首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone strain is the governing stimuli for the remodeling process necessary in the maintenance of bone's structure and mechanical strength. Strain gages are the gold standard and workhorses of human bone experimental strain analysis in vivo. The objective of this systematic literature review is to provide an overview for direct in vivo human bone strain measurement studies and place the strain results within context of current theories of bone remodeling (i.e. mechanostat theory). We employed a standardized search strategy without imposing any time restriction to find English language studies indexed in PubMed and Web of Science databases that measured human bone strain in vivo. Twenty-four studies met our final inclusion criteria. Seven human bones were subjected to strain measurements in vivo including medial tibia, second metatarsal, calcaneus, proximal femur, distal radius, lamina of vertebra and dental alveolar. Peak strain magnitude recorded was 9096 με on the medial tibia during basketball rebounding and the peak strain rate magnitude was -85,500 με/s recorded at the distal radius during forward fall from standing, landing on extended hands. The tibia was the most exposed site for in vivo strain measurements due to accessibility and being a common pathologic site of stress fracture in the lower extremity. This systematic review revealed that most of the strains measured in vivo in different bones were generally within the physiological loading zone defined by the mechanostat theory, which implies stimulation of functional adaptation necessary to maintain bone mechanical integrity.  相似文献   

2.
The pathogenesis of osteogenesis imperfecta (OI) baffled physiologists and physicians for over a century. Most past efforts to explain it depended heavily on cell and molecular biology and on changes in the material properties of affected bones (an old idea that OI patients could not make enough bone erred). To such views the still-evolving Utah paradigm of skeletal physiology can add a model for bone and bones that depends on errors in three genetically-determined features. The errors include, 1,2) elevated 'set points' of the strain-dependent thresholds that help to control how lamellar bone modeling and remodeling adapt bone strength, architecture and 'mass' to the voluntary loads on load-bearing bones; 3) and a reduced modeling-rate limit for the appositional rate of the lamellar bone formation drifts that can increase bone strength, outside bone diameters, cortical and trabecular thickness, and bone 'mass'. If only abnormalities #1,#2 occurred, that should limit the eventual strength, architecture and 'mass' of load-bearing bones, while if only #3 occurred that should prolong or delay how long it took to achieve the above limits, but without changing them. Equally, in driving from New York to Boston, stopping at New Haven would prevent reaching Boston no matter how rapidly one drove (a limited trip). But by not stopping one could reach Boston by driving very slowly (a prolonged but not a limited trip). This model concerns general features of bone and bones in OI that would need study and explanation at the tissue, cellular and molecular-biologic levels. Other places and people must discuss any devils in the details, as well as collagenous tissue, auditory, dental and other problems in OI, and the effects of treatment on the above features.  相似文献   

3.
In 1997 Professor J. Gorski suggested endocrinology needed new paradigms (Endocrine News 1997; 22:4,12). 'Connecting the dots' between diverse facts and ideas drawn from many lines of inquiry, plus accumulating evidence and increasing inadequacies of earlier ideas and terminology, led to an updated bone physiology called the 'Utah paradigm' that reveals new genetic and hormonal potential roles in bone physiology and disorders. One way to find a bone disorder's cause(s) and treatment( s) could depend on understanding the underlying physiology well enough to design effective drugs for it. In early views cell-level effects on osteoblasts and osteoclasts could explain most endocrine and genetic roles in bone disorders. The updated bone physiology supplements those views with roles of bone's tissue-level 'nephron-equivalent' mechanisms (NEMs) and their functions (NEFs), including some roles of biomechanics, whole-bone strength and muscle strength. That updated physiology reveals at least 42 nexuses above the cell level, some of them extraosseous, where genetic and/or hormonal effects might cause or help to treat varied bone problems. That multifactorial physiology also suggests that in vivo skeletal phenomena usually depend on many interlocking, laddered and nested feedback systems. Due to lack of study, how genes and hormones affect those nexuses and feedback systems still remains nearly unknown. Because studies of bone physiology in in vitro systems seldom if ever correctly predicted the in vivo effects, further live-animal research should seek the in vivo effects. This article suggests why more of that kind of research is needed, and some directions it could take.  相似文献   

