首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integral membrane proteins from human red cells were fractionated in sodium dodecyl sulfate solutions by high performance gel filtration on the small-bead cross-linked agarose gel Superose 6. The components were identified by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The combination of Superose chromatography with electrophoresis afforded high resolution. As expected the gel filtration elution volumes depended essentially on the molecular mass, but the elution volumes decreased stepwise as the detergent concentration was increased from 0.6 to 100 mM, with the largest decrease for the glucose transporter. The resolution increased as the flow rate was decreased from 60 to 1 ml X cm-2 X h-1. The Mr values for the anion and glucose transporters as estimated by Superose 6-chromatography at 50 mM detergent were 75-80% of the corresponding Mr values obtained by electrophoresis. At 50 mM dodecyl sulfate the proteins were resolved into four fractions (a-d) which mainly contained: (a) dimer and (b) monomer of the anion transporter, (c) the glucose transporter and (d) components of Mr below 40 000. Monoclonal antibodies that possibly are directed against the glucose transporter (Lundahl, P., Greijer, E., Cardell, S., Mascher, E. and Andersson, L. (1986) Biochim. Biophys. Acta 855, 345-356) interacted only with part of the 4.5-material in fraction c in immunoblotting (Western blotting). Superose 6-chromatography of red cell glucose transporter that had been partially purified on DEAE-cellulose and Mono Q resolved one major and two minor fractions. Electrophoretic analysis showed that components of Mr 90,000, 50,000, and 25,000 had been separated from the major Mr-55,000-4.5-material and revealed size heterogeneity within the major chromatographic fraction. Heating of the glucose transporter in the presence of dodecyl sulfate caused an unexpected retardation of monomeric transporter on Superose 6. The apparent Mr decreased from 44,000 to 29,000.  相似文献   

2.
Cytochalasin B was found to bind to at least two distinct sites in human placental microvillous plasma membrane vesicles, one of which is likely to be intimately associated with the glucose transporter. These sites were distinguished by the specificity of agents able to displace bound cytochalasin B. [3H]Cytochalasin B was displaceable at one site by D-glucose but not by dihydrocytochalasin B; it was displaceable from the other by dihydrocytochalasin B but not by D-glucose. Some binding which could not be displaced by D-glucose + cytochalasin B binding site. Cytochalasin B can be photoincorporated into specific binding proteins by ultraviolet irradiation. D-Glucose specifically prevented such photoaffinity labeling of a microvillous protein component(s) of Mr = 60,000 +/- 2000 as determined by urea-sodium dodecyl sulfate acrylamide gel electrophoresis. This D-glucose-sensitive cytochalasin B binding site of the placenta is likely to be either the glucose transporter or be intimately associated with it. The molecular weight of the placental glucose transporter agrees well with the most widely accepted molecular weight for the human erythrocyte glucose transporter. Dihydrocytochalasin B prevented the photoincorporation of [3H]cytochalasin B into a polypeptide(s) of Mr = 53,000 +/- 2000. This component is probably not associated with placental glucose transport. This report presents the first identification of a sodium-independent glucose transporter from a normal human tissue other than the erythrocyte. It also presents the first molecular weight identification of a human glucose-insensitive high-affinity cytochalasin B binding protein.  相似文献   

3.
An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-O-succinyldeacetyl-forskolin (IAPS-forskolin), has been synthesized, purified, and characterized. The I50 for inhibition of 3-O-methylglucose transport in red blood cells by IAPS-forskolin was found to be 0.05 microM. The carrier free radioiodinated label is a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes (ghosts) and purified glucose transporter preparations with 1-2 nM [125I]IAPS-forskolin and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed specific derivatization of a broad band with an apparent molecular mass of 40-70 kDa. Photoincorporation into erythrocyte membranes using 2 nM [125I]IAPS-forskolin was protected with D-glucose (I50 400 mM), cytochalasin B (I50 0.5 microM), and forskolin (I50 10 microM). No protection was observed with L-glucose (600 mM). Endo-beta-galactosidase digestion of [125I] IAPS-forskolin-labeled ghosts and purified transporter resulted in a dramatic sharpening of the specifically radiolabeled transporter to 40 kDa. Trypsinization of [125I]IAPS-forskolin-labeled ghosts and purified transporter reduced the specifically radiolabeled transporter to a sharp peak at 18 kDa. [125I]IAPS-forskolin will be a useful tool to study the structural aspects of the glucose transporter.  相似文献   

