首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle.  相似文献   

2.
BACKGROUND/AIMS: This study was designed to determine whether previous Cushing's disease (CD) or prolactinoma (PRL) could exert adverse effects additional to those of growth hormone (GH) deficiency as a consequence of variable degrees of prior hypogonadism or hypercatabolism. We report the effects of 5 years GH treatment in 124 GH deficiency adults; 42 patients with non-functioning pituitary adenomas (NFPA), 43 with treated PRL and 39 with treated CD. METHODS: Fasting plasma glucose, HbA(1c), lipoprotein profile, anthropometry and bone mineral density (BMD) were measured at baseline, 6 months and annually up to 5 years. RESULTS: Mean body mass index remained unchanged in the PRL group and tended to increase in the NFPA group. In contrast, body mass index decreased in the CD group. Decreases in waist and waist/hip ratio were seen in all groups at 6 months. Decreases in total cholesterol and low-density lipoprotein cholesterol were seen in all groups and remained sustained at 5 years. Plasma glucose and HbA(1c) increased at 6 months. Subsequently, plasma glucose returned to baseline values at 5 years; in contrast, HbA(1c )remained unchanged at the end of the study. Baseline lumbar spine and hip BMD were lower in the PRL and CD groups than in the NFPA group, decreased over 1 year in all groups and subsequently increased by 2 years in NFPA with a subsequent increase in lumbar spine BMD in PRL and CD groups delayed to 3-5 years. CONCLUSIONS: Baseline characteristics and response to GH replacement are qualitatively similar in NFPA, PRL and CD patients. Because improvements in BMD occur later in PRL and CD patients, an extended trial of GH therapy may be indicated in those patients who were commenced on GH therapy as an additional treatment for reduced BMD.  相似文献   

3.
During the 1990s, interest in the effects of growth hormone deficiency (GHD) in adults increased, and several studies were performed to evaluate the effects of growth hormone (GH) substitution therapy in these patients. Because adults with GHD have reduced bone mineral density (BMD) and an increased risk of fractures, the effects of GH replacement therapy on bone metabolism have been evaluated in long-term studies. A universal finding is that the serum and urinary levels of biochemical bone markers increase during GH substitution therapy, and these increases are dose dependent. After years of GH substitution therapy, the levels of biochemical bone markers remain elevated, according to some studies, whereas other studies report that these levels return to baseline. BMD of the spine, hip and forearm increase after 18-24 months of treatment. Bone mineral content (BMC) increases to a greater extent than BMD, because the areal projection of bone also increases. This difference could be caused by increased periosteal bone formation, but a measurement artefact resulting from the use of dual-energy X-ray absorptiometry cannot be excluded as a possible explanation. One study of GH-deficient adults found that, after 33 months of GH treatment, BMD and BMC increased to a greater extent in men with GHD than in women. There is also a gender difference in the increases in serum levels of insulin-like growth factor I and biochemical bone markers during GH treatment. The reason for these findings is unknown, and the role of sex steroids in determining the response to GH therapy remains to be fully elucidated.  相似文献   

4.
《Endocrine practice》2021,27(9):934-940
ObjectiveThis retrospective observational study assessed the long-term impact of pulsatile gonadotropin-releasing hormone, combined gonadotropin, or testosterone replacement therapy on total hip, femoral, and lumbar bone mineral density (BMD) and Z-scores in adult men with idiopathic hypogonadotropic hypogonadism (IHH).MethodsIn the cross-sectional study, 69 patients were allocated to untreated (n = 42) and treated (n = 27) groups. The untreated group included IHH patients without hormone therapy history, while the treated group included age- and body mass index-matched patients who had received hormone therapy for at least 5 years. The longitudinal study included 53 IHH patients, and their hip and lumbar BMDs were measured several times during hormone therapy. We then evaluated the changes in their BMD.ResultsOur cross-sectional study showed that the treated group had a significantly higher BMD and Z-score for total hip, femoral neck, and lumbar spine (P < 0.001 for all) than the untreated group, and the average bone mass even reached the age-matched normal range. The prevalence of low BMD was 80.95% and 11.11% in untreated and treated groups, respectively. In the longitudinal study (N = 53), the total hip, femoral neck, and lumbar spine BMD gradually increased during treatment. The lumbar spine showed a greater increment in BMD compared with the total hip and femoral neck (P < 0.05).ConclusionSex hormone therapy improved hip and lumbar spine BMD and Z-scores in patients with IHH. The lumbar spine showed a greater improvement in BMD compared with the total hip and femoral neck.  相似文献   

