首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
1,24(R)(OH)2D3 is a synthetic analogue of 1,25(OH)2D3 which binds to the same receptors as the physiologic metabolite with a lower affinity. The aim of the present study was to compare the activity of 1,24(R)(OH)2D3 and 1,25(OH)2D3 on several target organs in patients with chronic renal failure. Treatment with 1,24(R)(OH)2D3 at doses of either 1 or 2 μg daily was carried out in two groups of 9 patients, with serum creatinine of 4.61 ± 1.59 and 4.66 ± 1.46 mg/dl, respectively. Doses of 1,25(OH)2D3 were 0.5 and 1 μg daily and were administered to 9 and 13 patients, serum creatinine of 4.52 ± 1.67 and 4.3 ± 1.16 mg/dl, respectively. Treatment periods were of 2 weeks. Administration of 1,25(OH)2D3, 1 μg, induced significant increments of intestinal calcium absorption (ICA), ionized calcium, osteocalcin, serum creatinine, urine Ca/GFR, and a decrease in iPTH. 1,25(OH)2D3, 0.5 μg, induced a significant increase in ICA and osteocalcin and a decrease in iPTH. Similarly 1,24(OH)2D3, 2 μg daily, significantly stimulated ICA and raised serum levels of osteocalcin and creatinine while lowering serum iPTH. In addition, 1,24(R)(OH)2D3 administration induced a significant fall of serum 1,25(OH)2D3. Following 1 μg, only osteocalcin increased. Therefore, the dose of 2 μg of 1,24(R)(OH)2D3 has biologic activity similar to 0.5 μg 1,25(OH)2D3 (4:1). However the activity ratio on osteocalcin production appears to be 2:1. In addition, 1,24(R)(OH)2D3 is able to inhibit renal tubular 1-hydroxylase. In conclusion 1,24(R)(OH)2D3 may prove to be useful in the treatment of metabolic bone disease.  相似文献   

2.
The objective of this study was to characterize changes in metabolic bone parameters following bariatric surgery. Seventy-three obese adult patients who underwent either gastric banding (GB), Roux-en-Y gastric bypass (RYGB), or biliopancreatic diversion with duodenal switch (BPD/DS) were followed prospectively for 18 months postoperatively. Changes in the calcium-vitamin D axis (25-hydroxyvitamin D (25OHD), 1,25-dihydroxyvitamin D (1,25(OH)(2)D), calcium, parathyroid hormone (PTH)), markers of bone formation (osteocalcin, bone-specific alkaline phosphatase) and resorption (urinary N-telopeptide (NTx)), as well as bone mineral density (BMD) were assessed at 3-month intervals during this time period. Bariatric surgery resulted in significant and progressive weight loss over 18 months. With supplementation, 25OHD levels increased 65.3% (P < 0.0001) by 3 months, but leveled off and decreased <30 ng/ml by 18 months. PTH initially decreased 21.4% (P = 0.01) at 3 months, but later approached presurgery levels. 1,25(OH)(2)D increased significantly starting at month 12 (50.3% increase from baseline, P = 0.008), and was positively associated with PTH (r = 0.82, P = 0.0001). When stratified by surgery type, median PTH and 1,25(OH)(2)D levels were higher following combined restrictive and malabsorptive operations (RYGB and BPD/DS) compared to GB. Bone formation/resorption markers were increased by 3 months (P < 0.05) and remained elevated through 18 months. Radial BMD decreased 3.5% by month 18, but this change was not significant (P = 0.23). Our findings show that after transient improvement, preoperative vitamin D insufficiency and secondary hyperparathyroidism persisted following surgery despite supplementation. Postoperative secondary hyperparathyroidism was associated with increased 1,25(OH)(2)D levels and increased bone turnover markers.  相似文献   

