首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been widely accepted that microglia, the innate immune cells in the brain, can be chronically activated in response to neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which has been considered as the main reason responsible for the progressive nature of neurodegenerative diseases. In the present study, it was found that LPS (lipopolysaccharide) significantly induced the activation of N9 microglia, and the increase of NO level induced by pretreatment of LPS could last after the removal of LPS. The culture medium of activated microglia significantly decreased the viability of rat primary cortical neuron. These results can be blocked by the antioxidant N-acetylcysteine (NAC) and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase inhibitor diphenyleneiodonium sulfate (DPI), suggesting that intracellular reactive oxide species (iROS) released from the activated microglial cells may continue to further activate microglia. Next, it was shown that the iROS level increased rapidly after the LPS treatment in microglia cells followed by the NO production through the regulation of iNOS (inducible nitric oxide synthase) expression. The increase of iROS could be reversed by gp91phox (the critical and catalytic subunit of NADPH oxidase) siRNA. Moreover, NO released from sodium nitroprusside (SNP) was able to increase the iROS production of N9 microglia by regulating of the activity and the expression of NADPH oxidase. In conclusion, our research suggests for the first time that there may exist a self-propelling cycle in microglial cells possibly mediated by iROS and NO when they become activated by LPS. It may be responsible partially for the ongoing microglial activation and the progressive nature of neurodegenerative diseases.  相似文献   

2.
3.
Microglial activation is known to be an important event during innate immunity, but microglial inflammation is also thought to play a role in the etiology of neurodegenerative diseases. Recently, it was reported that autophagy could influence inflammation and activation of microglia. However, little is known about the regulation of autophagy during microglial activation. In this study, we demonstrated that mitochondrial fission-induced ROS can promote autophagy in microglia. Following LPS-induced autophagy, GFP-LC3 puncta were increased, and this was suppressed by inhibiting mitochondrial fission and mitochondrial ROS. Interestingly, inhibition of mitochondrial fission and mitochondrial ROS also resulted in decreased p62 expression, but Beclin1 and LC3B were unaffected. Taken together, these results indicate that ROS induction due to increased LPS-stimulated mitochondrial fission triggers p62 mediated autophagy in microglial cells. Our findings provide the first important clues towards understanding the correlation between mitochondrial ROS and autophagy.

Abbreviations: Drp1; Dynamin related protein 1, LPS; Lipopolysaccharide, ROS; Reactive Oxygen Species, GFP; Green Fluorescent Protein, CNS; Central Nervous System, AD; Alzheimer’s Disease, PD; Parkinson’s Disease, ALIS; Aggresome-like induced structures, iNOS; inducible nitric oxide synthase, Cox-2; Cyclooxygenase-2, MAPK; Mitogen-activated protein kinase; SODs; Superoxide dismutase, GPXs; Glutathione Peroxidase, Prxs; Peroxiredoxins  相似文献   


4.
Brain immune cells, i.e., microglia, play an important role in the maintenance of brain homeostasis, whereas chronic overactivation of microglia is involved in the development of various neurodegenerative disorders. Therefore, the regulation of microglial activation may contribute to their treatment. The aim of the present study was to clarify the functional expression of carnitine/organic cation transporter OCTN1/SLC22A4, which recognizes the naturally occurring food-derived antioxidant ergothioneine (ERGO) as a substrate in vivo, in microglia and its role in regulation of microglial activation. Primary cultured microglia derived from wild-type mice (WT-microglia) and mouse microglial cell line BV2 exhibited time-dependent uptake of [3H]- or d9-labeled ERGO. The uptake was markedly decreased in cultured microglia from octn1 gene knockout mice (octn1 ?/?-microglia) and BV2 cells transfected with small interfering RNA targeting the mouse octn1 gene (siOCTN1). These results demonstrate that OCTN1 is functionally expressed in murine microglial cells. Exposure of WT-microglia to ERGO led to a significant decrease in cellular hypertrophy by LPS-stimulation with concomitant attenuation of intracellular reactive oxygen species (ROS), suggesting that OCTN1-mediated ERGO uptake may suppress cellular hypertrophy via the inhibition of ROS production with microglial activation. The expression of mRNA for interleukin-1β (IL-1β) after LPS-treatment was significantly increased in octn1 ?/?-microglia and siOCTN1-treated BV2 cells compared to the control cells. Meanwhile, treatment of ERGO minimally affected the induction of IL-1β mRNA by LPS-stimulation in cultured microglia and BV2 cells. Thus, OCTN1 negatively regulated the induction of inflammatory cytokine IL-1β, at least in part, via the transport of unidentified substrates other than ERGO in microglial cells.  相似文献   