4.
Peptides corresponding to amino acid residues 1-12 of the amino terminal and 480-492 of the carboxyl terminal of the deduced sequence of the glucose transporter were synthesized and used to produce site-specific polyclonal antipeptide sera. In a solid-phase radioimmunoassay, antiserum to the carboxyl terminal recognizes peptide 480-492 and purified human erythrocyte glucose transporter, but not peptide 1-12. Antiserum to the amino terminal recognizes peptide 1-12 but neither peptide 480-492 nor the erythrocyte transporter. The antiserum to the carboxyl terminal specifically immunoblots the Mr 55,000 glucose transporter in erythrocyte membranes and the purified erythrocyte transporter. It also recognizes a Mr 40,000-60,000 polypeptide in membranes of cells derived from different mammalian species and tissues including insulin-sensitive rat adipocytes as well as a Mr 20,000 tryptic fragment of the transporter which contains the site for photolabeling by cytochalasin B. Antiserum to the carboxyl terminal of the transporter binds specifically to leaky erythrocyte membranes but not to intact erythrocytes. This binding is saturable and competitively inhibited by peptide 480-492. Using immunofluorescence microscopy, this antiserum detects glucose transporter protein in permeabilized erythrocytes, but not in intact erythrocytes. These studies provide immunochemical evidence in support of the predicted cytoplasmic orientation of the carboxyl terminus of the glucose transporter, allow us to suggest a spatial relationship of the cytochalasin B binding site to the carboxyl terminal of the glucose transporter and suggest that antisera directed to the carboxyl terminal domain of the protein may be useful for the immunocytochemical localization of the glucose transporter.  相似文献   

5.
The human erythrocyte structural protein spectrin and its subunits I, II were isolated in the presence of Na-dodecyl-sulfate by gel filtration and preparative gel electrophoresis. After removal of the detergent, spectrin alpha-helical content is comparable to spectrin isolated without detergent. Subunits I and II formed single bands in isoelectric focusing (pI = 5.6) and in Ornstein-Davis disc gel electrophoresis systems, indicating the individual subunits are homogenous in nature. The molecular weights of the subunits I and II, determined by Ferguson plot, are 237,500 and 238,600, respectively, which is in good agreement with values obtained by the standard SDS gel relative mobility method. Limited tryptic digestion of spectrin and two-dimensional peptide maps of the individual subunits cleaved by S-cyanylation reaction showed dissimilar patterns, suggesting differences in primary structure between the two subunits.  相似文献   

