首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S W Englander  A J Wand 《Biochemistry》1987,26(19):5953-5958
A strategy for assigning the resonances in two-dimensional (2D) NMR spectra of proteins is described. The method emphasizes the analysis of through-space relationships between protons by use of the two-dimensional nuclear Overhauser effect (NOE) experiment. NOE patterns used in the algorithm were derived from a statistical analysis of the combinations of short proton-proton distances observed in the high-resolution crystal structures of 21 proteins. One starts with a search for authentic main-chain NH-C alpha H-C beta H J-coupled units, which can be found with high reliability. The many main-chain units of a protein are then placed in their proper juxtaposition by recognition of predefined NOE connectivity patterns. To discover these connectivities, the 2D NOE spectrum is examined, in a prescribed order, for the distinct NOE patterns characteristic of helices, sheets, turns, and extended chain. Finally, the recognition of a few amino acid side-chain types places the discovered secondary structure elements within the polypeptide sequence. Unlike the sequential assignment approach, the main-chain-directed strategy does not rely on the difficult task of recognizing many side-chain spin systems in J-correlated spectra, the assignment process is not in general sequential with the polypeptide chain, and the prescribed connectivity patterns are cyclic rather than linear. The latter characteristic avoids ambiguous branch points in the analysis and imposes an internally confirmatory property on each forward step.  相似文献   

2.
D L Di Stefano  A J Wand 《Biochemistry》1987,26(23):7272-7281
The 1H resonances of human ubiquitin were studied by two-dimensional nuclear magnetic resonance techniques. A recently introduced assignment algorithm termed the main chain directed (MCD) assignment [Englander, S. W., & Wand, A. J. (1987) Biochemistry 26, 5953-5958] was applied. This approach relies on an ordered series of searches for prescribed patterns of connectivities in two-dimensional J-correlated and nuclear Overhauser effect spectra and centers on the dipolar interactions involving main-chain amide NH, alpha-CH, and beta-CH. Unlike the sequential assignment procedure, the MCD approach does not rest upon definition of side-chain J-coupled networks and is generally not sequential with the primary sequence of the protein. The various MCD patterns and the general algorithm are reiterated and applied to the analysis of human ubiquitin. With this algorithm, the vast majority of amino acid residue amide NH-C alpha H-C beta H J-coupled subspin systems could be associated with and aligned within units of secondary structure without any knowledge of the identity of the side chains. This greatly simplified recognition of side-chain spin systems by restricting their identity. Essentially complete resonance assignments are presented. The MCD method is compared with the sequential assignment method in some detail. The MCD method is highly amenable to automation. Human ubiquitin is found, at pH 5.8 and 30 degrees C, to be composed of an extensive beta-sheet structure involving five strands. Three of these strands form an antiparallel set sharing a common strand and have a parallel orientation to two antiparallel strands. Two helical segments were also observed. The largest, spanning 13 residues, shows dipolar interactions consistent with an alpha-helix while the smaller 4-residue helical segment appears, on the basis of observed nuclear Overhauser effects, to be a 3(10) helix. Five classical tight turns could be demonstrated.  相似文献   

3.
A computer-assisted procedure has been developed to apply the main chain directed (MCD) assignment strategy to the analysis of 1H NMR spectra of proteins. The underlying mathematical foundation of this procedure, termed MCDPAT, is presented. MCDPAT is based upon the expanded library of MCD patterns defined previously (A.J. Wand and S.J. Nelson. 1991. Biophys. J. 59:1101-1112), and has been evaluated with both simulated and experimental data from the protein ubiquitin. The influence of the precision, spectral variation, and inherent degeneracy upon the design of the procedure is explored. Several approaches have been taken to overcome the uncertainty introduced by these variables. These include a hierarchical approach to both primary pattern recognition and subsequent construction of MCD-defined units of secondary structure. It is shown that the MCDPAT procedure, in conjunction with automated statistically based spectral analysis, leads to the successful MCD assignment of the protein ubiquitin. The implications and limitations of this approach are discussed.  相似文献   

4.
Summary A suite of computer programs (CLAIRE) is described which can be of assistance in the process of assigning 2D1H NMR spectra of proteins. The programs embody a software implementation of the sequential assignment approach first developed by Wüthrich and co-workers (K. Wüthrich. G. Wider, G. Wagner and W. Braun (1982)J. Mol. Biol. 155, 311). After data-abstraction (peakpicking), the software can be used to detect patterns (spin systems), to find cross peaks between patterns in 2D NOE data sets and to generate assignments that are consistent with all available data and which satisfy a number of constraints imposed by the user. An interactive graphics program calledCONPAT is used to control the entire assignment process as well as to provide the essential feedback from the experimental NMR spectra. The algorithms are described in detail and the approach is demonstrated on a set of spectra from the mistletoe protein phoratoxin B, a homolog of crambin. The results obtained compare well with those reported earlier based entirely on a manual assignment process.  相似文献   

