首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal effects of zinc deficiency in growing rats.   总被引:6,自引:0,他引:6  
There is ample evidence that zinc plays an important role in bone metabolism and zinc deficiency has been implicated as a risk factor in the development of osteoporosis. It was the aim of the present study to investigate the skeletal effects of alimentary zinc deficiency in growing rats using quantitative bone histomorphometry. Twenty-four male Sprague Dawley rats with a mean initial body weight of 101 +/- 2 g were allocated in two groups of 12 rats each and had free access to a semi-synthetic, casein-based, zinc-deficient diet (0.76 mg zinc/kg) or to the same diet supplemented with 60 mg zinc per kg. All rats were sacrificed 42 days after the start of the experiment and the right distal femur was removed for bone histomorphometry. Relative to controls (+Zn), the zinc-deficient rats (-Zn) had a significantly lower body weight and about an 80% reduction in plasma and femur zinc concentration. The histomorphometric evaluation of the distal femoral metaphysis showed that zinc deficiency led to a 45% reduction (p < 0.01) in cancellous bone mass and to a deterioration of trabecular bone architecture, with fewer and thinner trabeculae. The osteopenia in -Zn rats was accompanied by significant reductions in osteoid perimeter (-31%, p < 0.05), osteoblast perimeter (-30%, p < 0.05), and osteoclast number (-38%, p < 0.01) relative to +Zn controls. We conclude that zinc deficiency induced low turnover osteopenia in femoral cancellous bone of growing rats. These results support the hypothesis that zinc deficiency during growth may impair the accumulation of maximal bone mass in humans; additionally, they suggest that zinc deficiency may play a role as a risk factor in the pathogenesis of osteoporosis.  相似文献   

2.
This study was performed to compare the bioavailability of two organic zinc compounds, a zinc glycinate complex and a zinc amino acid chelate with that of zinc sulphate in growing pigs fed a basal diet composed mainly of wheat, barley and soybean meal. The experiment included 96 pigs with an average body weight of 8 kg, allotted to ten groups of nine to ten pigs each. The first group received the basal diet, containing 42 mg of native zinc per kg, without zinc supplementation over a period of five weeks. The other nine groups received the basal diet supplemented with 15, 30 or 50 mg of zinc/kg as zinc sulphate, zinc glycinate or the zinc amino acid chelate. Pigs fed the unsupplemented diet had a lower growth performance (body weight gain, feed conversion ratio) than the other nine groups. Supplementation of 15 mg zinc/kg diet (irrespective of zinc form) was sufficient to yield optimum growth performance. Plasma zinc concentration and activity of alkaline phosphatase were rising with increasing zinc supplementation levels up toa maximum reached at a supplementary level of 30 or 50 mg/kg diet for activity of alkaline phosphatase and plasma zinc concentration, respectively. The response of those parameters to zinc supplementation did, however, not differ between thethree zinc compounds considered. The apparent digestibility of zinc from the diet was also not different for the three zinc compounds. In conclusion, these findings show that the bioavailability of the two organic zinc compounds did not differ from that of zinc sulphate in growing pigs fed a diet with wheat, barley and soybean meal as major components.  相似文献   

3.
This study was performed to compare the bioavailability of two organic zinc compounds, a zinc glycinate complex and a zinc amino acid chelate with that of zinc sulphate in growing pigs fed a basal diet composed mainly of wheat, barley and soybean meal. The experiment included 96 pigs with an average body weight of 8 kg, allotted to ten groups of nine to ten pigs each. The first group received the basal diet, containing 42 mg of native zinc per kg, without zinc supplementation over a period of five weeks. The other nine groups received the basal diet supplemented with 15, 30 or 50 mg of zinc/kg as zinc sulphate, zinc glycinate or the zinc amino acid chelate. Pigs fed the unsupplemented diet had a lower growth performance (body weight gain, feed conversion ratio) than the other nine groups. Supplementation of 15 mg zinc/kg diet (irrespective of zinc form) was sufficient to yield optimum growth performance. Plasma zinc concentration and activity of alkaline phosphatase were rising with increasing zinc supplementation levels up to a maximum reached at a supplementary level of 30 or 50 mg/kg diet for activity of alkaline phosphatase and plasma zinc concentration, respectively. The response of those parameters to zinc supplementation did, however, not differ between the three zinc compounds considered. The apparent digestibility of zinc from the diet was also not different for the three zinc compounds. In conclusion, these findings show that the bioavailability of the two organic zinc compounds did not differ from that of zinc sulphate in growing pigs fed a diet with wheat, barley and soybean meal as major components.  相似文献   