6.
Three antipeptide antibodies were prepared by immunizing rabbits with synthesized short peptides corresponding to residues 215-226, 466-479, and 478-492 predicted from the cDNA of both the human hepatoma HepG2 and rat brain glucose transporters. All three antibodies were found to precipitate quantitatively the [3H]cytochalasin B photoaffinity-labeled human erythrocyte glucose transporter. Each antibody also recognized the rat brain protein of Mr 45,000 on immunoblots, and a similar molecular weight protein was labeled with [3H]cytochalasin B in a D-glucose-inhibitable manner, suggesting that this protein is glucose transporter. However, only up to 30% of the labeled rat brain glucose transporters were precipitated, even by repeated rounds of immunoprecipitation. In addition, these antibodies were observed to be unable to immunoprecipitate significantly the [3H]cytochalasin B-labeled rat adipocyte glucose transporter. Further, one-dimensional peptide maps of [3H]cytochalasin B-labeled human erythrocyte and adipocyte glucose transporters generated distinct tryptic fragments. Although Mr 45,000 protein in rat adipocyte low density microsomes was detected on immunoblots and its amount was decreased in insulin-treated cells, the rat adipocyte low density microsomes were much less reactive on immunoblots than the rat brain membranes in spite of the fact that the rat adipocyte low density microsomes contained more [3H]cytochalasin B-labeled glucose transporters. In addition, the ratio of cytochalasin B-labeled glucose transporter per unit HepG2-type glucose transporter mRNA was more than 10-fold higher in rat adipocyte than in rat brain. These results indicate that virtually all the human erythrocyte glucose transporters are of the HepG2 type, whereas this type of glucose transporter constitutes only approximately 30 and 3% of all the glucose transporters present in rat brain and rat adipocyte, respectively; and the rest, of similar molecular weight, is expressed by a different gene.  相似文献   

7.
Guinea pig skin col-agenase, isolated from culture medium of whole skin, was separated into two enzymatically active fractions. These two fractions have been purified extensively. Peak II fraction has been purified to homogeneity as examined by polyacrylamide gel electrophoresis. Their molecular weights are approximately 130 000 (peak I) and 40 000 (peak II). Both guinea pig skin collagenase fractions are capable of degrading the native collagen fibrils and are inhibited by serum, cysteine and EDTA. They appear to be glycoproteins. Guinea pig skin (peak II) and human skin collagenase were compared. They are both glycoproteins and have similar molecular size (Mr = 40 000). Immunodiffusion assay showed that no cross-reactivity was seen between the enzymes, indicating species specificity among collagenases.  相似文献   

8.
Major surface-iodinated proteins of Mr 105,000 and 145,000 of normal human neutrophils are immunoprecipitated by a number of monoclonal antibodies (AHN-1 to AHN-6), which react specifically with granulocytes among peripheral blood cells and selectively inhibit phagocytosis. These proteins, and an Mr 60,000 component, were purified by monoclonal antibody affinity chromatography, molecular sieve chromatography, and preparative polyacrylamide gel electrophoresis. Each of the three purified proteins was immunoprecipitated by all six antibodies. Nevertheless, tryptic peptide maps of the three proteins indicated that each was a distinct component. AHN-1 to AHN-6 also bound to glycolipid fractions of human neutrophils, and the binding of each antibody to human neutrophils was blocked by the carbohydrate sequences, lacto-N-fucopentaose III. The data indicate that a predominant antigenic determinant of human neutrophils is lacto-N-fucopentaose III, or related carbohydrates, present on three distinct proteins as well as glycolipids. At least one of these molecules appears to be involved in the process of phagocytosis.  相似文献   

9.
We have partially purified and characterized erythropoietin (Epo) receptors of erythroid progenitor cells which were obtained from the spleens of anemia-inducing Friend virus infected mice. Membrane proteins of splenic erythroid progenitor cells were solubilized with 1% Triton X-102. Upon chromatography on DEAE-Sephacel anion-exchange columns, two distinct Epo receptor peak fractions referred to as Peak I and Peak II were identified by 125I-Epo binding assays using the polyethylene glycol precipitation method. The Peak I and Peak II samples were then individually chromatographed on an S-Sepharose column. The S-Sepharose-purified Peak I and Peak II samples were crosslinked with 125I-Epo in the presence and absence of excess unlabeled Epo by disuccinimidyl suberate treatment, and then analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography. Both Peak I and Peak II samples showed a radiolabeled peptide with a Mr 135K and the labeling was blocked by excess unlabeled Epo. Since the Mr of Epo is about 35K, Epo receptor peptide has a Mr approximately 100K. To determine whether Epo stimulates autophosphorylation of the receptors, the S-Sepharose-purified Peak I and Peak II samples were incubated with or without Epo, and then briefly incubated in the presence of [gamma-32P]ATP and Mn2+. The tyrosine residue phosphorylated protein was isolated by an immunochemical technique, and then analyzed by SDS-PAGE and autoradiography. The result showed that Epo stimulates phosphorylation of a 100-kDa peptide.  相似文献   