5.
Strontium ranelate is one of the first-line agents with proven anti-fracture activity used in the therapy of post-menopausal osteoporosis. Its mechanism of action makes it, however, different from other drugs, since it simultaneously stimulates two reverse processes: bone formation and bone resorption. The action of the agent depends on various mechanisms, including the activation of calcium receptors, localised on osteoblasts and osteoclasts, and on the influence on the OPG/RANKL system. The drug effectively prevents spinal, hip and extravertebral fractures. The agent's anti-fracture efficacy within the spine does not depend on the patient's age, or on base BMD values, or on the concentration of bone metabolism markers. As to the anti-fracture efficacy in the hip, it concerns women with an increased bone fracture risk. Strontium ranelate increases bone mineral density within the lumbar spine and the hip, decreases the concentrations of bone resorption markers, and increases the concentrations of bone formation markers. The drug is administered in a daily 2.0 g oral dose. This paper presents indications to therapy with strontium ranelate, specifying also its side effects and contraindications. We compare the anti-fracture efficacy of strontium ranelate to the efficacy of other agents of proven anti-fracture activity, based on published clinical studies.  相似文献   

6.
Strontium ranelate is one of the first-line agents with proven anti-fracture activity used in the therapy of post-menopausal osteoporosis. Its mechanism of action makes it, however, different from other drugs, since it simultaneously stimulates two reverse processes: bone formation and bone resorption. The action of the agent depends on various mechanisms, including the activation of calcium receptors, localised on osteoblasts and osteoclasts, and on the influence on the OPG/RANKL system. The drug effectively prevents spinal, hip and extravertebral fractures. The agent's anti-fracture efficacy within the spine does not depend on the patient's age, or on base BMD values, or on the concentration of bone metabolism markers. As to the anti-fracture efficacy in the hip, it concerns women with an increased bone fracture risk. Strontium ranelate increases bone mineral density within the lumbar spine and the hip, decreases the concentrations of bone resorption markers, and increases the concentrations of bone formation markers. The drug is administered in a daily 2.0 g oral dose. This paper presents indications to therapy with strontium ranelate, specifying also its side effects and contraindications. We compare the anti-fracture efficacy of strontium ranelate to the efficacy of other agents of proven anti-fracture activity, based on published clinical studies.  相似文献   

7.
Osteoporosis is the result of an imbalance between bone resorption and bone formation. Currently, mainly drugs that inhibit bone resorption are available for the treatment of osteoporosis. A new approach in the treatment of osteoporosis is the use of anabolic agents that increase bone turnover, both bone formation and resorption. Growth hormone (GH) and insulin-like growth factors (IGFs) are essential in the development and growth of the skeleton and for the maintenance of bone mass and density. We will review the evidence of GH and IGF-I in the pathophysiology and treatment of osteoporosis.  相似文献   