4.
The objective of this study was to investigate the effects of dietary zinc deficiency and diet restriction on bone development in growing rats, and to determine whether any adverse effects could be reversed by dietary repletion. Weanling rats were fed either a zinc-deficient diet ad libitum (ZD; <1 mg zinc/kg) or nutritionally complete diet (30 mg zinc/kg) either ad libitum (CTL) or pair-fed to the intake of the ZD group (DR; diet-restricted) for 3 weeks (deficiency phase) and then all groups were fed the zinc-adequate diet ad libitum for 3, 7, or 23 days (repletion phase). Excised femurs were analyzed for bone mineral density (BMD) using dual-energy x-ray absorptiometry, and plasma was analyzed for markers of bone formation (osteocalcin) and resorption (Ratlaps). After the deficiency phase, ZD had lower body weight and reduced femur BMD, zinc, and phosphorus concentrations compared with DR; and these parameters were lower in DR compared with CTL. Femur calcium concentrations were unchanged among the groups. Reduced plasma osteocalcin in ZD and elevated plasma Ratlaps in DR suggested that zinc deficiency limits bone formation while diet restriction accelerates bone resorption activity. After 23 days of repletion, femur size, BMD, and zinc concentrations remained lower in ZD compared with DR and CTL. Body weight and femur phosphorus concentrations remained lower in both ZD and DR compared with CTL after repletion. There were no differences in plasma osteocalcin concentrations after the repletion phase, but the plasma Ratlaps concentrations remained elevated in DR compared with CTL. In summary, both ZD and DR lead to osteopenia during rapid growth, but the mechanisms appear to be due to reduced modeling in ZD and higher turnover in DR. Zinc deficiency was associated with a greater impairment in bone development than diet restriction, and both deficiencies limited bone recovery during repletion in growing rats.  相似文献   

5.
Phytic acid was extracted from sweet potato (Ipomoea batatas) and fed to Wistar rats with or without zinc for 3 weeks. Animals were then sacrificed and bone and faecal minerals were assessed. The ultra-structure of the bones was examined via scanning electron microscopy. Phytic acid extract or commercial phytic acid supplemented diets (D + Zn + PE or D + PE) displayed reduced bone calcium levels (101.27 ± 59.11 and 119.27 ± 45.36 g/kg) compared to the other test groups. Similarly, reduced calcium were observed in the control groups (D + Zn and D) fed formulated diets with or without zinc supplementation (213.14 ± 15.31 and 210 ± 6.88 g/kg) compared to the other test groups. The group fed supplemented commercial phytic acid diet (D + CP) demonstrated the lowest femur magnesium (3.72 ± 0.13 g/kg) while the group fed phytic acid extract supplementation (D + PE) recorded the highest level (4.84 ± 0.26 g/kg) amongst the groups. Femur iron was highest in the group fed commercial phytic acid supplemented diet (D + CP −115.74 ± 2.41 g/kg) compared to the other groups. Faecal magnesium levels were significantly higher in the two test groups fed phytic acid extract with or without zinc (D + Zn + PE or D + PE) compared to all other groups. All the groups which had phytic acid supplemented diets had significantly thinner bone in the trabecular region, compared to the groups fed formulated diet or zinc supplemented formulated diet (D or D + Zn). These observations suggest that the consumption of foods high in phytic acid may contribute to a reduction in the minerals available for essential metabolic processes in rats.  相似文献   