5.
6.
Microglial activation is considered as a hallmark of several neurodegenerative disorders. During microglial activation, the expression of CD11b, the beta-integrin marker of microglia, is increased. However, the molecular mechanism behind increased microglial CD11b expression is poorly understood. The present study was undertaken to explore the role of reactive oxygen species (ROS) in the expression of CD11b in microglial cells. Bacterial lipopolysaccharide (LPS) stimulated the expression of CD11b in mouse BV-2 microglial cells and primary microglia, the effect that was blocked by antioxidants such as N-acetylcysteine (NAC) and pyrrolidine dithiocarbamate (PDTC). Furthermore, comicroinjection of either NAC or PDTC with LPS was also able to suppress LPS-stimulated expression of CD11b in striatum in vivo. Similarly, other neurotoxic molecules, such as interleukin-1beta (IL-1beta), IL-12 p40(2), fibrillar amyloid-beta (Abeta) peptides, HIV-1 gp120, and double-stranded RNA (poly(IC)), also stimulated the expression of CD11b in microglia through the involvement of ROS. Complete inhibition of LPS-stimulated expression of CD11b by catalase, induction of CD11b expression by H2O2 alone, and inhibition of superoxide-stimulated CD11b expression by catalase suggest that H2O2, but not superoxide, is in fact involved in the expression of CD11b. Interestingly, we also demonstrate that ROS stimulated the expression of CD11b after the induction of nitric oxide (NO) production and failed to stimulate CD11b when NO production was inhibited by either 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) or L-N6-(1-iminoethyl)-L-lysine (L-NIL). Taken together, these studies suggest that the up-regulation of CD11b in microglia is redox sensitive and that ROS up-regulates CD11b via NO.  相似文献   

7.
Alzheimer''s disease (AD) is a chronic neurodegenerative disease characterized by progressive neuronal loss and cognitive decline. Oligomeric amyloid β (oAβ) is involved in the pathogenesis of AD by affecting synaptic plasticity and inhibiting long-term potentiation. Although several lines of evidence suggests that microglia, the resident immune cells in the central nervous system (CNS), are neurotoxic in the development of AD, the mechanism whether or how oAβ induces microglial neurotoxicity remains unknown. Here, we show that oAβ promotes the processing of pro-interleukin (IL)-1β into mature IL-1β in microglia, which then enhances microglial neurotoxicity. The processing is induced by an increase in activity of caspase-1 and NOD-like receptor family, pyrin domain containing 3 (NLRP3) via mitochondrial reactive oxygen species (ROS) and partially via NADPH oxidase-induced ROS. The caspase-1 inhibitor Z-YVAD-FMK inhibits the processing of IL-1β, and attenuates microglial neurotoxicity. Our results indicate that microglia can be activated by oAβ to induce neuroinflammation through processing of IL-1β, a pro-inflammatory cytokine, in AD.  相似文献   

8.
Recently, matrix metalloproteinases (MMPs) are emerging as important molecules in neuroinflammation as well as neuronal cell death. However, the role of MMPs in activated microglia remains unclear. In the present study, we found that expressions of MMP-1, -3, -8 and -9 were significantly induced by single or combined treatment of immunostimulants lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) in primary cultured microglia and BV2 microglial cells. Inhibition of MMP-3 or -9 significantly suppressed the expression of iNOS and pro-inflammatory cytokines and the activities of NF-κB, AP-1, and MAPK in LPS-stimulated microglia. The results suggest that MMP-3 and -9 both mediate LPS-induced inflammatory reactions. Inhibition of reactive oxygen species (ROS) by N-acetyl-cysteine or diphenylene iodonium significantly suppressed the expression of MMP-3, MMP-9, NO and TNF-α in LPS-stimulated microglia, suggesting that ROS is an early signaling inducer in LPS-stimulated microglial cells. MMP inhibitors also suppressed ROS production, suggesting a cross-talk between ROS and MMPs. Collectively, the present study demonstrates that MMP-3 and MMP-9 play a role as inflammatory mediators in activated microglia. Pharmacological intervention of MMPs especially MMP-3 and -9 would be a therapeutic strategy for the treatment of inflammatory diseases in the CNS caused by over-activation of microglial cells.  相似文献   