8.
BACKGROUND: Only few previous studies have assessed the effects of long-term growth hormone (GH) replacement therapy on bone mineral density (BMD) in adult patients with GH deficiency. The aim of this study was to investigate the effects of long-term GH therapy on bone metabolism and BMD. MATERIAL AND METHODS: At the start of the study, 20 adults with GH deficiency were randomized to receive either GH, 0.25 IU x kg per week, or placebo. After 6 months, patients in the placebo group were switched to GH therapy, and they received GH for a further 18 months. Of the 20 patients, 14 were male and 6 female with GH deficiency of adult-onset. The mean age of the patients at the start of the study was 40.3+/-10.9 years and the duration of GH deficiency was 10.6+/-6.4 years. Patients deficient in pituitary hormones other than GH had been receiving stable replacement doses of appropriate hormones for at least 6 months before the start of the study. Rates of bone metabolism were assessed by measuring calcium, phosphate, alkaline phosphatase, calciuria, phosphaturia and osteocalcin. BMD was measured by dual X-ray absorptiometry. Body composition was calculated from measurements of bioelectrical impedance. RESULTS: Before GH treatment, BMD in the femoral neck was lower in patients than in controls. The rate of bone resorption markers increased significantly after 6 months and remained stable during the whole treatment period. BMD significantly increased in L2-L4 after 12 months of treatment with an increase of Z-score. The total BMD increase was 4.5+/-6.5%. BMD in the femoral neck increased after 12 months with an increase of Z-score after 18 months. The total increase was 10.4+/-18%. The total BMD increase was not different among patients with or without basal osteopenia. In both groups BMD in L2-L4 and in the femoral neck remained stable after 12 months without GH treatment. Sex, age, BMI and the time in which GH deficiency started, before or after the end of the peak of BMD, did not correlate with BMD. The BMD values and their response to GH treatment did not correlate with other associated deficiencies, and we did not find differences among BMD increase and GH dose, levels of insulin-growth factor-I, insulin growth factor binding protein-3, and parameters of body composition. CONCLUSIONS: The results of the study support previous ones that BMD is subnormal in adults with GH deficiency; that GH replacement therapy stimulates bone turnover with initial biochemical changes; and that in the long term, this stimulation results in a significant augmentation in BMD that continues to increase after 2 years and remains stable after 12 months of GH withdrawal.  相似文献   

9.
BACKGROUND: Cystic fibrosis (CF) patients present an increased risk of osteoporosis, and increased fracture rate. Several factors have been identified as modulators of bone metabolism and bone mineral density (BMD). AIMS: To evaluate BMD and serum markers of bone turnover and establish their relationships with serum concentrations of interleukin (IL)-1beta, IL-6, tumour necrosis factor (TNF)-alpha, IGF-I, IGF-II, IGF binding protein (IGFBP)-2, IGFBP-3, and parathyroid hormone (PTH) in young adult CF patients. METHODS: Seventeen young adult CF patients (4 M, 13 F; mean age: 26.6 +/- 1.1 years) were enrolled in the study and analysed as a whole and as two subgroups according to the Shwachman-Kulczycki score. BMD was assessed at the lumbar spine (L1-L4) by dual energy X-ray absorptiometry (DXA Hologic QDR 2000). Bone turnover was assessed by measuring serum levels of osteocalcin (OC) and serum carboxyterminal propeptide of type I collagen (PICP) as markers of bone formation, and serum cross-linked carboxyterminal telopeptide of type I collagen (ICTP) as a marker of bone resorption. Serum IGFs, IGFBPs, and cytokines were assayed using special commercial kits. Daily calcium intake and weekly physical activity were estimated by questionnaires. Forced expiratory volume in one second was used to assess pulmonary function. RESULTS: Lumbar BMD was normal, although there was a tendency to be lower in the patients with a lower clinical score. Both OC and PICP were increased, whereas ICTP was normal. Lumbar BMD was positively correlated with pulmonary function. IL-6 and C-reactive protein (markers of inflammation) were inversely correlated with PICP. Serum ICTP levels were correlated with serum IGF-I levels.No significant relationship was detected among lumbar BMD, markers of bone turnover and PTH, IGF-I, IGF-II, IGFBP-2, IGFBP-3, TNF-alpha, IL-1beta, and body mass index Z-score. CONCLUSIONS: Bone turnover is abnormal in CF patients. Young adult CF patients with satisfying clinical status and nutritional conditions have normal BMD and increased serum OC and PICP levels.  相似文献   

