首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association of desmin, a 55,000-dalton intermediate-filament protein, with the developing cardiac myofibril was studied by immunocytochemical methods in primary cultured myocytes isolated from embyronic rat hearts at different ages. In the earliest contractile myocytes obtained from 10-day-old embryonic hearts, desmin exists as an extensive cytoskeletal network with little or no association with the myofibrils. As the heart develops the cytoskeletal desmin undergoes the myofibrils. Initially, the cytoskeletal desmin appears to outline the developing myofibril as short, discontinuous filaments. At intermediate stages of heart development, desmin filaments in 12- to 16-day-old embryonic myocytes continue to outline the forming myofibrils. Associated with these filaments are crossbridges and foci of desmin spaced at a frequency equal to that of the Z-line spacing. Desmin becomes progressively associated with the myofibril from the central region of the cell toward the cell margin. Desmin filaments at this stage begin to coalesce in the region of the intercalated disk. In the early neonatal heart, desmin of the Z lines becomes continuous across the sarcomere and appears to integrate the myofibrils into a unit. These observations suggest that desmin is not required in the early stages of mammalian heart development for the initial assembly of cardiac sarcomeres or the initiation of cardiac myofibrillar contractions. In later stages of mammalian heart development, desmin is found associated with the cardiac myofibrils in such a manner as to stably integrate these elements into the cytoplasm. Additionally, desmin, in the Z lines of the more mature myocytes appears to maintain the myofibrils in close registry to each other and to the intercalated disk.  相似文献   

2.
Joseph A. DiPaolo 《Cell》1980,20(1):263-265
Electrophoretic and autoradiographic analyses of the incorporation of 35S-methionine into newly synthesized proteins during myogenesis reveal that presumptive chicken myoblasts synthesize primarily one intermediate filament protein: vimentin. Desmin synthesis is initiated at the onset of fusion. Synthesis rates of both filament subunits increase during the first three days in culture, relative to the total protein synthesis rate. The observed increase in the rate of desmin synthesis (at least 10 fold) is significantly greater than that observed for vimentin, and is responsible for a net increase in the cellular desmin content relative to vimentin. Both filament subunits continue to be synthesized through at least 20 days in culture. Immunofluorescent staining using desmin- and vimentin-specific antisera supports the conclusion that desmin is synthesized only in fusing or multinucleate cells. These results indicate that the synthesis of the two filament subunits is not coordinately regulated during myogenesis. The distributions of desmin and vimentin in multinucleate chicken myotubes are indistinguishable, as determined by double immunofluorescence techniques. In early myotubes, both proteins are found in an intricate network of free cytoplasmic filaments. Later in myogenesis, several days after the appearance of α-actinin-containing Z line striations, both filament proteins become associated with the Z lines of newly assembled myofibrils, with a corresponding decrease in the number of cytoplasmic filaments. This transition corresponds to the time when the a-actinin-containing Z lines become aligned laterally. These data suggest that the two intermediate filament systems, desmin and vimentin, have an important role in the lateral organization and registration of myofibrils and that the synthesis of desmin and assembly of desmin-containing intermediate filaments during myogenesis is directly related to these functions. These results also indicate that the Z disc is assembled in at least two distinct steps during myogenesis.  相似文献   

3.
The architecture of desmin intermediate filament arrangements in cultured cardiomyocytes from heart of normal and cardiomyopathic hamsters was studied by immunofluorescent light microscopy and immunogold replica electron microscopy. Both polyclonal and monoclonal antidesmin antibodies were used in a biotin-streptavidin system. Immunofluorescent staining of normal and cardiomyopathic myocytes for desmin at 5 days in culture exhibited filamentous staining patterns with polyclonal antidesmin and a coarse punctate staining pattern with the monoclonal antibody. At 9 days in culture, most normal myocytes showed filamentous staining with the polyclonal antibody; many of the stained filaments were associated with Z lines. With the monoclonal antidesmin, these same cells exhibited a very fine 'spotty' staining pattern. These results suggest that the arrangements and immunoreactivities of intermediate filaments change during normal cardiac myocyte development. In cardiomyopathic cells, this pattern of rearrangement and immunoreactivity appears to be delayed or possibly nonexistent. The three-dimensional electron-microscopic observation of immunogold localization of desmin achieved by a deep-etching replica technique is made on both normal and cardiomyopathic cultured heart cells. Abnormalities of desmin filament arrangements in cardiomyopathic cells are confirmed.  相似文献   