4.
Commonly used definitions of osteoporosis rely upon the measurement of bone mass or bone mineral density and regard the difference between osteopenia and osteoporosis as gradual. An alternative definition has been proposed by Harold Frost, suggesting that osteopenia is the bone's physiological response to disuse. On the contrary, true osteoporoses imply the bone's inability to adapt to the loads imposed on them by their habitual mechanical usage. As a consequence, fractures occur with no or very little trauma in osteoporotic, but not in osteopenic bones. There is now ample evidence that mechanical stimuli can increase strength. Accordingly, exercise, in particular some new forms of it that involve high strain rates, seems to be preventing bone loss and possibly also induces increases in bone mass even at older ages. Hence, exercise may ameliorate osteopenia in the sense of Frost's definition. However, exercise must be feared to facilitate rather than to ameliorate the occurrence of true osteoporoses, e.g., due to microdamage accumulation. This is in sharp contrast to the general 'understanding'.  相似文献   

5.
Why is the incidence of osteoporotic fracture so much higher in women than in men? The dominant medical view holds that the exaggerated skeletal fragility and fracture risk of postmenopausal women solely reflects the loss of bone following withdrawal of endogenous estrogen. Indeed, an enormous amount of research in this area has attempted to understand the rise in fractures after menopause in terms of the impact of estrogen lack on bone remodeling. Recent insights suggest that this simple view does not offer an adequate explanation for the greater susceptibility of older women to fracture compared to that of men. It seems more reasonable to view bone health as a lifelong process, reflecting the contributions and influences of myriad events occurring throughout life to skeletal acquisition and maintenance. Only recently has the medical community recognized that the amount of bone present at skeletal maturity makes a powerful contribution to lifelong skeletal status. A second area that must be incorporated into discussions of this topic relates to bone size and geometry. Women's bones are inherently smaller than those of men. A bone's strength is determined by its size as well as by its material properties. In boys, pubertal increases in the cortical thickness of long bones are achieved by (testosterone-dependent) periosteal apposition. By contrast, increased cortical thickness in girls reflects bone expansion into the medullary space, with little or no periosteal apposition, suggesting an inhibitory effect of estrogen on the latter process. Consequently, at skeletal maturity, men have wider bones of greater mechanical competence. Although estrogen is generally held to be skeletally protective, this aspect of its actions may actually render women more susceptible to some fractures. In later life, men may lose even more bone from appendicular sites than do women, but men show much greater concomitant increases in periosteal apposition than women, permitting them to maintain a relatively favorable mechanical profile. These several findings are based on cross-sectional observations of relatively few individuals and therefore require confirmation in prospective longitudinal studies. The degree to which gender-related differences in later life skeletal adaptation reflects a bone's mechanical or metabolic environment has been frequently discussed but still awaits experimental confirmation.  相似文献   

6.
Animal movement has a fundamental impact on population and community structure and dynamics. Biased correlated random walks (BCRW) and step selection functions (SSF) are commonly used to study movements. Because no studies have contrasted the parameters and the statistical properties of their estimators for models constructed under these two Lagrangian approaches, it remains unclear whether or not they allow for similar inference. First, we used the Weak Law of Large Numbers to demonstrate that the log-likelihood function for estimating the parameters of BCRW models can be approximated by the log-likelihood of SSFs. Second, we illustrated the link between the two approaches by fitting BCRW with maximum likelihood and with SSF to simulated movement data in virtual environments and to the trajectory of bison (Bison bison L.) trails in natural landscapes. Using simulated and empirical data, we found that the parameters of a BCRW estimated directly from maximum likelihood and by fitting an SSF were remarkably similar. Movement analysis is increasingly used as a tool for understanding the influence of landscape properties on animal distribution. In the rapidly developing field of movement ecology, management and conservation biologists must decide which method they should implement to accurately assess the determinants of animal movement. We showed that BCRW and SSF can provide similar insights into the environmental features influencing animal movements. Both techniques have advantages. BCRW has already been extended to allow for multi-state modeling. Unlike BCRW, however, SSF can be estimated using most statistical packages, it can simultaneously evaluate habitat selection and movement biases, and can easily integrate a large number of movement taxes at multiple scales. SSF thus offers a simple, yet effective, statistical technique to identify movement taxis.  相似文献   

7.
We hypothesize that when a broad spectrum of bone strain is considered, strain history is similar for different bones in different species. Using a data collection protocol with a fine resolution, mid-diaphyseal strains were measured in vivo for both weightbearing and non-weightbearing bones in three species: dog, sheep, and turkey, with strain information collected continuously while the animals performed their natural daily activities. The daily strain history was quantified by both counting cyclic strain events (to quantify the distribution of strains of different magnitudes) and by estimating the average spectral characteristics of the strain (to quantify the frequency content of the strain signals). Counting of the daily (12-24 h) strain events show that large strains (> 1000 microstrain) occur relatively few times a day, while very small strains (< 10 microstrain) occur thousands of times a day. The lower magnitude strains (< approximately 200 microstrain) are found to be more uniform around the bone cross-section than the higher magnitude, peak strains. Strain dynamics are found to be well described by a power-law relationship and exhibit self-similar characteristics. These data lead to the suggestion that the organization of bone tissue is driven by the continual barrage of activity spanning a wide but consistent range of frequency and amplitude, and until the mechanism of bone's mechanosensory system is fully understood, all portions of bone's strain history should be considered to possibly play a role in bone adaptation.  相似文献   