10.
Growth hormone (GH) has a positive impact on muscle mass, growth and bone formation. It is known to interact with the bone-forming unit, with well-documented increases in markers of bone formation and bone resorption within weeks of the start of GH therapy. These changes relate significantly to short-term growth rate, but it is not evident that they predict long-term response to GH therapy. The consequences of GH deficiency (GHD) and GH replacement therapy on bone mineral density (BMD) have been difficult to interpret in children because of the dependency of areal BMD on height and weight. Some studies have tried to overcome this problem by calculating volumetric BMD, but results are conflicting. The attainment of a normal peak bone mass in an individual is considered important for the future prevention of osteoporosis. From the limited data available, it appears difficult to normalize bone mass totally in GH-deficient individuals, despite GH treatment for long periods. Studies to date examining the interaction between GH and bone have included only small numbers of individuals, making it difficult to interpret the study findings. It is hoped that these issues can be clarified in future research by the direct measurement of bone density (using quantitative computer tomography). Mineralization is only one facet of bone strength, however; other important components (e.g. bone structure and geometry) should be addressed in future paediatric studies. Future studies could also address the importance of the degree of GHD in childhood; how GH dose and insulin-like growth factor-I levels achieved during therapy relate to the final outcome; whether or not the continuation of GH therapy after the attainment of final height may further enhance bone mass; whether the timing and dose of other treatments (e.g. sex hormone replacement therapy) are critical to the outcome; and whether GHD in childhood is associated with an increased risk of fracture.  相似文献   

11.
Areal bone mineral density (BMD, g/cm 2) was measured for the total body, lumbar spine and hip with dual-energy x-ray absorptiometry (DXA) before pregnancy and after delivery in sixteen women aged 21 - 35 years. Additional measurements included quantitative ultrasound indices (broadband ultrasound attenuation, BUA, at the calcaneus at baseline and at 16, 26, and 36 weeks of pregnancy, and postpartum) as well as biochemical markers of bone formation and resorption (measured before pregnancy and during pregnancy at 16, 22, 26, 30, 34, and 36 weeks of pregnancy and postpartum). The results of measurements were as follows: 1. Postpartum BMD showed a significant reduction in the total body (- 13.4 %), in the spine (- 9.2 %) and in the hip (-7.8 % at the femoral neck and - 9.2 % at the Ward's triangle) compared to pre-pregnancy values. 2. Biochemical markers of bone resorption increased by 26 weeks. 3. Bone ultrasound measurements that provide information on bone density before delivery did not change throughout pregnancy. A significant reduction of BUA (- 14.5 % compared to baseline) was observed postpartum only. These data would suggest that pregnancy-induced bone loss develops rapidly after the 36 week of pregnancy, possibly via enhanced bone resorption.  相似文献   

12.
Patients with primary hyperparathyroidism (pHPT) have reduced bone mineral density (BMD). Although pHPT causes high bone turnover, the exact metabolic bone markers useful for predicting changes in BMD after parathyroidectomy (PTX) remain elusive. The present study was performed to examine the relationship between bone metabolic indices and BMD changes after PTX in 29 pHPT Japanese patients, which received PTX successfully. BMD values were measured by dual-energy X-ray absorptiometry in the lumbar spine and distal one third of radius. As for bone metabolic indices, serum bone-type alkaline phosphates (BAP), serum osteocalcin (OCN), urinary deoxypiridinoline (Dpd), and urinary type I collagen cross-linked N-telopeptides (NTX) were measured. The study included 10 male and 19 female patients (17 postmenopausal). Urinary Dpd, but not NTX was significantly correlated with serum BAP and OCN. Either bone formation or bone resorption indices were significantly and highly correlated with Z-score of BMD in the radius, but not at lumbar spine. Urinary Dpd was significantly correlated with BMD changes at both lumbar spine and radius and at all time points over the two years after PTX. These correlations were most potent among bone metabolic indices in this study. The measurement of urinary Dpd would be useful for predicting long-term changes in BMD at radial and lumbar spine after PTX than other bone metabolic indices.  相似文献   