4.
Primary cultures of cardiac myocytes from newborn normal and genetically cardiomyopathic (strain UM-X7.1) hamsters were analyzed by electron microscopy and immunofluorescent staining for myosin, actin, tropomyosin, and alpha-actinin. Antibody staining of these contractile proteins demonstrates that both normal and cardiomyopathic (CM) myocytes contain prominent myofibrils after 3 days in culture, although the CM myofibrils are disarrayed and not aligned as those in normal cells. The disarray becomes even more pronounced in CM cells after 5 days in culture. The immunofluorescent staining patterns of individual myofibrils in normal and CM cells were similar for myosin, actin, and tropomyosin. However, alpha-actinin staining reveals that the CM myofibrils have abnormally wide and irregularly shaped Z bands. Electron microscopy confirms the irregular Z-band appearance as well as the myofibril disarray. Thus, CM cardiomyocytes clearly show an aberrant pattern of myofibril structure and organization in culture.  相似文献   

5.
Desmin and vimentin coexist at the periphery of the myofibril Z disc.   总被引:61,自引:0,他引:61  
B L Granger  E Lazarides 《Cell》1979,18(4):1053-1063
Two-dimensional gel electrophoresis has revealed that vimentin, the predominant subunit of intermediate filaments in cells of mesenchymal origin, is a component of isolated skeletal myofibrils. It thus coexists in mature muscle fibers with desmin, the major subunit of muscle intermediate filaments. Antisera to desmin and vimentin, shown to be specific for their respective antigens by two-dimensional immunoautoradiography, have been used in immunofluorescence to demonstrate that vimentin has the same distribution as desmin in skeletal muscle. Both desmin and vimentin surround each myofibril Z disc and form honeycomb-like networks within each Z plane of the muscle fiber. This distribution is complementary to that of alpha-actinin within a given Z plane. Desmin and vimentin may thus be involved in maintaining the lateral registration of sarcomeres by transversely linking adjacent myofibrils at their Z discs. This linkage would support and integrate the fiber as a whole, and provide a molecular basis for the cross-striated appearance of skeletal muscle.  相似文献   

6.
The topographical relationship between stress fiber-like structures (SFLS) and nascent myofibrils was examined in cultured chick cardiac myocytes by immunofluorescence microscopy. Antibodies against muscle-specific light meromyosin (anti-LMM) and desmin were used to distinguish cardiac myocytes from fibroblastic cells. By various combinations of staining with rhodamine-labeled phalloidin, anti-LMM, and antibodies against chick brain myosin and smooth muscle alpha-actinin, we observed the following relationships between transitory SFLS and nascent and mature myofibrils: (a) more SFLS were present in immature than mature myocytes; (b) in immature myocytes a single fluorescent fiber would stain as a SFLS distally and as a striated myofibril proximally, towards the center of the cell; (c) in regions of a myocyte not yet penetrated by the elongating myofibrils, SFLS were abundant; and (d) in regions of a myocyte with numerous mature myofibrils, SFLS had totally disappeared. Spontaneously contracting striated myofibrils with definitive Z-band regions were present long before anti-desmin localized in the I-Z-band region and long before morphologically recognizable structures periodically link Z-bands to the sarcolemma. These results suggest a transient one-on-one relationship between individual SFLS and newly emerging individual nascent myofibrils. Based on these and other relevant data, a complex, multistage molecular model is presented for myofibrillar assembly and maturation. Lastly, it is of considerable theoretical interest to note that mature cardiac myocytes, like mature skeletal myotubes, lack readily detectable stress fibers.  相似文献   

7.
The distributions of desmin and vimentin intermediate filaments in cultured hamster heart cells were examined by immunofluorescent microscopy and an immunogold deep-etching replica technique in combination with electron microscopy. Fluorescent studies showed the overall staining patterns of the myocytes as well as the fibroblasts. Monoclonal antibodies (Da, D3) to desmin showed punctate staining for the myocytes, while polyclonal desmin (pD) stained in a filamentous pattern. Fibroblasts stained strongly with monoclonal anti-vimentin (Va), but did not stain with the desmin probes. Deep-etched immunogold studies confirmed at the ultrastructural level that monoclonal anti-desmin antibodies stain individual intermediate filaments in an intermittent pattern. Monoclonal (D3) antibody stained the intermediate filaments heavily and continuously at the cell peripheries, while it stained intermittently in the cell body, similar to the Da monoclonal. Monoclonal anti-vimentin stained only intermediate filaments in fibroblasts. Our studies show a heterogeneity of staining within the cultured heart cells when various anti-desmin and anti-vimentin antibodies are used.  相似文献   