10.
The human erythrocyte D-glucose transporter is an integral membrane glycoprotein with an heterogeneous molecular mass spanning a range 45-70 kDa. The protein structure of the transporter was investigated by photoaffinity labeling with [3H]cytochalasin B and fractionating the labeled transporter according to molecular mass by preparative SDS-polyacrylamide gel electrophoresis. Each fraction was digested with either papain or S. aureus V8 proteinase, and the labeled proteolytically derived peptide fragments were compared by SDS polyacrylamide gel electrophoresis. Papain digestion yielded two major peptide fragments, of approx. molecular mass 39 +/- 2 and 22 +/- 2 kDa; treatment with V8 proteinase resulted in two fragments, with mass of 24 +/- 2 and 15 +/- 2. Proteolysis of each transporter fraction produced the same pattern of labeled peptide fragments, irrespective of the molecular mass of the original fractions. The binding characteristics of [3H]cytochalasin-B-labeled transporter to Ricinis communis agglutinin lectin was examined for each transporter molecular mass fraction. It was found that higher-molecular-mass fractions of intact transporter had a 2-fold greater affinity for the lectin than lower-molecular-mass fractions (i.e., 67 kDa greater than 45 kDa fraction). However, proteolytically derived labeled peptide fragments from each fraction had minimal affinity for the lectin. These results suggest that the labeled peptide fragments have been separated from the glycosylated regions of the parent transporter protein. The present findings indicate that, although transporter proteins have an apparently heterogeneous molecular mass, some regions of the protein share a common peptide. Furthermore, the glycosylated regions appear to be located some distance from the [3H]cytochalasin-B-labeled site(s).  相似文献   

11.
Antibodies were raised in rabbits against synthetic peptides corresponding to the N-terminal (residues 1-15) and the C-terminal (residues 477-492) regions of the human erythrocyte glucose transporter. The antisera recognized the intact transporter in enzyme-linked immunosorbent assays (ELISA) and Western blots. In addition, the anti-C-terminal peptide antibodies were demonstrated, by competitive ELISA and by immunoadsorption experiments, to bind to the native transporter. Competitive ELISA, using intact erythrocytes, unsealed erythrocyte membranes, or membrane vesicles of known sidedness as competing antigen, showed that these antibodies bound only to the cytoplasmic surface of the membrane, indicating that the C terminus of the protein is exposed to the cytoplasm. On Western blots, the anti-N-terminal peptide antiserum labeled the glycosylated tryptic fragment of the transporter, of apparent Mr = 23,000-42,000, showing that this originates from the N-terminal half of the protein. The anti-C-terminal peptide antiserum labeled higher Mr precursors of the Mr = 18,000 tryptic fragment, although not the fragment itself, indicating that the latter, with its associated cytochalasin B binding site, is derived from the C-terminal half of the protein. Antiserum against the intact transporter recognized the C-terminal peptide on ELISA, and the Mr = 18,000 fragment but not the glycosylated tryptic fragment on Western blots.  相似文献   