3.
A study was conducted evaluating the response of serum parathyroid hormone to acute hypercalcaemia and long term administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in patients receiving maintenance haemodialysis. During infusion of elemental calcium 4 mg/kg/h over four hours in 12 patients not receiving vitamin D the concentration of serum amino terminal parathyroid hormone fell by 31-96% (mean 74.8 (SD 17.6)%) while that of carboxy terminal parathyroid hormone changed little. There was a strong inverse correlation between baseline serum calcium concentration and percentage fall in amino terminal parathyroid hormone during infusion (r = 0.88; p less than 0.001). In seven patients who received prolonged treatment with 1,25(OH)2D3 after calcium infusion there was a positive correlation between maximum percentage fall in amino terminal parathyroid hormone during infusion and the percentage fall in amino terminal parathyroid hormone after 1,25(OH)2D3 treatment (r = 0.79; p less than 0.05). The responsiveness of the parathyroid glands to changes in calcium in acute studies may be used to predict the efficacy of long term treatment with 1,25(OH)2D3. Patients in whom calcium infusion does not suppress parathyroid hormone may have true parathyroid autonomy and require early parathyroidectomy.  相似文献   

4.
1,25-dihydroxyvitamin D production in response to two successive infusions of synthetic active 1-34 fragment of human PTH [hPTH-(1-34)] was evaluated in order to develop an understanding of the vitamin D metabolism and the rationale of vitamin D therapy in calcium disorders. Five normal controls, six hypoparathyroid patients, two patients with hypophosphatemic vitamin-D-resistant rickets, one patient with Lowe's synd. and one patient with primary Fanconi's synd. were investigated, and the following results were obtained. All normal controls showed a significant increase in serum 1,25(OH)2D[43 +/- 3.8 (m +/- SEM, n = 5, basal), 53 +/- 4.3 (three hours after the first PTH infusion), 65 +/- 7.7 (six hours) and 66 +/- 4.4 (nine hours) pg/ml]. All patients with PTH-deficient hypoparathyroidism showed a significant increase in serum 1,25(OH)2D, and serum 1,25(OH)2D values were within the normal range after hPTH-(1-34) stimulation. Serum 1,25(OH)2D remained low after hPTH-(1-34) infusions in a patient with pseudohypoparathyroidism type I who showed a significant increase in this value after infusion of dibutyryl cyclic AMP. On the other hand, a patient with normocalcemic pseudohypoparathyroidism type I had a high basal 1,25(OH)2D value, which increased further after hPTH-(1-34) infusions. An almost normal increase in serum 1,25(OH)2D was observed in two patients with hypophosphatemic vitamin-D-resistant rickets, one with Lowe's syndrome and the other with primary Franconi's syndrome. We conclude that these results ae important in obtaining an understanding of calcium and vitamin D metabolism in these disorders and that this PTH stimulation test is a useful method to use in evaluating renal responsiveness in 1,25(OH)2D production to PTH in various calcium disorders.  相似文献   

5.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) is most strongly regulated by dietary calcium and the action of parathyroid hormone to increase 1alpha-hydroxylase (1alpha-OHase) and decrease 24-hydroxylase (24-OHase) in kidney proximal tubules. This study examines the hypothesis that 1,25-(OH)(2)D(3) synthesis, induced by dietary calcium restriction, is also the result of negative feedback regulation blockade. Rats fed a low calcium (0.02%, -Ca) diet and given daily oral doses of vitamin D (0, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 microg) remained hypocalcemic despite increasing levels of serum calcium in relation to the vitamin D dose. Plasma levels of 1,25-(OH)(2)D(3) rose to high levels (1200 pg/ml) at the high vitamin D dose levels. As expected, thyroparathyroidectomy caused a rapid fall in serum 1,25-(OH)(2)D(3). In rats fed a 0.47% calcium diet (+Ca) supplemented with vitamin D (4 microg/day), exogenous 1,25-(OH)(2)D(3) suppressed renal 1alpha-OHase and stimulated the 24-OHase. In rats fed the -Ca diet, vitamin D was unable to suppress the renal 1alpha-OHase or stimulate the renal 24-OHase. In contrast, vitamin D was fully able to stimulate intestinal 24-OHase. Intestinal vitamin D receptor (VDR) was present under all circumstances, while kidney VDR was absent under hypocalcemic conditions and present under normocalcemic conditions. It appears that tissue-specific down-regulation of VDR by hypocalcemia blocks the 1,25-(OH)(2)D(3) suppression of the 1alpha-OHase and upregulation of the 24-OHase in the kidney, causing a marked accumulation of 1,25-(OH)(2)D(3) in the plasma.  相似文献   