8.
During myogenesis in vitro the actin-binding protein filamin is present in myoblasts and early fused cells and is associated with α-actinin-containing filament bundles, as judged by double immunofluorescence using antibodies specific for these two proteins. Approximately one day after cell fusion, yet before the development of a-actinin-containing Z line striations, filamin disappears from the cells. Later in myogenesis, several days after the appearance of α-actinin-containing Z line striations, filamin reappears and accumulates in the cells. Double immunofluorescence with antibodies to filamin and vimentin (or desmin) reveals that the newly appearing filamin localizes now to the myofibril Z line and is visible there shortly before vimentin or desmin becomes associated with the Z line. Immunofluorescent localization of filamin in isolated chicken skeletal myofibrils and Z disc sheets indicates that filamin has the same distribution as desmin and vimentin; it surrounds each myofibril Z disc and forms honeycomb-like networks within each Z plane of the muscle fiber. Filamin may thus be involved in the transition of desmin and vimentin to the Z disc. Analysis of whole-cell extracts by SDS-polyacrylamide gel electrophoresis and by immunoautoradiography shows that filamin is present in myoblasts and in myotubes early after cell fusion. Concomitant with the absence of filamin fluorescence during the subsequent few days of myogenesis, the quantity of filamin is markedly reduced. During this time, metabolic pulse-labeling with 35S-methionine reveals that the synthetic rate of filamin is also markedly reduced. As filamin fluorescence appears at the Z line, the quantity of filamin and its synthetic rate both increase. The removal of filamin from the cells suggests that filamin either may not be required, or may actually interfere with a necessary process, during the early stages of sarcomere morphogenesis. These results also indicate that the periphery of the Z disc is assembled in at least two distinct steps during myogenesis.  相似文献   

9.
The distribution of the intermediate filament proteins vimentin and desmin in developing and mature myotubes in vivo was studied by single and double immunoelectron microscopic labeling of ultrathin frozen sections of iliotibialis muscle in 7-21-d-old chick embryos, and neonatal and 1-d-old postnatal chicks. This work is an extension of our previous immunofluorescence studies of the same system (Tokuyasu, K. T., P. A. Maher and S. J. Singer, 1984, J. Cell Biol., 98:1961-1972). In immature myotubes of 7-11-d embryos, significant labeling for desmin and vimentin was found only in intermediate filaments, and these proteins coexisted in the same individual filaments. Each of the two proteins was present in irregular clusters along the entire length of a filament. No exclusively vimentin- or desmin-containing filaments were observed at this stage. In the early myotubes, the intermediate filaments were essentially all longitudinally oriented, even when they contained three times as much desmin as vimentin. No special relationship was recognized between the dispositions of the filaments and the organization of the myofibrils. Occasionally, several myofibrils were already aligned in lateral registry at this early stage, but labeling for desmin and vimentin was largely absent at the level of the Z bands. Instead, the Z bands appeared to be covered by elements of the sarcoplasmic reticulum. The confinement of intermediate filaments to the level of the Z bands occurred in the myotubes of later embryos after the extensive lateral registry of the Z bands. Thus, intermediate filaments are unlikely to play a primary role in producing the lateral registration of myofibrils during myogenesis, but may be important in determining the polarization of the early myotube and the alignment of its organelles. Throughout the development of myotubes, desmin and vimentin remained in the form of intermediate filaments, although the number of filaments per unit volume of myotube appeared to be reduced as myofibrils increased in number in maturing myotubes. This observation indicated that the transverse orientation of intermediate filaments in mature myotubes does not result from the de novo polymerization of subunits from Z band to Z band, but a continuous shifting of the positions and directions of intact filaments.  相似文献   