12.
In human placenta 85% of total hexokinase activity (EC 2.7.1.1) was found in a soluble form. Of this, 70% is hexokinase type I while the remaining 30% is hexokinase type II. All the bound hexokinase is type I. Soluble hexokinase I was purified 11,000-fold by a combination of ion-exchange chromatography, affinity chromatography, and dye-ligand chromatography. The specific activity was 190 units/mg protein with a 75% yield. The enzyme shows only one band in nondenaturing polyacrylamide gel electrophoresis that stains for protein and enzymatic activity; however, two components (with Mr 112,000 and 103,000) were constantly seen in sodium dodecyl sulfate-gel electrophoresis. Many attempts were made to separate these two proteins under native conditions; however, only one peak of activity was obtained when the enzyme was submitted to gel filtration (Mr 118,000), preparative isoelectric focusing (pI 5.9), anion-exchange chromatography, hydroxylapatite chromatography, and affinity chromatography on immobilized dyes and immobilized glucosamine. The high and low molecular weight hexokinases show the same isoelectric point under denaturing conditions as determined by two-dimensional gel electrophoresis. Each hexokinase subtype was obtained by preparative sodium dodecyl sulfate electrophoresis followed by electroelution. Monospecific antibodies raised in rabbits against electroeluted high and low molecular weight hexokinases were not able to recognize the native enzymes but each of them detected both hexokinases on immunoblots. Amino acid compositions and peptide mapping by limited proteolysis of the high and low molecular weight hexokinases were also performed and suggested a strong homology between these two subtypes of human hexokinase I.  相似文献   

13.
Human erythrocyte membranes were labeled with a hydrophobic photoactivable reagent, 2-[3H]Diazofluorene. Electrophoretic analysis of the protein fraction showed that several membrane spanning proteins like Band 3 (the anion transporter), Band 4.5 (the glucose transporter), and the sialoglycoproteins PAS 1, 2, and 3 have been labeled. To isolate the diazofluorene-labeled glucose transporter, the membrane preparation was solubilized with Triton X-100 and passed through a DEAE-cellulose column. The flow-through fraction was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radioactive analysis of the gel indicated that besides the Band 4.5, two more proteins corresponding to the Band 3 and Band 6 regions also coelute with the glucose transporter in the flow-through fraction. On the other hand, use of n-octyl glucoside gave a relatively better preparation. The 2-[3H]DAF-labeled glucose transporter isolated by the latter method on tryptic digestion indicated that the Mr 18,000 fragment corresponding to the C-terminal transmembrane fragment is labeled.  相似文献   

14.
The protein photolabelled by [3H]cytochalasin B and band 4.5, which contains the human erythrocyte hexose transporter, were compared by electrophoretically monitoring the effect of digestion with endoglycosidase F and trypsin. Band 4.5 was found to consist of two minor components, Mr 58,000 and 52,000, and one main component, Mr 60,000-50,000. Deglycosylation by endoglycosidase F converted both the [3H]-labelled species and the main polypeptide of band 4.5 from a mixture of polypeptides of Mr 50,000-60,000 to a sharp component of Mr 46,000. Tryptic cleavage of the photolabelled protein produced a [3H]-labelled peptide of 19,000 daltons, which corresponded to an analogous tryptic fragment of the main component of band 4.5. Endoglycosidase F treatment of trypsin-treated samples had no effect on the 19,000 dalton fragment or the labelled 19,000 component, indicating that both species lack the carbohydrate moiety of the parent protein. This parallel chemical behaviour indicates that the photolabelled polypeptide is representative of the main constituent of band 4.5. Photolabelling may be used with confidence to quantitate glucose transporters in other cells.  相似文献   