6.
We investigated the effect of magnesium supplementation on zinc distribution in rats given excess calcium as carbonate. Rats were given a control diet (5 g/kg calcium and 0.5 g/kg magnesium), a high calcium diet (HC, 25 g/kg calcium and 0.5 g/kg magnesium) or the high calcium diet supplied with magnesium (HCM, 25 g/kg calcium and 2.5 g/kg magnesium) for 4 weeks. Calcium carbonate and magnesium oxide were used for increasing these mineral concentrations in diets. Although feed intake did not differ among the groups, the excess calcium suppressed feed efficiency, irrespective of dietary magnesium concentration. Femoral magnesium concentration was lower in the HC group than in the control and the HCM groups. Femoral zinc concentration was higher in the HC group and the HCM group than in the control group. The zinc concentration in the kidney was lower in the HC group and the HCM group than in the control group. The excess calcium did not affect zinc concentration in plasma and other tissues such as the liver, testis, and spleen, irrespective of dietary magnesium. These results suggest that the increasing bone zinc and the decreasing renal zinc do not result from magnesium insufficiency in rats given excess calcium as carbonate.  相似文献   

7.
The purpose of this study was to investigate the effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase (SOD) in exercised mice. In the first part of the study, 48 male weanling mice were randomly divided into three groups. They were fed a zinc-deficient diet containing 1.6 mg/kg zinc or were pair-fed or fed ad libitum a zinc-adequate diet supplemented with 50 mg/kg zinc. Half of each group received an exercise training program that consisted of swimming for 60 min per day in deionized water. The diets and exercise program persisted for 6 weeks. In the second part of the study, 64 mice were fed zinc-deficient diets for 6 weeks, and then one group was fed the zinc-deficient diet for an additional 3 weeks, and the other three groups were fed diets supplemented with 5, 50, and 500 mg/kg zinc, respectively. Half of each group also received the exercise program. Both blood and liver samples were examined. Free radicals in liver were directly detected by electron spin resonance techniques and the extent of lipid peroxidation was indicated by malonic dialdehyde (MDA). Both CuZn-SOD and Mn-SOD were measured. The results showed that exercise training increased the metabolism of zinc, and zinc deficiency induced an increased free radical generation and lipid peroxidation and a decreased hepatic CuZn-SOD activity in exercised mice. Furthermore, although exercise training had no effect on the level of free radicals in zinc-adequate mice, it could increase the hepatic mitochondrial MDA formation further in zinc-deficient animals and zinc deficiency would eliminate the exercise-induced increase in SOD activities which existed in zinc-adequate mice. A total of 50 mg/kg zinc supplemented in the diet was adequate to correct the zinc-deficient status in exercised mice while 5 mg/kg zinc had a satisfactory effect on the recovery of only sedentary zinc-deficient mice. However, 500 mg/kg zinc had a harmful effect on both sedentary and exercised zinc-deficient animals.  相似文献   

8.
The aim of this study was to assess skeletal effects of zinc or zinc with phytoestrogen (resveratrol or genistein) supplementation in an animal model of rats with DMBA-induced mammary carcinogenesis. The changes in bone parameters such as the length and mass were examined, as well as the changes in concentrations of selected minerals: calcium, magnesium, zinc, iron and phosphorus. Moreover, the investigations focused on finding the differences between the levels of iron and zinc in other tissues: the liver, spleen and serum of the examined rats.Fifty-six female Sprague–Dawley rats, 40 days old, were divided into four groups, regardless of the diets: standard (77 mg Zn kg/food), zinc (4.6 mg/mL via gavage), zinc (4.6 mg/mL) plus resveratrol (0.2 mg/kg bw), and zinc (4.6 mg/mL) plus genistein (0.2 mg/kg bw) for a period from 40 days until 20 weeks of age. The study rats were also treated with 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) to induce mammary carcinogenesis.The applied diet and the advanced mammary cancer did not affect macrometric parameters of the rats’ bones, but they strongly affected their mineral content. It was found that mammary cancer, irrespectively of the applied diet, significantly modified the iron level in the femur, liver, spleen and serum of the examined rats. In addition, zinc supplementation significantly lowered the levels of calcium, magnesium and phosphorus in the femur of rats with mammary cancer as compared with respective levels in the control group. So, it was found that additional supplementation with zinc, which is generally considered to be an antioxidant, with the co-existing mammary carcinoma, increased the unfavorable changes as concerns the stability of bone tissue. The appropriate combination of zinc and phytoestrogens (resveratrol or genistein) could help prevent or slow bone loss associated with a range of skeletal disorders in breast cancer.  相似文献   