13.
The present study compared the bone anabolic effects of graded doses of alfacalcidol in proximal femurs (hematopoietic, red marrow skeletal site) and distal tibiae (fatty, yellow marrow skeletal site). One group of 8.5-month-old female Sprague-Dawley rats were killed at baseline and 4 groups were treated 5 days on/2 days off/week for 12 weeks with 0, 0.025, 0.05 and 0.1 microg alfacalcidol/kg by oral gavage. The proximal femur, bone site with hematopoietic marrow, as well as the distal tibia bone site with fatty marrow, were processed undecalcified for quantitative bone histomorphometry. In the red marrow site of the proximal femoral metaphysis (PFM), 0.1 microg alfacalcidol/kg induced increased cancellous bone mass, improved architecture (decreased trabecular separation, increased connectivity), and stimulated local bone formation of bone 'boutons' (localized bone formation) on trabecular surfaces. There was an imbalance in bone resorption and formation, in which the magnitude of depressed bone resorption greater than depressed bone formation resulted in a positive bone balance. In addition, bone 'bouton' formation contributed to an increase in bone mass. In contrast, the yellow marrow site of the distal tibial metaphysis (DTM), the 0.1 microg alfacalcidol/kg dose induced a non-significant increased cancellous bone mass. The treatment decreased bone resorption equal to the magnitude of decreased bone formation. No bone 'bouton' formation was observed. These findings indicate that the highest dose of 0.1 microg alfacalcidol/kg for 12 weeks increased bone mass (anabolic effect) at the skeletal site with hematopoietic marrow of the proximal femoral metaphysis, but the increased bone mass was greatly attenuated at the fatty marrow site of the distal tibial metaphysis. In addition, the magnitude of the bone gain induced by alfacalcidol treatment in red marrow cancellous bone sites of the proximal femoral metaphysis was half that of the lumbar vertebral body. The latter data were from a previous report from the same animal and protocol. These findings indicated that alfacalcidol as an osteoporosis therapy is less efficacious as a positive bone balance agent that increased trabecular bone mass in a non-vertebral skeletal site where bone marrow is less hematopoietic.  相似文献   

14.
15.
Primary hyperparathyroidism (PHPT) is accompanied with a reduced bone mineral density (BMD) and an increased risk of fracture. Surgery is the only option for cure. It is hypothesized that in patients with PHPT bone metabolism normalizes after parathyroidectomy (PTX) and that BMD gradually increases. Fifty-two patients with PHPT who underwent surgery were prospectively followed for 1 year. Biochemical analyses were performed at baseline and 1, 4, 7 days; 6 weeks; and 3, 6, and 12 months, and BMD before and one year after surgery. Parathyroid hormone (PTH), calcium, and the bone resorption marker dropped immediately, but transiently after PTX, bone formation decreased more slowly. Osteoprotegerin (OPG) as well as cathepsin K did not show significant changes. BMD of the lumbar spine, but not of the femoral neck, increased significantly within one year after surgery. Moderate correlations existed between the changes of total calcium, ionized calcium, as well as bone-specific alkaline phosphatase and changes of the lumbar BMD. Patients who needed postoperative supplementation with calcium and vitamin D had significantly higher PTH levels. Some gender-specific differences in patients with PHPT were observed. In patients with PHPT, males appear to be more severely affected than females. Within the first year after PTX, bone metabolism normalized, and BMD of the lumbar spine increased. Patients who needed a supplementation with calcium and vitamin D after PTX preoperatively had higher serum levels of PTH.  相似文献   