5.
The increase in dimensionality of three-dimensional (3D) NMR greatly enhances the spectral resolution in comparison to 2D NMR. It alleviates the problem of resonance overlap and may extend the range of molecules amenable to structure determination by high-resolution NRM spectroscopy. Here, we present strategies for the assignment of protein resonances from homonuclear nonselective 3D NOE-HOHAHA spectra. A notation for connectivities between protons, corresponding to cross peaks in 3D spectra, is introduced. We show how spin systems can be identified by tracing cross-peak patterns in cross sections perpendicular to the three frequency axes. The observable 3D sequential connectivities in proteins are tabulated, and estimates for the relative intensities of the corresponding cross peaks are given for alpha-helical and beta-sheet conformations. Intensities of the cross peaks in the 3D spectrum of pike III parvalbumin follow the predictions. The sequential-assignment procedure is illustrated for loop regions, extended and alpha-helical conformations for the residues Ala 54-Leu 63 of parvalbumin. NOEs that were not previously identified in 2D spectra of parvalbumin due to overlap are found.  相似文献   

6.
Determination of the high resolution solution structure of a protein using nuclear magnetic resonance (NMR) spectroscopy requires that resonances observed in the NMR spectra be unequivocally assigned to individual nuclei of the protein. With the advent of modern, two-dimensional NMR techniques arose methodologies for assigning the1H resonances based on 2D, homonuclear1H NMR experiments. These include the sequential assignment strategy and the main chain directed strategy. These basic strategies have been extended to include newer 3D homonuclear experiments and 2D and 3D heteronuclear resolved and edited methods. Most recently a novel, conceptually new approach to the problem has been introduced that relies on heteronuclear, multidimensional so-called triple resonance experiments for both backbone and sidechain resonance assignments in proteins. This article reviews the evolution of strategies for the assignment of resonances of proteins.  相似文献   

7.
Summary Simulated neural networks are described which aid the assignment of protein NMR spectra. A network trained to recognize amino acid type from TOCSY data was trained on 148 assigned spin systems from E. coli acyl carrier proteins (ACPs) and tested on spin systems from spinach ACP, which has a 37% sequence homology with E. coli ACP and a similar secondary structure. The output unit corresponding to the correct amino acid is one of the four most activated units in 83% of the spin systems tested. The utility of this information is illustrated by a second network which uses a constraint satisfaction algorithm to find the best fit of the spin systems to the amino acid sequence. Application to a stretch of 20 amino acids in spinach ACP results in 75% correct sequential assignment. Since the output of the amino acid type identification network can be coupled with a variety of sequential assignment strategies, the approach offers substantial potential for expediting assignment of protein NMR spectra.  相似文献   

8.
Summary Biosynthetically directed fractional incorporation of13C into proteins results in nonrandom13C-labeling patterns that can be investigated by analysis of the13C–13C scalar coupling fine structures in heteronuclear13C–1H or homonuclear13C–13C correlation experiments. Previously this approach was used for obtaining stereospecific1H and13C assignments of the diastereotopic methyl groups of valine and leucine. In the present paper we investigate to what extent the labeling patterns are characteristic for other individual amino acids or groups of amino acids, and can thus be used to support the1H spin-system identifications. Studies of the hydrolysates of fractionally13C-labeled proteins showed that the 59 aliphatic carbon positions in the 20 proteinogenic amino acids exhibit 16 different types of13C–13C coupling fine structures. These provide support for the assignment of the resonances of all methyl groups in a protein, which are otherwise often poorly resolved in homonuclear1H NMR spectra. In particular, besides the individual methyl assignments in Val and Leu, unambiguous distinctions are obtained between the methyl groups of Ala and Thr, and between the - and -methyl groups of Ile. In addition to the methyl resonances, the CH2 groups of Glu and Gln can be uniquely assigned because of the large coupling constant with the -carbon, and the identification of most of the other spin systems can be supported on the basis of coupling patterns that are common to small groups of amino acid residues.Abbreviations NOE nuclear Overhauser effect - fractional13C labeling biosynthetically directed fractional13C-labeling - TOCSY total correlation spectroscopy - ROESY rotating frame Overhauser enhancement spectroscopy - [13C,1H]-COSY two-dimensional13C–1H correlation spectroscopy - isotopomer isotope isomer - P22 c2 repressor c2 repressor of the salmonella phage P22 consisting of a polypeptide chain with 216 residues - P22 c2(1-76) N-terminal domain of the P22 c2 repressor with residues 1–76  相似文献   