9.
The effect of conjugated linoleic acid (CLA) on postmenopausal bone metabolism has not been investigated. Therefore, forty-three adult ovariectomised (OVX) rats (8-9 rats per group) were fed either a control diet containing 40 g/kg soyabean oil (SBO diet) or the SBO diet with 0 (control OVX), 2.5, 5 or 10 g/kg of CLA (replacing soybean oil) for 9 weeks. A group of sham-operated (SH) rats were fed the SBO diet. OVX rats had significantly (P<0.05) lower femoral bone mineral density and macromineral concentration, and intestinal Ca absorption compared to SH rats. CLA supplementation had no effect on these parameters. Ex vivo PGE(2) biosynthesis by bone and urinary Pyr and Dpyr (markers of bone resorption) were significantly higher (P<0.001) in control OVX rats compared with SH rats, and were significantly (P<0.001) lowered by CLA supplementation with 5 and 10, but not 2.5 g/kg diet in OVX rats. In conclusion, CLA supplementation appeared to reduce the rate of bone resorption in adult OVX rats.  相似文献   

10.
11.
The aim of this study was to evaluate the influence of arsenic and bromine exposure with or without iodine and selenium supplementation on the element level in the thyroid of rats. Four major groups of Wistar female rats were fed with respective diets: group A - standard diet, group B - iodine rich diet (10 mg I/kg food), group C - selenium rich diet (1 mg Se/kg) and group D - iodine and selenium rich diet (as in group B and C). Each group was divided into four subgroups per 7 animals each receiving either NaAsO(2) ip (6.5 mg.kg(-1) twice a week for two weeks and 3.25 mg.kg(-1) for six weeks) or KBr in drinking water (58.8 mg.l(-1)) for 8 weeks or combined administration of both substances. Remaining subgroup served as controls. After 8 weeks thyroid glands were analyzed by ICP-MS for As, Br, Se, and I content. The exposition of rat to arsenic or bromine causes the accumulation of these elements in the thyroid gland ( approximately 18 ppm of As, approximately 90 ppm of Br) and significantly affects iodine and selenium concentration in the thyroid. In iodine and/or selenium supplemented rats the bromine intake into the thyroid was lowered to approximately 50% of the level in unsupplemented animals. Also selenium thyroid level elevated due to KBr administration was lowered by iodine supplementation in the diet. The accumulation of arsenic in the thyroid was not influenced by selenium or iodine supplementation; however, As(III) administration increased iodine thyroid level and suppressed selenium thyroid level in selenium or iodine supplemented group of animals.  相似文献   

12.
Female and male rats weighing about 170 g and 200 g, respectively, were fed diets (approximately 70 microg boron/kg) in a factorial arrangement with supplemental boron at 0 (deficient) and 3 (adequate) mg/kg and canola oil or palm oil at 75 g/kg of diet as variables. After 5 weeks, six females in each treatment were bred. Dams and pups continued on their respective dietary treatments through gestation, lactation and post-weaning. Thirteen weeks after weaning, plasma and bones were collected from 12 male and 12 female offspring in each treatment. Boron supplementation increased femur strength measured by the breaking variable bending moment; tibial calcium and phosphorus concentrations; and plasma alkaline phosphatase. Femur breaking stress was greatest in boron-supplemented rats fed canola oil, and lowest in boron-deprived females fed canola oil; this group also exhibited the lowest femur bending moment. Minerals associated with bone organic matrix, zinc and potassium, were increased by boron supplementation in tibia. Plasma phospholipids were decreased by boron deprivation in females, but not males. Plasma cholesterol was decreased in boron-supplemented males by replacing canola oil with palm oil. The findings suggest that a diet high in omega-3 alpha-linolenic acid promotes femur strength best when the dietary boron is adequate.  相似文献   