6.
7.
Vitamin D physiology   总被引:1,自引:0,他引:1  
  相似文献   

8.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D] has been shown to inhibit development of dextran sodium sulfate (DSS)-induced colitis in mice but can also cause hypercalcemia. The aim of this study was to evaluate whether β-glucuronides of vitamin D could deliver 1,25(OH)(2)D to the colon to ameliorate colitis while reducing the risk of hypercalcemia. Initial studies demonstrated that bacteria residing in the lower intestinal tract were capable of liberating 1,25(OH)(2)D from 1,25-dihydroxyvitamin D(3)-25-β-glucuronide [β-gluc-1,25(OH)(2)D]. We also determined that a much greater upregulation of the vitamin D-dependent 24-hydroxylase gene (Cyp24) was induced in the colon by treatment of mice with an oral dose of β-gluc-1,25(OH)(2)D than 1,25(OH)(2)D, demonstrating targeted delivery of 1,25(OH)(2)D to the colon. We then tested β-glucuronides of vitamin D in the mouse DSS colitis model in two studies. In mice receiving DSS dissolved in distilled water and treated with 1,25(OH)(2)D or β-gluc-1,25(OH)(2)D, severity of colitis was reduced. Combination of β-gluc-1,25(OH)(2)D with 25-hydroxyvitamin D(3)-25-β-glucuronide [β-gluc-25(OH)D] resulted in the greatest reduction of colitis lesions and symptoms in DSS-treated mice. Plasma calcium concentrations were lower in mice treated with β-gluc-1,25(OH)(2)D alone or in combination with β-gluc-25(OH)D than in mice treated with 1,25(OH)(2)D, which were hypercalcemic at the time of death. β-Glucuronides of vitamin D compounds can deliver 1,25(OH)(2)D to the lower intestine and can reduce symptoms and lesions of acute colitis in this model.  相似文献   

9.
Although osteocalcin is the most abundant noncollagenous protein in bone, its role remains undefined. Recent studies have reported diametrically opposing responses in the vitamin D regulation of the mouse vs the human and rat osteocalcin genes. The aim of this study was to increase the understanding of these differences and further elucidate the physiological function and regulation of osteocalcin. Direct comparison of the regulation of both the endogenous mouse osteocalcin gene (mOC) and a human osteocalcin promoter-chloramphenicol acetyl transferase (hOC-CAT) reporter as integrated templates was undertaken in primary osteoblastic cultures from OSCAT transgenic mice. Expression of both genes was up-regulated with the onset of mineralization. Long-term chronic 1, 25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) treatment and acute (2 day) PTH treatment inhibited both mOC and hOC-CAT expression. At all stages of osteoblastic development studied, hOC-CAT was up-regulated by acute 1,25-(OH)(2)D(3), whereas mOC was unaffected or inhibited. Mouse osteopontin was strongly up-regulated by acute 1, 25-(OH)(2)D(3) treatment. Thus, the divergence of the osteocalcin responses to 1,25-(OH)(2)D(3) is specific for the osteocalcin gene and for an acute 1,25-(OH)(2)D(3) treatment regime. Elucidation of this unique aspect of bone physiology will provide valuable insights into the still incompletely understood roles of osteocalcin and 1, 25-(OH)(2)D(3) in bone.  相似文献   

10.
The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is an endocrine hormone whose classic role is the maintenance of calcium homeostasis. It is well documented that 1,25(OH)(2)D(3) also has anti-tumor effects on a number of cancers and cancer cell lines including breast, colorectal, gastric, liver, ovarian, prostate, and non-melanoma skin cancers. Included in the anti-tumor activities of 1,25(OH)(2)D(3) are its ability to cause antiproliferation, prodifferentation and decrease angiogenesis. Furthermore, through regulation of the plaminogen activator (PA) system and a class of proteolytic enzymes called matrix metalloproteinases (MMPs), 1,25(OH)(2)D(3) reduces the invasive spread of tumor cells. Because of the calcemic limitations of using 1,25(OH)(2)D(3) as a therapy, we have tested the effects of a novel Gemini vitamin D analogue, Deuterated Gemini (DG), on mouse colorectal cancer. We demonstrated that DG is more potent in reducing tumor volume and mass, compared to control and 1,25(OH)(2)D(3). DG significantly prevented (100% reduction, p<0.05) the invasive spread of colorectal tumor cells into the surrounding muscle, and had no effect on serum calcium levels. Thus, DG acts as a selective vitamin D receptor modulator (SVDRM) by enhancing select anti-tumor characteristic 1,25(OH)(2)D(3) activities, without inducing hypercalcemia. Thus, DG shows promise in the development of colorectal cancer therapies.  相似文献   