15.
Cyclic AMP-dependent protein kinase from human erythrocyte plasma membranes was solubilized with Triton X-100, partially purified, and systematically characterized by a series of physicochemical studies. Sedimentation and gel filtration experiments showed that the 6.6 S holoenzyme had a Stokes radius (a) of 5.7 nm and was dissociated into native 4.8 S cAMP-binding (a = 4.5 nm) and 3.2 S catalytic (a = 2.6 nm) subunits. A minimum subunit molecular weight of 48,000 was established for the regulatory subunit by photoaffinity labeling with 8-azido[32P]cAMP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography. These data suggest an asymmetric tetrameric (R2C2) structure (Mr approximately equal to 160,000) for the membrane-derived enzyme. Membrane-derived protein kinase was characterized as a type I enzyme on the basis of its R subunit molecular weight, pI values (R, 4.9; holoenzyme, 5.75 and 5.95), dissociation by 0.5 M NaCl and 50 microgram/ml of protamine, 20-fold reduced affinity for cAMP in the presence of 0.3 mM MgATP, elution from DEAE-cellulose at low ionic strength, and kinetic and cAMP-binding properties. The physicochemical properties of the membrane protein kinase closely parallel the characteristics of erythrocyte cytosolic protein kinase I but are clearly dissimilar from those of the soluble type II enzyme. Moreover, regulatory subunits of the membrane-associated and cytosolic type I kinases were indistinguishable in size, shape, subunit molecular weight, charge, binding and reassociation properties, and peptide maps of the photoaffinity-labeled cAMP-binding site, suggesting a high degree of structural and functional homology in this pair of enzymes. In view of the predominant occurrence of particulate type II protein kinases in rabbit heart and bovine cerebral cortex, the present results suggest that the distribution of membrane-associated protein kinases may be tissue- or species-specific, but not isoenzyme-specific.  相似文献   

16.
1. Myeline proteins in bovine peripheral nerve migrated as two main band-(BF and BR protein) and one faint middle band (BM protein) on sodium dodecyls sulfate-polyacrylamide gel electrophoresis. The relative mobility of these two main bands differed from those of myelin proteins in the central nervous system. 2. The acid extract of the myelin fraction from bovine peripheral nerve was separated into one main peak and two minor peaks on a Sephadex G-75 column. The major component of the second minor peak was the BM protein; the major component of the main peak was the BF protein. The BR protein was not extractable by acid solution. 3. Molecular weights of the BF, the BM and the BR protein were determined as around 13 000, 20 000 and 28 000, respectively, by sodium dodecylsulfate-polyacrylamide gel electrophoresis. 4. The amino acid composition of the BF protein was quite different from the encephalitogenic protein and the Folch-Lees type proteolipid protein in the central nervous system. However the BM protein showed similar amino acid composition to the encephalitogenic protein. 5. The tryptic peptide maps of the BF protein and of the encephalitogenic protein were quite different. The results suggested that the amino acid sequences of these two proteins are different and that they contain no common tryptophan-containing peptide.  相似文献   

17.
A comparison is made of the four main components of an homozygous variant (A or D2, D2) of bovine serum transferrin. These are designated I-IV in order of increasing mobility in electrophoresis at pH 7.5. Components I, II, HI and IV have 2,2,3 and 3 residues of sialic acid per transferrin molecule and appear to correspond to components 2a, 2b, 3a and 3b respectively of Stratil & Spooner (1971). The difference between components I and II and between III and IV does not reside in sialic acid differences. On the basis of peptide maps of reduced carboxami-domethylated components, urea-starch gel electrophoresis and quantitative sequence studies, it is concluded that components II and IV have a scission in the peptide chain. By homology with the sequence of MacGillivray et al. (1977) for human serum transferrin it is suggested that the scission occurs between residues 55 and 54 from the C-terminus and this portion of the chain has a 'molecular' weight of ca. 6000. The implications are briefly discussed.  相似文献   

18.
R L Shelton  R G Langdon 《Biochemistry》1985,24(10):2397-2400
The covalent affinity probe maltosyl isothiocyanate (MITC) has been used previously to identify the glucose transporter of human erythrocytes as a component of band 3. By use of limited proteolysis, the site on the Mr 100 000 protein to which MITC attaches has been localized to a 17 000-dalton region near the center of the polypeptide chain which is intimately associated with the membrane. The erythrocyte anion transporter, which is probably homologous to the glucose carrier, has a corresponding segment which is known to bind the covalent affinity label 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid [Ramjeesingh, M., Gaarn, A., & Rothstein, A. (1980) Biochim. Biophys. Acta 559, 127-139]. These results suggest that, in addition to having structural features in common, the two carrier proteins may be quite similar with regard to functional organization.  相似文献   