10.
The distribution of isomyosin in cardiac muscle cells in culture has been investigated with monoclonal antibodies and Ca2+-activated myosin ATPase cytochemical staining. With immunofluorescent studies using monoclonal antibodies to isomyosins V1 and V3, the cardiac myocytes grown in a serum-free and thyroxine (T4)-free medium for 7 days contained a predominant population of cells which were strongly reactive to anti-V3 antibody. A small population of myocytes in this culture exhibited weak or no reaction to anti-V3 antibody. When cultures were exposed to anti-V1 antibody, the predominant cardiac myocyte population showed little or no reactivity to this antibody, whereas a small population of the myocytes were strongly reactive. The myosin ATPase staining reaction of the positive myocyte population was significantly less pronounced than that of the V3-negative population which showed a strong reaction. The staining pattern changed dramatically after exposure of cultured myocytes to thyroid hormone for 7 days. Most of the cells were found to react strongly with anti-V1 antibody, while some cells showed little reactivity and some were not stained at all. A small number of cardiac myocytes in this culture showed little or no reactivity to anti-V1 antibody but were strongly reactive to anti-V3 antibody. The predominant anti-V1-positive myocyte population exhibited strong myosin ATPase staining as compared to a smaller V3-positive myocyte population which showed very weak staining. The cytochemical results of ATPase staining in cardiac myocytes agreed well with ATPase activity as determined on pyrophosphate gels containing isomyosin derived from cultured cardiac myocytes with or without T4. This study has demonstrated that cultured myocytes contain a small population of muscle cells which is not responsive to thyroid hormone or to the lack of it.  相似文献   

11.
《The Journal of cell biology》1984,98(6):1961-1972
Antibodies against chicken erythrocyte vimentin and gizzard desmin were affinity purified and then cross-absorbed with the heterologous antigen. They were used to study the in vivo distributions of these proteins in developing and mature myotubes by immunofluorescence microscopy of 0.5-2-micron frozen sections of iliotibialis muscle in 7- 21-day chick embryos, neonatal and 1-d postnatal chicks, and adult chickens. The distributions of vimentin and desmin were coincidental throughout the development of myotubes, but the concentration of vimentin was gradually reduced as the myotubes matured and became largely undetectable at the time of hatching. The process of confining these proteins to the level of Z line from the initial uniform distribution occurred subsequent to the process of bringing myofibrils into lateral registry: in-register lateral association of several myofibrils was occasionally seen as early as in 7-11-d embryos, whereas the cross-striated immunofluorescence pattern of desmin and vimentin was only vaguely discerned in myotubes of 17-d embryos, just 4 d before hatching. In some myotubes of 21-d embryos, myofibrils were in lateral registry as precisely as in adult myofibers but desmin was still widely distributed around Z line in an irregular manner. Nevertheless, in many other myotubes of prenatal or neonatal chicks, desmin became confined to the level of Z line in a manner similar to that seen in adult myofibers, thus essentially completing its redistribution to the confined state of adult myofibers in coincidence with the time of hatching. In extracts from iliotibialis and posterior latissimus dorsi muscles of adult chickens, we detected a hitherto unidentified protein that was very similar to vimentin in molecular weight but did not react with our antivimentin antibody. We discuss the possibility that this protein was confused with vimentin in the past.  相似文献   

12.
Summary A long-term cell culture system for adult cardiomyopathic hamster cardiac muscle cells has been established. The diseased and control hearts were dissociated into single cell suspension with the modifications of our previous technique using collagenase and hyaluronidase as applied to the dissociation of the adult rat heart. The postperfusion of the diseased heart with Krebs-Ringer phosphate buffer and bovine serum albumin was very helpful in obtaining greater yield of viable diseased muscle cells; the cells were cultured for 4 wk. Approximately 60% of the myocytes from the diseased heart and 85% of the myocytes from the normal heart attached to the substrates and survived throughout the culture period. Approximately 60 to 70% of the cardiac myocytes from the diseased and control hearts were bi- or multinucleated; 30% of the diseased and 80% of the normal myocytes showed rhythmic contractility. Electron microscopy revealed the presence of two kinds of cardiac muscle cells in the diseased cell culture on the basis of their myofibril content: one with scanty myofibrils and another with abundant myofibrils. Myocytes with sparse myofibrils showed certain characteristic features that included autophagic vacuoles, amorphous matrix of fine filamentous texture, scattered strips of myofibrils, and abnormal organization of the Z-line. Cardiac muscle cells with abundant myofibrillar content contained unorganized myofibrils in certain sarcomeres. These studies demonstrate the feasibility of maintaining diseased cardiac muscle cells from adult cardiomyopathic hamsters for at least 4 wk in monolayer culture. This study was supported by a grant from the American Heart Association of Michigan, National Institutes of Health grant HL-25482, and by an Oakland University Biomedical Research Support Grant.  相似文献   