9.
Microglia cells are essential for brain homeostasis and have essential roles in neurodegenerative diseases. Aging is the main risk factor for most neurodegenerative diseases, and age‐related changes in microglia may contribute to the susceptibility of the aging brain to dysfunction and neurodegeneration. We have analyzed morphology and dynamic behavior of neocortical microglia in their physiological environment in young adult (3‐month‐old), adult (11‐ to 12‐month‐old), and aged (26‐ to 27‐month‐old) C57BL/6J‐Iba1‐eGFP mice using in vivo 2‐photon microscopy. Results show that surveying microglial cells in the neocortex exhibit age‐related soma volume increase, shortening of processes, and loss of homogeneous tissue distribution. Furthermore, microglial process speed significantly decreased with age. While only a small population of microglia showed soma movement in adult mice, the microglia population with soma movement was increased in aged mice. However, in response to tissue injury, the dynamic microglial response was age‐dependently diminished. These results provide novel insights into microglial behavior and indicate that microglial dysfunction in the aging brain may contribute to age‐related cognitive decline and neurodegenerative diseases.  相似文献   

10.
Oxidative stress plays an important role in neurodegenerative diseases. Reactive oxygen species (ROS)-mediated stress in microglia in vivo could result in cellular injuries and preferentially induces neuronal injury. Corilagin, a novel member of the phenolic tannin family, has been shown to possess antioxidant properties. In this study, we investigated the effects of corilagin on tert-butyl hydroperoxide (TBHP)-induced injury in cultured N9 murine microglial cells and the underlying mechanisms by a methyltetrazolium assay and oxidative damage assay. We found that exposure of N9 cells to TBHP induced cytotoxicity as demonstrated by cell shrinkage, loss of cell viability, increased lactate dehydrogenase (LDH) leakage, and increased intracellular levels of ROS. By contrast, TBHP reduced both superoxide dismutase activity and total cell anti-oxidation capacity, but glutathione was not reduced. Moreover, TBHP treatment was associated with the loss of mitochondrial membrane potential, and it induced cell apoptosis through the mitochondrial-mediated pathway involving the down-regulation of Bcl-2 expression and up-regulation of the Bax/Bcl-2 ratio. Interestingly, pre-treatment with corilagin reversed these reactions. These data collectively indicated that corilagin could attenuate TBHP-induced oxidative stress injury in microglial cells, and its protective effects may be ascribed to its antioxidant and antiapoptotic properties. Our findings suggest that corilagin should be a potential candidate for the treatment of oxidative stress-induced neurodegenerative diseases.  相似文献   

11.
Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H(2)O(2)) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H(2)O(2)-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that up-regulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system.  相似文献   

12.
Microglia, major immune effector cells in the central nervous system, become activated during brain injury. In this study we showed that the blood component plasminogen/plasmin activates microglia. Plasminogen-induced IL-1beta, TNF-alpha, and iNOS mRNA expression in primary cultured rat microglia and BV2 murine microglial cells. Plasmin caused a similar response. Serine protease inhibitors suppressed both plasminogen- and plasmin-induced IL-1beta and TNF-alpha expression, indicating the importance of serine protease activity in plasminogen/plasmin activation of microglia. Reactive oxygen species (ROS) appeared to play an important role in plasminogen-induced microglial activation, with ROS being generated within 15min of plasminogen treatment, and antioxidants (100 microM trolox and 10mM NAC) reducing IL-1beta and TNF-alpha expression in plasminogen-treated cells. Furthermore, plasminogen stimulated CREB and NF-kappaB DNA binding activity, and this activation was also reduced by trolox and NAC. These results suggest that plasminogen activates microglia via stimulation of ROS production.  相似文献   