9.
The use of multiple quantum filters for simplification and editing of one-dimensional 1H NMR spectra of proteins is demonstrated. Three, four and five quantum-filtered spectra have been recorded. The technique is applicable to proteins of molecular weight up to at least 18,000. Examples obtained for a mixture of amino acids and for the proteins plastocyanin and myoglobin are reported. A remarkable degree of spectral editing can be achieved by judicious choice of experimental parameters.  相似文献   

10.
Summary An algorithm based on the technique of combinatorial minimization is used for the semi-automated assignment of multidimensional heteronuclear spectra. The program (ALFA) produces the best assignment compatible with the available input data. Even partially misleading or missing data do not seriously corrupt the final assignment. Ambiguous sequences of the possible assignment and all alternatives are indicated. The program can also use additional non-spectroscopic data to assist in the assignment procedure. For example, information from the X-ray structure of the protein and/or information about the secondary structure can be used. The assignment procedure was tested on spectra of mucous trypsin inhibitor, a protein of 107 residues.  相似文献   

11.
M Ikura  L E Kay  A Bax 《Biochemistry》1990,29(19):4659-4667
A novel approach is described for obtaining sequential assignment of the backbone 1H, 13C, and 15N resonances of larger proteins. The approach is demonstrated for the protein calmodulin (16.7 kDa), uniformly (approximately 95%) labeled with 15N and 13C. Sequential assignment of the backbone residues by standard methods was not possible because of the very narrow chemical shift distribution range of both NH and C alpha H protons in this largely alpha-helical protein. We demonstrate that the combined use of four new types of heteronuclear 3D NMR spectra together with the previously described HOHAHA-HMQC 3D experiment [Marion, D., et al. (1989) Biochemistry 28, 6150-6156] can provide unambiguous sequential assignment of protein backbone resonances. Sequential connectivity is derived from one-bond J couplings and the procedure is therefore independent of the backbone conformation. All the new 3D NMR experiments use 1H detection and rely on multiple-step magnetization transfers via well-resolved one-bond J couplings, offering high sensitivity and requiring a total of only 9 days for the recording of all five 3D spectra. Because the combination of 3D spectra offers at least two and often three independent pathways for determining sequential connectivity, the new assignment procedure is easily automated. Complete assignments are reported for the proton, carbon, and nitrogen backbone resonances of calmodulin, complexed with calcium.  相似文献   

12.
The application of the (31)P NMR spectroscopy to large proteins or protein complexes in solution is hampered by a relatively low intrinsic sensitivity coupled with large line widths. Therefore, the assignment of the phosphorus signals by two-dimensional NMR methods in solution is often extremely time consuming. In contrast, the quality of solid-state NMR spectra is not dependent on the molecular mass and the solubility of the protein. For the complex of Ras with the GTP-analogue GppCH(2)p we show solid-state (31)P NMR methods to be more sensitive by almost one order of magnitude than liquid-state NMR. Thus, solid-state NMR seems to be the method of choice for obtaining the resonance assignment of the phosphorus signals of protein complexes in solution. Experiments on Ras.GDP complexes show that the microcrystalline sample can be substituted by a precipitate of the sample and that unexpectedly the two structural states observed earlier in solution are present in crystals as well.  相似文献   

13.
A new antibiotic peptide, trichorzianine A1, was isolated from a culture of Trichoderma harzianum. It contains 19 residues, the N terminus is blocked by an acetyl group and the C terminus is tryptophanol. As a first part of the structural study of this new peptide, we here present the analysis of the 1H NMR spectrum accomplished by 2 DJ resolved and spin echo correlated spectroscopy.  相似文献   

14.
Standard Eucheuma denticulatum ι-carrageenan was degraded with the Alteromonas fortis ι-carrageenase. The most abundant products, the neo-ι-carratetraose and neo-ι-carrahexaose were purified by permeation gel chromatography, and their corresponding 1H and 13C NMR spectra were fully assigned.  相似文献   