13.
Indirect immunofluorescence was used to study the temporal appearance and spatial distribution of desmin during the myogenesis of the embryos of Cynops orientalis. Desmin is undetectable until stage 25. In stage 25 embryo, it can be seen that desmin is restrictively distributed at both ends of columnar cells, near the boundary between two somites and intense in the cells near by the notochord. From stage 26 to stage 30, the amount of desmin is increased and its distribution pattern shows little change (Plate I, Figs. 1-2). At stage 32 desmin can be detected in the cells more distal to the notochord and forms filaments on the inside of the cell membrane parallel to the long axis of the cell (Plate I, Fig. 3 and 5). Desmin filaments extend gradually from the both ends toward the mid-part of the cell (Plate I, Fig. 6 and Plate II, Figs. 7, 11-13). At about stage 40 the whole cell is filled with desmin filaments and the attachment of desmin to Z line can occasionally be detected (Plate II, Fig. 8). Desmin attached to Z line is increased at stage 41 (Plate II, Fig. 9) and at stage 43 most of the desmin is found attached to Z line (Plate II, Fig.10). According to EM observation, Z line structure can be seen in stage 33 embryo (Wang[18]), but desmin remains in the filament form till stage 40. The transference of desmin distribution pattern from filament to Z line occurs somewhat later than the appearance of scattered sarcomeres. The possibility that notochord may be the main factor which influences the spatial localization of desmin was analyzed. The relationship between the transference of desmin from filament to Z line attached form and the quantitative changes of both desmin and sarcomere was discussed.  相似文献   

14.
Antibodies raised against chicken gizzard smooth muscle desmin were shown to be specific by immunofluorescence cytochemistry and immunoautoradiography after two-dimensional polyacrylamide gel electrophoresis. Embryonic chick heart cell cultures (permeabilized with Triton X-100) and enucleated adult chicken erythrocyte ghosts (Granger, B. L., E. A. Rapasky, and E. Lazarides, 1982, J. Cell Biol. 92:299-312) were then used for immunoelectronmicroscopic localization of desmin. As expected, all intermediate filaments (IF) of the cardiac myocytes were labeled heavily and uniformly with the desmin antibodies. No periodicity or helicity was detectable along the labeled IF. Of interest was the intermittent but clear labeling of the IF of the nonmuscle, fibroblastic cells in the identical cultures. These antibodies did not bind vimentin from embryonic chick heart homogenates; furthermore, they did not label IF of avian erythrocytes known to contain vimentin but not desmin. We conclude that IF of cardiac fibroblastic cells contain low, but significant, concentrations of desmin and that this protein probably forms a copolymer with vimentin in these cells.  相似文献   

15.
Desmin, a muscle-specific intermediate filament protein, is expressed in all muscle tissues. Its absence leads to a multisystemic disorder involving cardiac, skeletal, and smooth muscles. In skeletal muscle, structural abnormalities include lack of alignment of myofibrils, Z disk streaming, and focal muscle degeneration. In this study, we have examined the consequences of an absence of desmin on the mechanisms of regeneration and the integrity of the neuromuscular junction. The muscles of desmin knock-out and wild-type mice were made to regenerate by injecting cardiotoxin and were examined 7 to 42 days following the injection. The absence of desmin resulted in a delayed and modified regeneration and an accumulation of adipocytes. This was associated with a persistence of small diameter muscle fibers containing both N-CAM and developmental myosin isoforms. The amount of the slow myosin was increased, whereas there was a decrease in the fast isoform in the regenerated muscles of desmin knock-out mice. Both regeneration and aging led to the appearance of elongated neuromuscular junctions with diffuse acetylcholinesterase staining and a decrease in the overall acetylcholinesterase activity in the muscles of these mice. The neuromuscular junctions were markedly disorganised and in some cases postjunctional folds were absent. We conclude that desmin is essential for terminal muscle regeneration, maturation of muscle fibers, and maintaining the complex folded structure of the postsynaptic apparatus of the neuromuscular junctions.  相似文献   

16.
17.
An increase in intermediate filaments has been reported in rat uterine stromal cells undergoing decidualization in vivo and in vitro. In order to identify biochemical correlates of this morphological change, we have identified (two dimensional gel electrophoresis, Western blots, indirect immunofluorescent staining) the constitutive intermediate filament proteins of stromal cells decidualizing in vivo and isolated stroma decidualizing in vitro as vimentin and desmin. Vimentin is common to all uterine stromal cells but increases, proportional to total cell protein, in decidualized stroma. Barely detectable in nondecidualized stroma, desmin, unlike vimentin, increases during decidualization at a rate greater than the increase in total cell protein. Neither the increase in vimentin or desmin is observed in hormonally sensitized, nondecidual stromal cells. Desmin, because it is selectively expressed in decidualizing stroma, could be considered unique enough to serve as a marker of decidual cell differentiation.  相似文献   