13.
Glutamate released by activated microglia induces excitoneurotoxicity and may contribute to neuronal damage in neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. In addition, tumor necrosis factor-alpha (TNF-alpha) secreted from activated microglia may elicit neurodegeneration through caspase-dependent cascades and silencing cell survival signals. However, direct neurotoxicity of TNF-alpha is relatively weak, because TNF-alpha also increases production of neuroprotective factors. Accordingly, it is still controversial how TNF-alpha exerts neurotoxicity in neurodegenerative diseases. Here we have shown that TNF-alpha is the key cytokine that stimulates extensive microglial glutamate release in an autocrine manner by up-regulating glutaminase to cause excitoneurotoxicity. Further, we have demonstrated that the connexin 32 hemichannel of the gap junction is another main source of glutamate release from microglia besides glutamate transporters. Although pharmacological blockade of glutamate receptors is a promising therapeutic candidate for neurodegenerative diseases, the associated perturbation of physiological glutamate signals has severe adverse side effects. The unique mechanism of microglial glutamate release that we describe here is another potential therapeutic target. We rescued neuronal cell death in vitro by using a glutaminase inhibitor or hemichannel blockers to diminish microglial glutamate release without perturbing the physiological glutamate level. These drugs may give us a new therapeutic strategy against neurodegenerative diseases with minimum adverse side effects.  相似文献   

14.
Neuroinflammation is an important pathological feature in neurodegenerative diseases. Accumulating evidence has suggested that neuroinflammation is mainly aggravated by activated microglia, which are macrophage like cells in the central nervous system. Therefore, the inhibition of microglial activation may be considered for treating neuroinflammatory diseases. p38 mitogen-activated protein kinase (MAPK) has been identified as a crucial enzyme with inflammatory roles in several immune cells, and its activation also relates to neuroinflammation. Considering the proinflammatory roles of p38 MAPK, its inhibitors can be potential therapeutic agents for neurodegenerative diseases relating to neuroinflammation initiated by microglia activation. This study was designed to evaluate whether NJK14047, a recently identified novel and selective p38 MAPK inhibitor, could modulate microglia-mediated neuroinflammation by utilizing lipopolysaccharide (LPS)-stimulated BV2 cells and an LPS-injected mice model. Our results showed that NJK14047 markedly reduced the production of nitric oxide and prostaglandin E2 by downregulating the expression of various proinflammatory mediators such as nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α and interleukin-1β in LPS-induced BV2 microglia. Moreover, NJK14047 significantly reduced microglial activation in the brains of LPS-injected mice. Overall, these results suggest that NJK14047 significantly reduces neuroinflammation in cellular/vivo model and would be a therapeutic candidate for various neuroinflammatory diseases.  相似文献   

15.
Many studies have shown that microglia in the activated state may be neurotoxic. It has been proven that uncontrolled or over-activated microglia play an important role in many neurodegenerative disorders. Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown in many animal models to have a therapeutic effect on neural damage. Such a therapeutic effect is attributed to the fact that BMSCs have the ability to differentiate into neurons and to produce trophic factors, but there is little information available in the literature concerning whether BMSCs play a therapeutic role by affecting microglial activity. In this study, we triggered an inflammatory response situation in vitro by stimulating microglia with the bacterial endotoxin lipopolysaccharide (LPS), and then culturing these microglia with BMSC-conditioned medium (BMSC-CM). We found that BMSC-CM significantly inhibited proliferation and secretion of pro-inflammatory factors by activated microglia. Furthermore, we found that the phagocytic capacity of microglia was also inhibited by BMSC-CM. Finally, we investigated whether the induction of apoptosis and the production of nitric oxide (NO) were involved in the inhibition of microglial activation. We found that BMSC-CM significantly induced apoptosis of microglia, while no apoptosis was apparent in the LPS-stimulated microglia. Our study also provides evidence that NO participates in the inhibitory effect of BMSCs. Our experimental results provide evidence that BMSCs have the ability to maintain the resting phenotype of microglia or to control microglial activation through their production of several factors, indicating that BMSCs could be a promising therapeutic tool for treatment of diseases associated with microglial activation.  相似文献   