13.
An experiment with rats was conducted to determine whether magnesium retention is increased and calcium utilization is altered by a marginal zinc deficiency and whether increased oxidative stress induced by a marginal copper deficiency exacerbated responses to a marginal zinc deficiency. Weanling rats were assigned to six groups of ten with dietary treatment variables of low zinc (5 mg/kg for 2 weeks and 8 mg/kg for 7 weeks), low copper (1.5 mg/kg), adequate zinc (15 mg/kg), and adequate copper (6 mg/kg). Two groups of rats were fed the adequate-zinc diet with low or adequate copper and pair-fed with corresponding rats fed the low-zinc diet. When compared to the pair-fed rats, marginal zinc deficiency significantly decreased the urinary excretion of magnesium and calcium, increased the concentrations of magnesium and calcium in the tibia, increased the concentration of magnesium in the kidney, and increased the urinary excretion of helical peptide (bone breakdown product). Marginal copper deficiency decreased extracellular superoxide dismutase and glutathione, which suggests increased oxidative stress. None of the variables responding to the marginal zinc deficiency were significantly altered by the marginal copper deficiency. The findings in the present experiment suggest that increased magnesium retention and impaired calcium utilization are indicators of marginal zinc deficiency. Mention of a trademark or proprietary product does not constitute a guarantee or warranty by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that also might be suitable. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer, and all agency services are available without discrimination.  相似文献   

14.
The interrelationship among burn injury, zinc metabolism, and circulating T-lymphocyte distribution was studied using a rat model. Sixty Sprague-Dawley male rats were fed a zinc-deficient (less than 0.5 ppm) semipurified diet and given daily subcutaneous injections of 1 mg Zn/kg body wt for 14 days. On Day 15, 24 of the rats were subjected to a full-thickness dorsal scald injury of 30% of the total body surface. Half of the burned rats were continued on the zinc supplementation (BS) while the other half were maintained on the zinc-deficient (BD) regimen by injecting physiological saline. Feces and urine were collected for 10 days postburn and subsequently analyzed for zinc content. On Day 10 postburn all the rats were sacrificed. Zinc bound to cytosol proteins in hepatic and intestinal mucosal tissue was determined by gel column chromatography procedures and T-lymphocyte subset distributions were determined by flow cytometry. No significant difference (P less than 0.05) in total endogenous zinc excretion was seen among treatment groups. A dramatic increase was seen in zinc bound to a 12,000 mol wt protein in hepatic tissue from the BS group only. The only significant (P less than 0.05) change in T-lymphocyte populations was an increase in T-suppressor cells in the BD group.  相似文献   

15.
Aspirin is widely used as an antiinflammatory drug especially in children with rheumatic fever arthritis. The diminishing effects of aspirin on antioxidant enzymes and hepato-renal systems at high doses are well-known. It is now evident that the damage at antioxidant system worsens the clinical picture of the disease and prolongs the treatment time. Thus, we investigated the effect of antioxidant enzyme cofactors-zinc and selenium-supplementation on superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels (erythrocyte and liver) and hepato-renal toxicity during aspirin treatment at therapeutic doses. The rats were divided into five groups. The first and second groups were given aspirin 75 mg/kg/day and aspirin plus selenium (Selenium 200, selenium 200 mg tablet as selenium yeast, GNC) and zinc (Zinc 100, zinc 100 mg tablet as zinc gluconate, GNC), respectively, the third and fourth take 50 mg/kg/day aspirin and aspirin plus selenium and zinc twice a day, respectively. The fifth group was control. The rats were treated with aspirin for 5 weeks as in the treatment of rheumatic fever arthritis in children. Erythrocyte SOD and MDA levels were preserved with supplementation, whereas there was no change for GSH-Px levels. Liver SOD, GSH-Px, and MDA levels were not changed. In zinc- and selenium-supplemented groups, the levels of serum alanine aminotransferase, uric acid, and direct bilirubin levels were found statistically decreased compared with nonsupplemented groups. There was no significant histopathologic change in specimens of hepatic and renal tissues. Trace element supplementation may prevent free radical damage and shorten treatment time in children using long-term aspirin treatment.  相似文献   

