinemia on glycogen synthase (GS) activity, hexokinase II (HKII) activity and mRNA content, and GLUT-4 protein in muscle from healthy subjects, and 2) to relate hyperinsulinemia-induced alterations in these parameters to changes in glucose metabolism in vivo. Twenty healthy subjects had a 240-min euglycemic insulin clamp study with muscle biopsies and then received a low-dose insulin infusion for 24 (n = 6) or 72 h (n = 14) (plasma insulin concentration = 121 +/- 9 or 143 +/- 25 pmol/l, respectively). During the baseline insulin clamp, GS fractional velocity (0.075 +/- 0.008 to 0.229 +/- 0.02, P < 0.01), HKII mRNA content (0.179 +/- 0.034 to 0.354 +/- 0.087, P < 0.05), and HKII activity (2.41 +/- 0.63 to 3.35 +/- 0.54 pmol x min(-1) x ng(-1), P < 0.05), as well as whole body glucose disposal and nonoxidative glucose disposal, increased. During the insulin clamp performed after 24 and 72 h of sustained physiological hyperinsulinemia, the ability of insulin to increase muscle GS fractional velocity, total body glucose disposal, and nonoxidative glucose disposal was impaired (all P < 0.01), whereas the effect of insulin on muscle HKII mRNA, HKII activity, GLUT-4 protein content, and whole body rates of glucose oxidation and glycolysis remained unchanged. Muscle glycogen concentration did not change [116 +/- 28 vs. 126 +/- 29 micromol/kg muscle, P = nonsignificant (NS)] and was not correlated with the change in nonoxidative glucose disposal (r = 0.074, P = NS). In summary, modest chronic hyperinsulinemia may contribute directly (independent of change in muscle glycogen concentration) to the development of insulin resistance by its impact on the GS pathway.  相似文献   

16.
The regulatory-targeting subunit (RGL), also called GM) of the muscle-specific glycogen-associated protein phosphatase PP1G targets the enzyme to glycogen where it modulates the activity of glycogen-metabolizing enzymes. PP1G/RGL has been postulated to play a central role in epinephrine and insulin control of glycogen metabolism via phosphorylation of RGL. To investigate the function of the phosphatase, RGL knockout mice were generated. Animals lacking RGL show no obvious defects. The RGL protein is absent from the skeletal and cardiac muscle of null mutants and present at approximately 50% of the wild-type level in heterozygotes. Both the level and activity of C1 protein are also decreased by approximately 50% in the RGL-deficient mice. In skeletal muscle, the glycogen synthase (GS) activity ratio in the absence and presence of glucose-6-phosphate is reduced from 0.3 in the wild type to 0.1 in the null mutant RGL mice, whereas the phosphorylase activity ratio in the absence and presence of AMP is increased from 0.4 to 0.7. Glycogen accumulation is decreased by approximately 90%. Despite impaired glycogen accumulation in muscle, the animals remain normoglycemic. Glucose tolerance and insulin responsiveness are identical in wild-type and knockout mice, as are basal and insulin-stimulated glucose uptakes in skeletal muscle. Most importantly, insulin activated GS in both wild-type and RGL null mutant mice and stimulated a GS-specific protein phosphatase in both groups. These results demonstrate that RGL is genetically linked to glycogen metabolism, since its loss decreases PP1 and basal GS activities and glycogen accumulation. However, PP1G/RGL is not required for insulin activation of GS in skeletal muscle, and rather another GS-specific phosphatase appears to be involved.  相似文献   