8.
华中西南区一条国际前寒武系与寒武系界线层型补充剖面   总被引:1,自引:0,他引:1  
1992年,全球前寒武系与寒武系界线层型剖面和层型点确定在加拿大纽芬兰东南幸运角剖面,并以遗迹化石带Trichophycus pedium的底作为前寒武系与寒武系的分界点。但是,幸运角剖面主要是以硅质碎屑岩相为主,难以与含有丰富小壳化石和具有可对比的稳定同位素资料的碳酸盐相界线剖面进行对比。为此,提出我国云南会泽大海附近的一条以碳酸盐相为主的剖面作为全球前寒武系与寒武系界线层型剖面的补充剖面。理由是(1)在大海剖面上,震旦系灯影组白岩哨段、待补段和下寒武统牛家菁组的中谊村段,大海段之间为整合接触;(2)早寒武世早期地层单元含有丰富的小壳化石并且可划分出4个小壳化石组合带;(3)利用碳同位素资料可以将大海剖面与许多其它剖面相当地层对比;(4)著名的梅树村剖面离大海剖面不远,它们均含有丰富的小壳化石和遗迹化石,两者易于对比。文章进一步认为寒武系的下界放在第I小壳化石组合带(Anabarites trisulcatus-Protohertzina anabarica)的底,相当于大海剖面11层的底。  相似文献   

9.
Various types of biomaterials have been developed and utilized for the repair of damaged tissue and organs and the biocompatibility of these materials is of major concern. Tissue engineered scaffolds should provide adequate mechanical strength during the initial healing state, and the highly porous structure should provide an ideal environment for the migration and proliferation of cells; additionally, during surgical operations, the scaffolds should be able to be handled and sutured. Therefore, many researchers have designed reinforced scaffolds so as to address these issues. The structures described can be applied to the development of artificial ligaments, tendons, skin, bones, cartilage, and trachea.  相似文献   

10.
"Wolff's law" is a concept that has sometimes been misrepresented, and frequently misunderstood, in the anthropological literature. Although it was originally formulated in a strict mathematical sense that has since been discredited, the more general concept of "bone functional adaptation" to mechanical loading (a designation that should probably replace "Wolff's law") is supported by much experimental and observational data. Objections raised to earlier studies of bone functional adaptation have largely been addressed by more recent and better-controlled studies. While the bone morphological response to mechanical strains is reduced in adults relative to juveniles, claims that adult morphology reflects only juvenile loadings are greatly exaggerated. Similarly, while there are important genetic influences on bone development and on the nature of bone's response to mechanical loading, variations in loadings themselves are equally if not more important in determining variations in morphology, especially in comparisons between closely related individuals or species. The correspondence between bone strain patterns and bone structure is variable, depending on skeletal location and the general mechanical environment (e.g., distal vs. proximal limb elements, cursorial vs. noncursorial animals), so that mechanical/behavioral inferences based on structure alone should be limited to corresponding skeletal regions and animals with similar basic mechanical designs. Within such comparisons, traditional geometric parameters (such as second moments of area and section moduli) still give the best available estimates of in vivo mechanical competence. Thus, when employed with appropriate caution, these features may be used to reconstruct mechanical loadings and behavioral differences within and between past populations.  相似文献   