19.
Inositol-polyphosphate 3-phosphatase catalyzes the hydrolysis of the 3-position phosphate bond of inositol 1,3-bisphosphate (Ins(1,3)P2) to form inositol 1-monophosphate and inorganic phosphate (Bansal, V.S., Inhorn, R.C., and Majerus, P.W. (1987) J. Biol. Chem. 262, 9444-9447). Phosphatidylinositol 3-phosphatase catalyzes the analogous reaction utilizing phosphatidylinositol 3-phosphate (PtdIns(3)P) as substrate to form phosphatidylinositol and inorganic phosphate (Lips, D.L., and Majerus, P.W. (1989) J. Biol. Chem. 264, 19911-19915). We now demonstrate that these enzyme activities are identical. Two forms of the enzyme, designated Type I and II 3-phosphatases, were isolated from rat brain. The Type I 3-phosphatase consisted of a protein doublet that migrated at a relative Mr of 65,000 upon sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The Mr of this isoform upon size-exclusion chromatography was 110,000, suggesting that the native enzyme is a dimer. The Type II enzyme consisted of equal amounts of an Mr = 65,000 doublet and an Mr = 78,000 band upon SDS-polyacrylamide gel electrophoresis. This isoform displayed an Mr upon size-exclusion chromatography of 147,000, indicating that it is a heterodimer. The Type II 3-phosphatase catalyzed the hydrolysis of Ins(1,3)P2 with a catalytic efficiency of one-nineteenth of that measured for the Type I enzyme, whereas PtdIns(3)P was hydrolyzed by the Type II 3-phosphatase at three times the rate measured for the Type I 3-phosphatase. The Mr = 65,000 subunits of the two forms of 3-phosphatase appear to be the same based on co-migration on SDS-polyacrylamide gels and peptide maps generated with Staphylococcus aureus protease V8 and trypsin. The peptide map of the Mr = 78,000 subunit was different from that of the Mr = 65,000 subunits. Thus, we propose that the differing relative specificities of the Type I and II 3-phosphatases for Ins(1,3)P2 and PtdIns(3)P are due to the presence of the Mr = 78,000 subunit of the Type II enzyme.  相似文献   

20.
Photoaffinity labeling techniques using p-azido-m-[125I]iodobenzylcarazolol have recently demonstrated that both the beta 1- and beta 2-adrenergic receptor-binding subunits from mammalian tissues including heart, lung, and erythrocytes reside on peptides of Mr approximately equal to 62,000-64,000. In this study, a two-dimensional gel electrophoresis method for peptide mapping was used to investigate and compare the structure of beta 1 - and beta 2-adrenergic receptor subtypes. When the photoaffinity labeled Mr approximately equal to 62,000 peptides from the beta 2-adrenergic receptors of rat lung and erythrocyte are subjected to simultaneous proteolysis using Staphylococcus aureus V8 proteinase or papain, exactly the same peptide fragments are generated from each subunit. In contrast, when the Mr approximately equal to 62,000 peptide containing the beta 1-adrenergic receptor-binding subunit derived from the rat heart is proteolyzed simultaneously with the Mr approximately equal to 62,000 peptide containing the beta 2-adrenergic receptors from either lung or erythrocyte, the peptide fragments generated are distinctly different. Peptide maps of beta 1-adrenergic receptors from the myocardial tissue of different species (pig versus rat) yield slightly different maps while the maps derived from the beta 2-adrenergic receptors of hamster lung and rat lung or erythrocytes reveal no interspecies differences. These data suggest: 1) alterations in the primary structure of the beta-adrenergic receptor may be responsible for the pharmacological specificities characteristic of beta 1- and beta 2-adrenergic receptor subtypes; and 2) alterations in the primary structure of similar beta-adrenergic receptor subtypes across different species may relate to the magnitude of their phylogenetic differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号