17.
To test whether hepatic insulin action and the response to an insulin-induced decrement in blood glucose are enhanced in the immediate postexercise state as they are during exercise, dogs had sampling (artery, portal vein, and hepatic vein) catheters and flow probes (portal vein and hepatic artery) implanted 16 days before a study. After 150 min of moderate treadmill exercise or rest, dogs were studied during a 150-min hyperinsulinemic (1 mU.kg(-1).min(-1)) euglycemic (n = 5 exercised and n = 9 sedentary) or hypoglycemic (65 mg/dl; n = 8 exercised and n = 9 sedentary) clamp. Net hepatic glucose output (NHGO) and endogenous glucose appearance (R(a)) and utilization (R(d)) were assessed with arteriovenous and isotopic ([3-(3)H]glucose) methods. Results show that, immediately after prolonged, moderate exercise, in relation to sedentary controls: 1) the glucose infusion rate required to maintain euglycemia, but not hypoglycemia, was higher; 2) R(d) was greater under euglycemic, but not hypoglycemic conditions; 3) NHGO, but not R(a), was suppressed more by a hyperinsulinemic euglycemic clamp, suggesting that hepatic glucose uptake was increased; 4) a decrement in glucose completely reversed the enhanced suppression of NHGO by insulin that followed exercise; and 5) arterial glucagon and cortisol were transiently higher in the presence of a decrement in glucose. In summary, an increase in insulin action that was readily evident under euglycemic conditions after exercise was abolished by moderate hypoglycemia. The means by which the glucoregulatory system is able to overcome the increase in insulin action during moderate hypoglycemia is related not to an increase in R(a) but to a reduction in insulin-stimulated R(d). The primary site of this reduction is the liver.  相似文献   

18.
As a new mouse model of obesity-induced diabetes generated by combining quantitative trait loci from New Zealand Obese (NZO/HlLt) and Nonobese Nondiabetic (NON/LtJ) mice, NONcNZO10/LtJ (RCS10) male mice developed type 2 diabetes characterized by maturity onset obesity, hyperglycemia, and insulin resistance. To metabolically profile the progression to diabetes in preobese and obese states, a 2-h hyperinsulinemic euglycemic clamp was performed and organ-specific changes in insulin action were assessed in awake RCS10 and NON/LtJ (control) males at 8 and 13 wk of age. Prior to development of obesity and attendant increases in hepatic lipid content, 8-wk-old RCS10 mice developed insulin resistance in liver and skeletal muscle due to significant decreases in insulin-stimulated glucose uptake and GLUT4 expression in muscle. Transition to an obese and hyperglycemic state by 13 wk of age exacerbated insulin resistance in skeletal muscle, liver, and heart associated with organ-specific increases in lipid content. Thus, this polygenic mouse model of type 2 diabetes, wherein plasma insulin is only modestly elevated and obesity develops with maturity yet insulin action and glucose metabolism in skeletal muscle and liver are reduced at an early prediabetic age, should provide new insights into the etiology of type 2 diabetes.  相似文献   

19.
To characterize the contribution of glycogen synthase kinase 3beta (GSK3beta) inactivation to insulin-stimulated glucose metabolism, wild-type (WT-GSK), catalytically inactive (KM-GSK), and uninhibitable (S9A-GSK) forms of GSK3beta were expressed in insulin-responsive 3T3-L1 adipocytes using adenovirus technology. WT-GSK, but not KM-GSK, reduced basal and insulin-stimulated glycogen synthase activity without affecting the -fold stimulation of the enzyme by insulin. S9A-GSK similarly decreased cellular glycogen synthase activity, but also partially blocked insulin stimulation of the enzyme. S9A-GSK expression also markedly inhibited insulin stimulation of IRS-1-associated phosphatidylinositol 3-kinase activity, but only weakly inhibited insulin-stimulated Akt/PKB phosphorylation and glucose uptake, with no effect on GLUT4 translocation. To further evaluate the role of GSK3beta in insulin signaling, the GSK3beta inhibitor lithium was used to mimic the consequences of insulin-stimulated GSK3beta inactivation. Although lithium stimulated the incorporation of glucose into glycogen and glycogen synthase enzyme activity, the inhibitor was without effect on GLUT4 translocation and pp70 S6 kinase. Lithium stimulation of glycogen synthesis was insensitive to wortmannin, which is consistent with its acting directly on GSK3beta downstream of phosphatidylinositol 3-kinase. These data support the hypothesis that GSK3beta contributes to insulin regulation of glycogen synthesis, but is not responsible for the increase in glucose transport.  相似文献   

20.
During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号