11.
If a bone's morphologic organization exhibits the accumulated effects of its strain history, then the relative contributions of a given strain stimulus to a bone's development may be inferred from a bone's hierarchical organization. The artiodactyl calcaneus is a short cantilever, loaded habitually in bending, with prevalent compression in the cranial (Cr) cortex, tension in the caudal (Cd) cortex, and shear in the medial and lateral cortices (i.e., neutral axis). Artiodactyl calcanei demonstrate unusually heterogeneous structural and material organization between these cortices. This study examines potential relationships between developmental morphologic variations and the functional strain distribution of the deer calcaneus. One calcaneus was obtained from each of 36 (fetus to adult) wild deer. Predominant collagen fiber orientation (CFO), microstructural characteristics, mineral content (% ash), and geometric parameters were determined from transversely cut segments. Radiographs were examined for arched trabeculae, which may reflect tension/compression stress trajectories. Results showed that cross-sectional shape changes with age from quasi-circular to quasi-elliptical, with the long axis in the cranial-caudal direction of habitual bending. Cranial ("compression") cortical thickness increased at a greater rate than the Cd ("tension") cortex. Fetal bones exhibited arched trabeculae. Percent ash was not uniform (Cr > Cd), and this disparity increased with age (absolute differences: 2.5% fetuses, 4.3% adults). Subadult bones showed progressively more secondary osteons and osteocyte lacunae in the Cr cortex, but the Cd cortex tended to have more active remodeling in the subadult and adult bones. Nonuniform Cr:Cd CFO patterns first consistently appear in the subadults, and are correlated with secondary bone formation and habitual strain mode. Medial and lateral cortices in these groups exhibited elongated secondary osteons. These variations may represent "strain-mode-specific" (i.e., tension, compression, shear) adaptations. The heterogeneous organization may also be influenced by variations in longitudinal strain magnitude (highest in the Cr cortex) and principal strain direction-oblique in medial-lateral cortices (where shear strains also predominate). Other factors such as local reductions in longitudinal strain may influence the increased remodeling activity of the Cd cortex. Some structural variations, such as arched trabeculae, that are established early in ontogeny may be strongly influenced by genetic- or epigenetic-derived processes. Material variations, such as secondary osteon population densities and CFO, which appear later, may be products of extragenetic factors, including microdamage.  相似文献   

12.
We report the progress of a multi-disciplinary research project on solid-state fermentation (SSF) of the filamentous fungus Aspergillus oryzae. The molecular and physiological aspects of the fungus in submerged fermentation (SmF) and SSF are compared and we observe a number of differences correlated with the different growth conditions. First, the aerial hyphae which occur only in SSFs are mainly responsible for oxygen uptake. Second, SSF is characterised by gradients in temperature, water activity and nutrient concentration, and inside the hyphae different polyols are accumulating. Third, pelleted growth in SmF and mycelial growth in SSF show different gene expression and protein secretion patterns. With this approach we aim to expand our knowledge of mechanisms of fungal growth on solid substrates and to exploit the biotechnological applications.  相似文献   

13.
The compressive properties of human cancellous bone of the distal intracondylar femur in its wet condition were determined. Specimens were obtained from six cadaveric femora and were tested at a strain rate of 0.002, 0.10 and 9.16 sec−1. It was found that the compressive strength decreases with an increasing vertical distance from the joint. The highest compressive strength level was recorded in the posterior medial condyle. Correlations among the mechanical properties, the bulk specimen density and the bone mineral content yield (i) highly significant correlations between the compressive strength and the elastic modulus (ii) highly significant correlations between the compressive strength or the modulus of elasticity and the bulk specimen density (iii) a doubtful correlation between the compressive strength and the bone mineral content. All recorded graphs of the impact loaded specimens displayed several well defined stress peaks, unlike the graphs recorded at low loading rates. It can be concluded that upon impact loading the localized trabecular failure which is associated with each peak, does not affect the spongy bone's stress capacity in a detrimental way.  相似文献   

14.
Switchgrass (Panicum virgatum) was subjected to hydrothermolysis pretreatment and then used to study the effect of enzyme loading and temperature in a simultaneous saccharification and fermentation (SSF) with the thermotolerant yeast strain Kluyveromyces marxianus IMB3 at 8% solid loading. Various loadings of Accellerase 1500 between 0.1 and 1.1 mL g(-1) glucan were tested in SSF at 45 °C (activity of enzyme was 82.2 FPU mL(-1)). The optimum enzyme loading was 0.7 mL g(-1) glucan based on the six different enzyme loadings tested. SSFs were performed at 37, 41 and 45 °C with an enzyme loading of 0.7 mL g(-1) glucan. The highest ethanol concentration of 22.5 g L(-1) was obtained after 168 h with SSF at 45 °C, which was equivalent to 86% yield. Four different batch and fed-batch strategies were evaluated using a total solid loading of 12% (dry basis). About 32 g L(-1) ethanol was produced with the four strategies, which was equivalent to 82% yield.  相似文献   