16.
The relative contributions of circulating and locally produced IGF-I in growth remain controversial. The majority of circulating IGF-I is produced by the liver, and numerous mouse models have been developed to study the endocrine actions of IGF-I. A common drawback to these models is that the elimination of circulating IGF-I disrupts a negative feedback pathway, resulting in unregulated GH secretion. We generated a mouse with near total abrogation of circulating IGF-I by disrupting the GH signaling mediator, Janus kinase (JAK)2, in hepatocytes. We then crossed these mice, termed JAK2L, to GH-deficient little mice (Lit). Compound mutant (Lit-JAK2L) and control (Lit-Con) mice were treated with equal amounts of GH such that the only difference between the two groups was hepatic GH signaling. Both groups gained weight in response to GH but there was a reduction in the final weight of GH-treated Lit-JAK2L vs. Lit-Con mice. Similarly, lean mass increased in both groups, but there was a reduction in the final lean mass of Lit-JAK2L vs. Lit-Con mice. There was an equivalent increase in skeletal length in response to GH in Lit-Con and Lit-JAK2L mice. There was an increase in bone mineral density (BMD) in both groups, but Lit-JAK2L had lower BMD than Lit-Con mice. In addition, GH-mediated increases in spleen and kidney mass were absent in Lit-JAK2L mice. Taken together, hepatic GH-dependent production of IGF-I had a significant and nonredundant role in GH-mediated acquisition of lean mass, BMD, spleen mass, and kidney mass; however, skeletal length was dependent upon or compensated for by locally produced IGF-I.  相似文献   

17.
Complete androgenic blockade used in the treatment of advanced prostatic carcinoma can be attained by administration of antiandrogens in orchidectomized patients or by combined therapy with LH-RH analogs and antiandrogens. The treatment, however, decreases the influence of both androgens end estrogens on bone tissue and may result in bone mass loss and increased propensity to fractures. The purpose of the study was to determine the influence of complete androgenic blockade on bone mass and skeletal metabolism in men with advanced prostatic carcinoma and to assess whether 1alpha-OH vitamin D3 (1alpha-OHD3) together with calcium supplementation is able to prevent bone mass loss in men treated with complete androgenic blockade. 51 patients with advanced prostatic carcinoma, with skeletal metastases, aged 44 - 86, mean 68 ys were included into a 12-month prospective study. All patients were treated with orchidectomy followed by therapy with flutamide in a dose of 750 mg daily. 26 patients were additionally given 1alpha-OHD3 in a dose of 0.5 microg/d and calcium carbonate in an initial dose of 1 g daily. It was found that the 12-month treatment with complete androgenic blockade resulted in a decrease in bone mineral density (BMD) by 8.1% in the lumbar spine, by 6.3% in the femoral neck and by 3.5% in the total skeleton. Therapy with 1alpha-OHD3 and CaCO3 caused complete inhibition of bone tissue loss in the lumbar spine and resulted in an increase in BMD by 2.2% in femoral neck and by 1.9% in the total skeleton. None of the examined patients experienced any skeletal fractures. In both groups of patients a prompt decrease in serum alkaline phosphatase activity - a marker of osteoblast activity and an increase in fasting urine calcium creatinine ratio indicating acceleration of bone resorption were found. Conclusions: in patients with advanced prostatic carcinoma treated with complete androgenic blockade acceleration of bone mass loss is observed; treatment with 1alpha-OHD3 and CaCO3 is able to prevent both trabecular and compact bone loss.  相似文献   

18.
Hypophysectomy (HX) arrests bone growth and induces osteopenia in the long bones of rats. The present study investigated the combined effect of vitamin K(2) and risedronate on long bone mass in HX rats, in order to determine whether treatment with these two agents had an additive effect. Forty female Sprague-Dawley rats were hypophysectomized at 6 weeks of age by the supplier, and were shipped to our laboratory at three days after surgery along with ten intact rats that served as age-matched controls. The study was started on the day when the rats were received. Three HX rats were excluded from the study because of the failure of HX. Forty-seven rats (6 weeks old) were assigned to the following 5 groups by the stratified weight randomization method: intact controls, HX alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + risedronate (2.5 microg/kg, s.c., 5 days a week), and HX + vitamin K(2) + risedronate. The dosing period was 4 weeks. HX resulted in a decrease of the femoral bone area, bone mineral content (BMC) and bone mineral density (BMD), as well as a decrease in the cancellous bone mass of the proximal tibial metaphysis and the total tissue and cortical areas of the tibial diaphysis. These changes were associated with a marked reduction in the serum level of insulin like growth factor (IGF)-I and with elevation of serum alkaline phosphatase (ALP) and pyridinoline. Administration of vitamin K(2) increased the serum ALP level in HX rats, but did not affect any of the other parameters. On the other hand, risedronate ameliorated the decrease of femoral BMD and cancellous bone mass at the proximal tibial metaphysis in HX rats without affecting the serum IGF-I level, as a result of not causing a significant elevation of serum pyridinoline. Vitamin K(2) and risedronate combined had an additive effect on the femoral bone area, BMC and BMD, and the combined treatment group did not show any significant reduction of the total tissue and cortical areas at the tibial diaphysis, as well as a reduced serum pyridinoline level compared with untreated rats and an increased serum ALP level compared with untreated or risedronate-treated rats. These results suggest that risedronate had a positive effect on the BMD and cancellous bone mass of long bones in HX rats. Despite the lack of a significant effect of vitamin K(2) on bone mass parameters, it had an additive effect with risedronate on the BMC, BMD and cortical bone mass of long bones in HX rats.  相似文献   