16.
Chronic neurodegeneration is in part caused by a vicious cycle of persistent microglial activation and progressive neuronal cell loss. However, the driving force behind this cycle remains poorly understood. In this study, we used medium conditioned by necrotic differentiated-PC12 cells to confirm that damaged neurons can release soluble injury signals, including heat shock protein 60 (HSP60), to efficiently promote the neurotoxic cycle involving microglia. Since lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has previously been identified as a novel receptor for HSP60, we hypothesize that LOX-1 through binding to extracellular HSP60 promotes microglia-mediated neuroinflammation. In this study, we observed that LOX-1 expression is induced upon toxic microglial activation, and discovered that LOX-1 is necessary in microglia for sensing soluble neuronal injury signal(s) in the conditioned medium to induce generation of pro-inflammatory mediators (IL-1β, TNF-α, NO and ROS) that promote neurotoxicity. Employing a unique eukaryotic HSP60-overexpression method, we further demonstrated that extracellular HSP60 acts on microglial LOX-1 to boost the production of pro-inflammatory factors (IL-1β, NO and ROS) in microglia and to propagate neuronal damage. These results indicate that LOX-1 is essential in microglia for promoting an inflammatory response in the presence of soluble neuronal-injury signals such as extracellular HSP60, thereby linking neuroinflammation and neurotoxicity.  相似文献   

17.
Microglia, the primary resident immune cells of the central nervous system (CNS), exhibit dynamic behavior involving rapid process motility and cellular migration that is thought to underlie key functions of immune surveillance and tissue repair. Although age-related changes in microglial activation have been implicated in the pathogenesis of neurodegenerative diseases of aging, how dynamic behavior in microglia is influenced by aging is not fully understood. In this study, we employed live imaging of retinal microglia in situ to compare microglial morphology and behavioral dynamics in young and aged animals. We found that aged microglia in the resting state have significantly smaller and less branched dendritic arbors, and also slower process motilities, which probably compromise their ability to survey and interact with their environment continuously. We also found that dynamic microglial responses to injury were age-dependent. While young microglia responded to extracellular ATP, an injury-associated signal, by increasing their motility and becoming more ramified, aged microglia exhibited a contrary response, becoming less dynamic and ramified. In response to laser-induced focal tissue injury, aged microglia demonstrated slower acute responses with lower rates of process motility and cellular migration compared with young microglia. Interestingly, the longer term response of disaggregation from the injury site was retarded in aged microglia, indicating that senescent microglial responses, while slower to initiate, are more sustained. Together, these altered features of microglial behavior at rest and following injury reveal an age-dependent dysregulation of immune response in the CNS that may illuminate microglial contributions to age-related neuroinflammatory degeneration.  相似文献   

18.
Several neurodegenerative disorders are associated with evidence of inflammation, one feature of which is increased activation of microglia, the most likely cellular source of inflammatory cytokines like interleukin-1β. It is now recognized that interaction of microglia with other cells contributes to maintenance of microglia in a quiescent state and the complementary distribution of the chemokine, fractalkine (CX3CL1) on neurons and its receptor (CX3CR1) on microglia, suggests that this interaction may play a role in modulating microglial activation. Here we demonstrate that both soluble and membrane-bound fractalkine attenuate lipopolysaccharide-induced microglial activation in vitro. We also show that fractalkine expression is reduced in the brain of aged rats and this is accompanied by an age-related increase in microglial activation. Treatment of aged rats with fractalkine attenuates the age-related increase in microglial activation and the evidence indicates that fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway is required to maintain microglia in a quiescent state both in vivo and in vitro .  相似文献   

19.
Activated microglia and astroglia are known to be involved in a variety of neurodegenerative diseases, including prion diseases. In the present experiments, we studied activation of astroglia and microglia after intraocular scrapie infection in transgenic mice expressing prion protein (PrP) in multiple cell types (tg7 mice) or in neurons only (tgNSE mice). In this model, scrapie infection and protease-resistant PrP deposition occurs in the retinas of both strains of mice, but retinal degeneration is observed only in tg7 mice. Our results showed that the retinas of tg7 and tgNSE mice both had astroglial activation with increased chemokine expression during the course of infection. However, only tg7 retinas exhibited strong microglial activation compared to tgNSE retinas, which showed little microglial activation by biochemical or morphological criteria. Therefore, microglial PrP expression might be required for scrapie-induced retinal microglial activation and damage. Furthermore, microglial activation preceded retinal neurodegeneration in tg7 mice, suggesting that activated microglia might contribute to the degenerative process, rather than being a response to the damage. Surprisingly, brain differed from retina in that an altered profile of microglial activation markers was upregulated, and the profiles in the two mouse strains were indistinguishable. Microglial activation in the brain was associated with severe brain vacuolation and neurodegeneration, leading to death. Thus, retinal and brain microglia appeared to differ in their requirements for activation, suggesting that different activation pathways occur in the two tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号