15.
16.
Remodeling rules with either a global or a local mathematical form have been proposed for load-bearing bones in the literature. In the local models, the bone architecture (shape, density) is related to the strains/energies sensed at any point in the bone, while in the global models, a criterion believed to be applicable to the whole bone is used. In the present paper, a local remodeling rule with a strain "error" form is derived as the necessary condition for the optimum of a global remodeling criterion, suggesting that many of the local error-driven remodeling rules may have corresponding global optimization-based criteria. The global criterion proposed in the present study is a trade-off between the cost of metabolic growth and use, mathematically represented by the mass, and the cost of failure, mathematically represented by the total strain energy. The proposed global criterion is shown to be related to the optimality criteria methods of structural optimization by the equivalence of the model solution and the fully stressed solution for statically determinate structures. In related work, the global criterion is applied to simulate the strength recovery in bones with screw holes left behind after removal of fracture fixation plates. The results predicted by the model are shown to be in good agreement with experimental results, leading to the conclusion that load-bearing bones are structures with optimal shape and property for their function.  相似文献   

17.
Finite element models were used to predict the structural consequences of transcortical holes through long bones loaded in torsion. Several parameters were investigated including hole size, anelastic behavior of the bone, cortical wall thickness, cortical wall symmetry, curvature along the bone's long axis and the axial length of the defect. Finite element model predictions of percent intact bone strength were compared to experimental data for sheep femora with transcortical drill holes loaded to failure in torsion. Hole size was expressed as hole diameter divided by the outer bone diameter. Linear finite element model predictions were in conservative agreement with the experimental data for large hole sizes. A transcortical hole with a diameter 50% of the outer bone diameter reduced the torsional strength by 60%. However, the linear models predict a 40% drop in strength for small holes whereas in vitro data suggest that small holes have no significant effect on strength. Models which represent non-linear anelastic behavior in bone over-predicted torsional strengths. Asymmetric cortical wall thickness and long bone bowing have minor effects, while the length of an elongated defect strongly influences the torsional strength. Strength reductions are greatest for bones with thin cortical walls.  相似文献   

18.
There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.  相似文献   

19.
The differences in age-related fracture risks among men and women must reflect gender differences in the relevant variables. We are concerned here with gender differences in structural variables that relate to the size and shape of bones. As children grow, their bones grow in diameter through periosteal modeling. Studies show that radial growth is driven by mechanical forces and is not just "genetically programmed". Moving bone mass farther from the center of the diaphysis makes it more effective in resisting bending and twisting forces, and disproportionately so in comparison to changes in bone mass. Gender differences in long bone structure appear to arise because the bone cells of males and females function in different hormonal environments which affect their responses to mechanical loading. In girls, bone formation on the metacarpal periosteal surface essentially stops at puberty, and is replaced by formation on the endosteal surface, reducing endosteal diameter until about age 20. Bone strength is 60% greater in male metacarpals than in those of females because bone is added periosteally in boys and endosteally in girls. At menopause endosteal resorption resumes, accompanied by slow periosteal apposition, weakening cortical structure. Similar phenomena occur in such critical regions as the femoral neck. Another fundamental gender difference in skeletal development is that whole body bone mineral content increases in linear proportion to lean body mass throughout skeletal maturation in boys, but in girls there is a distinct increase in the slope of this relationship at puberty, when estrogen rises. Frost's hypothesis is that this reflects an effect of estrogen on bone's mechanostat set point, and this is increasingly supported by data showing that estrogen and mechanical strain act through a common pathway in osteoblast-like cells. If Frost's hypothesis is correct, the mechanostat is set for maximal effect of mechanical loading on bone gain during the 2-3 years preceding menarche. During the childbearing years, the set point is at an intermediate level, and at menopause, it shifts again to place the skeleton into the metabolic equivalent of a disuse state. The most direct approach to resolving this problem would be to simulate the putative effect of estrogen on the set point itself.  相似文献   

20.
Actin stress fibers (SFs) are load-bearing and mechanosensitive structures. To our knowledge, the mechanisms that enable SFs to sense and respond to strain have not been fully defined. Acute local strain events can involve a twofold extension of a single SF sarcomere, but how these dramatic local events affect the overall SF architecture is not believed to be understood. Here we have investigated how SF architecture adjusts to episodes of local strain that occur in the cell center. Using fluorescently tagged zyxin to track the borders of sarcomeres, we characterize the dynamics of resting sarcomeres and strain-site sarcomeres. We find that sarcomeres flanking a strain site undergo rapid shortening that directly compensates for the strain-site extension, illustrating lateral communication of mechanical information along the length of a stress fiber. When a strain-site sarcomere extends asymmetrically, its adjacent sarcomeres exhibit a parallel asymmetric shortening response, illustrating that flanking sarcomeres respond to strain magnitude. After extension, strain-site sarcomeres become locations of new sarcomere addition, highlighting mechanical strain as a trigger of sarcomere addition and revealing a, to our knowledge, novel type of SF remodeling. Our findings provide evidence to suggest SF sarcomeres act as strain sensors and are interconnected to support communication of mechanical information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号