11.
Since osteocalcin has been suggested to play a role in calcium homeostasis, we investigated its serum levels in 6 healthy subjects during a rapid calcium infusion. Serum levels of intact parathyroid hormone (PTH), 25-hydroxyvitamin D [25-(OH) D3] and 1,25-dihydroxyvitamin D [1,25-(OH)2 D3] were also determined. The calcium infusion increased plasma-ionized calcium levels from 1.25 +/- 0.04 to 1.54 +/- 0.07 mmol/l at 30 min (p less than 0.05). Concomitantly, serum levels of intact PTH declined from 2.1 +/- 0.9 to 0.2 +/- 0.3 mmol/l (p less than 0.05). In contrast, serum osteocalcin levels did not change. Further, during calcium infusion, serum levels of 1,25-(OH)2 D3 decreased from 81 +/- 17 to 75 +/- 15 pmol/l (p less than 0.05) whereas serum levels of 25-(OH) D3 did not change. The results therefore suggest that calcium per se does not influence osteocalcin secretion.  相似文献   

12.
Dendritic cells (DCs) generated by a single-step exposure of human monocytes to type I IFN and GM-CSF (IFN-DCs) are endowed with potent immunostimulatory activities and a distinctive migratory response to specific chemokines. In this study, we evaluated the effects of 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the biologically active metabolite of vitamin D(3), on the DC differentiation/activation induced by type I IFN. We found that 1,25(OH)(2)D(3) prevented the generation of IFN-DCs when added to freshly isolated monocytes, and was capable of redirecting already differentiated IFN-DCs toward a more immature stage, as revealed by their immunophenotype, reduced allostimulatory activity, and impaired LPS-induced production of Th1-polarizing cytokines. Control and 1,25(OH)(2)D(3)-treated IFN-DCs exhibited a similar expression of vitamin D receptor, as well as comparable cell death rates. Furthermore, the chemotactic response of IFN-DCs to CCL4 and CCL19 was markedly reduced or completely abrogated by 1,25(OH)(2)D(3). Despite these changes in the IFN-DC migratory behavior, the expression of CCR5 and CCR7 and the calcium fluxes triggered by CCL4 and CCL19 were not affected. These findings indicate that, in this innovative single-step DC generation model from monocytes, the suppressive effect of 1,25(OH)(2)D(3) is associated with a potent impairment of DC migration in response to inflammatory and lymph node-homing chemokines, thus unraveling a novel mechanism involved in 1,25(OH)(2)D(3)-mediated immunomodulation.  相似文献   

13.
14.
15.
The vitamin D hormone 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the biologically active form of vitamin D, is essential for an intact mineral metabolism. Using gene targeting, we sought to generate vitamin D receptor (VDR) null mutant mice carrying the reporter gene lacZ driven by the endogenous VDR promoter. Here we show that our gene-targeted mutant mice express a VDR with an intact hormone binding domain, but lacking the first zinc finger necessary for DNA binding. Expression of the lacZ reporter gene was widely distributed during embryogenesis and postnatally. Strong lacZ expression was found in bones, cartilage, intestine, kidney, skin, brain, heart, and parathyroid glands. Homozygous mice are a phenocopy of mice totally lacking the VDR protein and showed growth retardation, rickets, secondary hyperparathyroidism, and alopecia. Feeding of a diet high in calcium, phosphorus, and lactose normalized blood calcium and serum PTH levels, but revealed a profound renal calcium leak in normocalcemic homozygous mutants. When mice were treated with pharmacological doses of vitamin D metabolites, responses in skin, bone, intestine, parathyroid glands, and kidney were absent in homozygous mice, indicating that the mutant receptor is nonfunctioning and that vitamin D signaling pathways other than those mediated through the classical nuclear receptor are of minor physiological importance. Furthermore, rapid, nongenomic responses to 1,25-(OH)(2)D(3) in osteoblasts were abrogated in homozygous mice, supporting the conclusion that the classical VDR mediates the nongenomic actions of 1,25-(OH)(2)D(3).  相似文献   