16.
Previous studies have revealed that magnesium (Mg) plays a significant role in bone health; however, few studies have investigated the effects of Mg supplementation in diets with different calcium (Ca) levels on the bone status and bone metabolism in a growing stage. In this present study, we tested the effects of Mg supplementation on bone status in growing female rats, relative to Ca intake levels. A total of 40 Sprague–Dawley female rats aged 6 weeks were divided into the following four groups and fed for 12 weeks as indicated: (1) LCaAMg: low Ca (Ca, 0.1 % of total diet) and adequate Mg (Mg, 0.05 % of total diet), (2) LCaHMg: low Ca and high Mg ( Mg, 0.1 % of total diet), (3) ACaAMg: adequate Ca (Ca, 0.5 % of total diet) and adequate Mg, and (4) ACaHMg: adequate Ca and high Mg. Our results showed that Mg supplementation with the adequate Ca diet significantly increased the bone mineral contents, bone size (bone area and bone thickness), and bone mineral density of femur or tibia by improving bone metabolism without changing Ca absorption. Mg supplementation significantly increased the serum osteocalcin in the adequate-Ca-diet group (p?<?0.05), while the Mg supplementation significantly decreased the serum level of C-telopeptide cross-links of type I collagen in the adequate-Ca-diet group (p?<?0.001). This study suggests that Mg supplementation with adequate Ca intake in the growing stage may increase the bone mineral density and bone size by improving bone metabolism.  相似文献   

17.
OBJECTIVE: We examined the effect of vitamin D supplementation on bone growth in young rats fed a normal or low calcium diet. METHODS: Fifty female Sprague-Dawley rats, 6 weeks of age, were randomized by stratified weight method into five groups with 10 rats in each group: baseline control, 0.5% (normal) or 0.1% (low) calcium diet, and 0.5 or 0.1% calcium diet + vitamin D (25 microg/100 g, food intake). Duration of the experiment was 10 weeks. RESULTS: Vitamin D supplementation stimulated intestinal calcium absorption and increased urinary calcium excretion in rats fed a low or normal calcium diet. Vitamin D supplementation prevented the reduction in periosteal bone gain but enhanced enlargement of the marrow cavity and reduced the maturation-related cancellous bone gain in rats fed a low calcium diet, and increased the maturation-related cancellous and cortical bone gains in rats fed a normal calcium diet. CONCLUSION: This study shows the differential effects of vitamin D supplementation on born growth in young rats fed a normal or low calcium diet.  相似文献   

18.
Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56–75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level.We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity.  相似文献   

19.
The effects of zinc deficiency and supplementation on plasma leptin levels were studied in Sprague-Dawley rats. After 6 wk on a zinc-deficient diet containing 0.65 ppm Zn/g, the mean body weight was significantly lower than that of normal or zinc-supplemented rats, which showed no difference among them. The plasma leptin and zinc levels were lowest in zinc-deficient animals and highest in those that received a normal diet and daily intraperitioneal injections of 3 mg Zn/kg. These results indicate that zinc deficiency leads to a significant inhibition in plasma leptin levels, whereas zinc supplementation significantly increases plasma leptin.  相似文献   

20.
The effects of chromium (chromium picolinate, CrPic) and zinc (ZnSO(4)H(2)O) supplementation on serum concentrations of malondialdehyde (MDA) (an indicator of lipid peroxidation) and serum status of some antioxidant vitamins and minerals of laying hens (Hy-Line) reared at a low ambient temperature (6.8 degrees C) were evaluated. One hundred twenty laying hens (Hy-Line; 32 wk old) were divided into 4 groups, 30 hens per group. The hens were fed either a basal diet or the basal diet supplemented with either 0.4 mg Cr/kg of diet, 30 mg Zn/kg of diet, or 0.4 mg Cr plus 30 mg Zn/kg of diet. Digestibility of nutrients (dry matter [DM], organic matter [OM], crude protein [CP], and ether extract [EE]) increased by supplementation of chromium and zinc (p < 0.05). Supplemental chromium and zinc increased serum vitamins C and E but decreased MDA concentrations (p < 0.05). Additionally, supplemental chromium and zinc caused an increase in the serum concentrations of Fe, Zn, Mn, and Cr (p < 0.05). The present study showed that low ambient temperature causes detrimental effects on the digestibility of nutrients and antioxidant status and that such detrimental effects caused by low ambient temperature can be alleviated by chromium and zinc supplementation, particularly when Cr and Zn were simultaneously included into the diet. Data obtained in the present study suggest that such supplementation can be considered as a protective management practice in a diet of laying hens for alleviating negative effects of cold stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号