19.
Skeletal demineralization and mineral metabolism derangement are well-recognized features of untreated celiac disease (CD). Although treatment with a gluten-free diet appears to prevent bone loss while correcting skeletal demineralization in childhood, there is evidence that bone mineral density does not return to normal in celiacs diagnosed in adulthood. Osteoprotegerin (OPG), a member of the tumor necrosis factor receptor family, and ligand of receptor activator of NFkB (RANKL) are involved in the process of bone turnover and have been implicated in the pathogenesis of osteoporosis and other metabolic bone diseases. We measured OPG, RANKL, bone mineral density (BMD), and biochemical markers of bone turnover in 32 adult female premenopausal celiac patients on a gluten-free diet, and thirty age-matched healthy women. We correlated the OPG/RANKL ratio with the severity of bone loss. Celiac patients had a mean BMD lower than controls in lumbar spine and in the femoral neck. Serum levels of bone alkaline phosphatase (BAP, marker of bone formation), and urinary excretion of telopeptides of type I collagen (a marker of bone resorption) were significantly higher than in controls. Serum OPG and RANKL levels were significantly higher in CD patients than in controls, while the OPG/RANKL ratio was significantly lower in CD patients than in controls and was positively correlated with BMD at the spine. The role of elevated OPG in CD patients is unclear, but it might represent a compensatory mechanism against other factors that promote bone damage. Further studies are required to assess a possible therapeutic potential of osteoprotegerin in optimally treated celiacs with persistent osteopenia.  相似文献   

20.
ObjectiveOsteoporosis in men has been neglected despite its association with disability and mortality. We evaluated the effect of bisphosphonates (BPs) on bone mineral density (BMD) and bone turnover biomarkers of osteoporotic men with different androgen levels.MethodsThis case-control study included 136 osteoporotic men who were divided into normal group (n = 75) and hypogonadism group (n = 61) (patients treated with testosterone were excluded) according to their serum testosterone levels (cutoff value, 350 ng/dL). BMD, serum testosterone, total alkaline phosphatase, and cross-linked C-telopeptide of type I collagen were detected. The relationship between testosterone levels and BMD at baseline was evaluated. All patients were treated with BPs for 2 years. We compared the effects of BPs on BMD and bone turnover biomarkers between the 2 groups.ResultsAt baseline, there were no significant differences in BMD and bone turnover biomarkers between the 2 groups. Testosterone levels were positively correlated with BMD in the hypogonadism group. After treatment, the lumbar BMD increased by 7.65% ± 1.54% and 7.47% ± 1.88% in normal and hypogonadism groups, respectively (both P < .01 vs baseline) and hip BMD increased without significant differences between the 2 groups. Serum cross-linked C-telopeptide of type I collagen and alkaline phosphatase levels decreased without significant differences between the 2 groups (all P < .01 vs baseline).ConclusionTestosterone level is positively correlated with BMD in men with hypogonadism. In osteoporotic men, BPs significantly increase spine and hip BMD and decrease bone resorption. The efficacy of BPs is similar in men with or without hypogonadism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号