15.
A double quantum filter is inserted into a two-dimensional correlated (COSY) 1H NMR experiment to obtain phase-sensitive spectra in which both cross peak and diagonal peak multiplets have anti-phase fine structure, and in which the cross peaks and the major contribution to the diagonal peaks have absorption lineshapes in both dimensions. The elimination of the dispersive character of the diagonal peaks in phase-sensitive, double quantum-filtered COSY spectra allows identification of cross peaks lying immediately adjacent to the diagonal, which represents a significant improvement over the conventional COSY experiment.  相似文献   

16.
A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra (“good connections”), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra (“bad connections”), and minimizing the number of assigned peaks that have no matching peaks in the other spectra (“edges”). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct assignment for a larger number of residues. On the other hand, when there are multiple equally good assignments that are significantly different from each other, the modified NSGA-II is less efficient than MC/SA in finding all the solutions. This problem is solved by a combined NSGA-II/MC algorithm, which appears to have the advantages of both NSGA-II and MC/SA. This combination algorithm is robust for the three most difficult chemical shift datasets examined here and is expected to give the highest-quality de novo assignment of challenging protein NMR spectra.  相似文献   

17.
A new strategy for the simultaneous NMR assignment of both backbone and side chain amides in large proteins with isotopomer-selective transverse-relaxation-optimized spectroscopy (IS-TROSY) is reported. The method considers aspects of both the NMR sample preparation and the experimental design. First, the protein is dissolved in a buffer with 50%H2O/50%D2O in order to promote the population of semideuterated NHD isotopomers in side chain amides of Asn/Gln residues. Second, a 13C′-coupled 2D 15N–1H IS-TROSY spectrum provides a stereospecific distinction between the geminal protons in the E and Z configurations of the carboxyamide group. Third, a suite of IS-TROSY-based triple-resonance NMR experiments, e.g. 3D IS-TROSY-HNCA and 3D IS-TROSY-HNCACB, are designed to correlate aliphatic carbon atoms with backbone amides and, for Asn/Gln residues, at the same time with side chain amides. The NMR assignment procedure is similar to that for small proteins using conventional 3D HNCA/3D HNCACB spectra, in which, however, signals from NH2 groups are often very weak or even missing due to the use of broad-band proton decoupling schemes and NOE data have to be used as a remedy. For large proteins, the use of conventional TROSY experiments makes resonances of side chain amides not observable at all. The application of IS-TROSY experiments to the 35-kDa yeast cytosine deaminase has established a complete resonance assignment for the backbone and stereospecific assignment for side chain amides, which otherwise could not be achieved with existing NMR experiments. Thus, the development of IS-TROSY-based method provides new opportunities for the NMR study of important structural and biological roles of carboxyamides and side chain moieties of arginine and lysine residues in large proteins as well as amino moieties in nucleic acids.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

18.
The important role played by chemical exchange in solving the proton assignment problem for oxidized and reduced horse cytochrome c is described. Some novel approaches for establishing oxidation-reduction exchange correlations in combinations of several two-dimensional spectra were used. Unambiguous chemical exchange correlations were established for 55 NH-C alpha H resonances and all the aromatic and side chain methyl resonances. Consistent although not fully unambiguous main chain proton correlations were observed for 47 of the remaining 49 residues. The many exchange correlations found serve to multiply cross-connect the two extensive, individually self-consistent networks of assignments found for the oxidized and reduced forms, and thus help to confirm both sets of assignments.  相似文献   

19.
The 1H- and 13C-nmr spectra of mestranol were assigned with the help of a 2 D-J-resolved, a 2D spin echo J-correlated (SECSY) and a 2D 1H-13C hetero-shift correlation experiment. The analysis of the spectra facilitated the identification of some of the photodecomposition products of mestranol. It was shown that, upon irradiation with UV-B light in water-ethanol (1:1, v/v), products are formed by oxidation of rings B and C of the steroid.  相似文献   

20.
The determination of the three-dimensional structure of a protein or the study of protein–ligand interactions requires the assignment of all relevant nuclei as an initial step. This is nowadays almost exclusively performed using triple-resonance experiments. The conventional strategy utilizes one or more pairs of three dimensional spectra to obtain redundant information and thus reliable assignments. Here, a modified strategy for obtaining sequence specific assignments based on two dimensional amino acid type selective triple-resonance experiments is proposed. These experiments can be recorded with good resolution in a relatively short time. They provide very specific and redundant information, in particular on sequential connectivities, that drastically increases the ease and reliability of the assignment procedure, done either manually or in an automated fashion. The new strategy is demonstrated with the protein domain PB1 from yeast CDC24p. Dedicated to Rüdiger Winter ( 06.04.2004)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号