16.
Vitamin D is a principal regulator of calcium homeostasis. However, recent evidence has indicated that vitamin D can have numerous other physiological functions including inhibition of proliferation of a number of malignant cells including breast and prostate cancer cells and protection against certain immune mediated disorders including multiple sclerosis (MS). The geographic incidence of MS indicates an increase in MS with a decrease in sunlight exposure. Since vitamin D is produced in the skin by solar or UV irradiation and high serum levels of 25-hydroxyvitamin D (25(OH)D) have been reported to correlate with a reduced risk of MS, a protective role of vitamin D is suggested. Mechanisms whereby the active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) may act to mediate this protective effect are reviewed. Due to its immunosuppressive actions, it has been suggested that 1,25(OH)(2)D(3) may prevent the induction of MS.  相似文献   

17.
If both rapid and genomic pathways may co-exist in the same cell, the involvement of the nuclear vitamin D receptor (VDR) in the rapid effects of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) remains unclear. We therefore studied rapid and long term effects of 1,25-(OH)(2)D(3) in cultured skin fibroblasts from three patients with severe vitamin D-resistant rickets and one age-matched control. Patients bear homozygous missense VDR mutations that abolished either VDR binding to DNA (patient 1, mutation K45E) or its stable ligand binding (patients 2 and 3, mutation W286R). In patient 1 cells, 1,25-(OH)(2)D(3) (1 pm-10 nm) had no effect on either intracellular calcium or 24-hydroxylase (enzyme activity and mRNA expression). In contrast, cells bearing the W286R mutation had calcium responses to 1,25-(OH)(2)D(3) (profile and magnitude) and 24-hydroxylase responses to low (1 pm-100 pm) 1,25-(OH)(2)D(3) concentrations (activity, CYP24, and ferredoxin mRNAs) similar to those of controls. The blocker of Ca(2+) channels, verapamil, impeded both rapid (calcium) and long term (24-hydroxylase activity, CYP24, and ferredoxin mRNAs) responses in patient and control fibroblasts. The MEK 1/2 kinase inhibitor PD98059 also blocked the CYP24 mRNA response. Taken together, these results suggest that 1,25-(OH)(2)D(3) rapid effects require the presence of VDR and control, in part, the first step of 1,25-(OH)(2)D(3) catabolism via increased mRNA expression of the CYP24 and ferredoxin genes in the 24-hydroxylase complex.  相似文献   

18.
19.
Diabetes mellitus (DM) is associated with multiple skeletal disorders, and vitamin D may play a functional role in the preservation of glucose tolerance. However, the relationship between vitamin D deficiency and DM is not well known. The aim of this study was to investigate the potential molecular link between 1,25(OH)(2)D(3) regulation and glucose homeostasis. Rat primary osteoblasts were cultured in different conditioned medium: normal glucose, high glucose, high glucose and insulin, high glucose and 1,25(OH)(2)D(3), high glucose and insulin and 1,25(OH)(2)D(3). The activity of osteoblasts was measured by cell viability, alkaline phosphatase and osteocalcin assay. The potential mechanism of how 1,25(OH)(2)D(3) affect insulin sensitivity was investigated by the assay of insulin receptor (IR) and vitamin D receptor (VDR) expression, and undercarboxylated osteocalcin (ucOC) level. The combined treatment has the strongest effect of inhibiting the deleterious effects induced by high glucose on osteoblasts, and it promoted the %ucOC value to approximately 40%, which is much higher than that in high glucose without treatment. Levels of IR and VDR of osteoblasts in combined treatment culture increased significantly compared with that in high glucose without treatment. So maybe 1,25(OH)(2)D(3) promotes insulin sensitivity of osteoblasts by activating insulin signaling and simultaneously stimulating ucOC secretion, which in turn regulate insulin production and sensitivity. 1,25(OH)(2)D(3) might be beneficial not only for diabetes, but also, for osteoporosis by promoting bone formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号