18.
Role of desmin filaments in chicken cardiac myofibrillogenesis   总被引:3,自引:0,他引:3  
Desmin filaments are muscle-specific intermediate filaments located at the periphery of the Z-discs, and they have been postulated to play a critical role in the lateral registration of myofibrils. Previous studies suggest that intermediate filaments may be involved in titin assembly during the early stages of myofibrillogenesis. In order to investigate the putative function of desmin filaments in myofibrillogenesis, rabbit anti-desmin antibodies were introduced into cultured cardiomyocytes by electroporation to perturb the normal function of desmin filaments. Changes in the assembly of several sarcomeric proteins were examined by immunofluorescence. In cardiomyocytes incorporated with normal rabbit serum, staining for alpha-actinin and muscle actin displayed the typical Z-line and I-band patterns, respectively, while staining for titin with monoclonal anti-titin A12 antibody, which labels a titin epitope at the A-I junction, showed the periodic doublet staining pattern. Staining for C-protein gave an amorphous pattern in early cultures and identified A-band doublets in older cultures. In contrast, in cardiomyocytes incorporated with anti-desmin antibodies, alpha-actinin was found in disoriented Z-discs and the myofibrils became fragmented, forming mini-sarcomeres. In addition, titin was not organized into the typical A-band doublet, but appeared to be aggregated. Muscle actin staining was especially weak and appeared in tiny clusters. Moreover, in all ages of cardiomyocytes tested, C-protein remained in the disassembled form. The present data suggest the essential role of desmin in myofibril assembly.  相似文献   

19.
Monoclonal antibodies ( McAbs ) have been generated against a preparation of intermediate filament proteins (IFP) from adult chicken gizzard. Two antibodies, D3 and D76 , have been characterized in detail. They bind specifically to desmin but recognize different epitopes. In the adult chicken, both McAbs produced equivalent immunofluorescent staining patterns, reacting in frozen sections with all forms of muscle tissue, including vascular smooth muscle, but with no other tissue types. In isolated skeletal myofibrils and in longitudinal frozen sections of cardiac and skeletal muscle, desmin was detected with both McAbs at the Z-band and in longitudinally-oriented filament bundles between myofibrils. In contrast to these results in the adult, the intermediate filaments (IF) of embryonic cardiac myocytes in primary cultures were decorated only with McAb D3, whereas McAb D76 was completely unreactive with these cells. Similarly, frozen sections through the heart at early stages of embryonic chick development (Hamburger-Hamilton stages 17-18) revealed regions of myocytes, identified by double immunofluorescence with myosin-specific McAbs , that were unstained with McAb D76 even though similar regions were stained by McAb D3. That McAb D76 reacted with desmin in all adult cardiac myocytes but not with all embryonic heart cells indicates that embryonic and adult cardiac IF are immunologically distinct and implies a conversion in IF immunoreactivity during cardiac development.  相似文献   

20.
Recessive mutant gene c for "cardiac nonfunction" in axolotls results in an absence of normal heart contractions in affected embryos due to a failure of myofibril formation. In the present study, the intermediate filament protein, desmin, is compared in developing normal and mutant hearts by means of two-dimensional gel electrophoresis, immunofluorescent microscopy, and immunoelectron microscopy. Tissues were fixed in periodate-lysine-paraformaldehyde or paraformaldehyde-glutaraldehyde solutions and rapidly frozen or embedded in Lowicryl resin. Frozen sections stained with FITC-conjugated antibodies by an indirect approach revealed that desmin is localized in the I-band regions of adult cardiac myofibrils. In normal embryonic hearts at stage 32 (preheartbeat) desmin is localized as "spots" or amorphous collections in the cells. As development progresses to stage 35, staining for desmin in normal hearts becomes more intense with localization being most pronounced at the cell peripheries. By stage 41 most of the desmin in normal hearts is localized in the I band areas of the organized myofibrils and the staining of amorphous areas is much less prominent. During early development, the distribution of desmin in mutant hearts is similar to normal. However, while most of the desmin in normal organs at stage 41 is associated with myofibrils, the staining remains diffuse in mutants. Two-dimensional gel electrophoresis reveals comparable patterns for desmin from normal and mutant hearts. Immunogold staining shows desmin localization to be between the myofibrils and around the I-band regions in adult cardiac muscle and in stage 41 normal embryonic hearts. Immunogold staining confirms a diffuse distribution of desmin in mutant hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号