首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
OBJECTIVE: The aim of this study was to investigate the expression of several cytokines, matrix metalloproteinases (MMPs), and tissue inhibitor of matrix metalloproteinases (TIMP)-1 in osteoarthritis (OA) and control sera and different joint tissues. METHODS: Serum, synovial fluid, cartilage, synovial and subchondral bone tissues were examined in OA and control subjects. The protein level of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1alpha, IL-8, IL-10 and MMP-2, MMP-3, MMP-9, and TIMP-1 were measured by immunoanalysis. RESULTS: Serum levels of TNF-alpha, MMP-3 and -9 were significantly higher in OA patients than in controls. Conversely, serum IL-10 was decreased in OA patients. CRP was elevated when compared to healthy controls and decreased significantly 6 months after the surgery. In contrast to control samples, OA cartilage and synovium revealed significantly higher MMP-2, -3, -9 and IL-10. IL-1alpha was significantly higher in OA cartilage and IL-8 in OA synovium. Interestingly, MMP-3, -9, TIMP-1 and all tested cytokines were up-regulated in OA subchondral bone. DISCUSSION: This study demonstrates pro-inflammatory condition of OA pathology and supports the idea that vascularized subchondral region may increase the synthesis of cytokines and MMPs leading to degradation of adjacent cartilage.  相似文献   

3.
4.
IL-16 as an anti-inflammatory cytokine in rheumatoid synovitis   总被引:7,自引:0,他引:7  
T lymphocytes are a major component of the inflammatory infiltrate in rheumatoid synovitis, but their exact role in the disease process is not understood. Functional activities of synovial T cells were examined by adoptive transfer experiments in human synovium-SCID mouse chimeras. Adoptive transfer of tissue-derived autologous CD8+ T cells induced a marked reduction in the activity of lesional T cells and macrophages. Injection of CD8+, but not CD4+, T cells decreased the production of tissue IFN-gamma, IL-1beta, and TNF-alpha by >90%. The down-regulatory effect of adoptively transferred CD8+ T cells was not associated with depletion of synovial CD3+ T cells or synovial CD68+ macrophages, and it could be blocked by Abs against IL-16, a CD8+ T cell-derived cytokine. In the synovial tissue, CD8+ T cells were the major source of IL-16, a natural ligand of the CD4 molecule that can anergize CD4-expressing cells. The anti-inflammatory activity of IL-16 in rheumatoid synovitis was confirmed by treating synovium-SCID mouse chimeras with IL-16. Therapy for 14 days with recombinant human IL-16 significantly inhibited the production of IFN-gamma, IL-1beta, and TNF-alpha in the synovium. We propose that tissue-infiltrating CD8+ T cells in rheumatoid synovitis have anti-inflammatory activity that is at least partially mediated by the release of IL-16. Spontaneous production of IL-16 in synovial lesions impairs the functional activity of CD4+ T cells but is insufficient to completely abrogate their stimulation. Supplemental therapy with IL-16 may be a novel and effective treatment for rheumatoid arthritis.  相似文献   

5.
The role of cytokines in osteoarthritis pathophysiology   总被引:54,自引:0,他引:54  
  相似文献   

6.
The prominence of T cells and monocyte/macrophages in rheumatoid synovium suggests T cells may localize and amplify the effector functions of monocyte/macrophages in rheumatoid disease. However, while T cells are abundant in rheumatoid joints, classic T-cell derived cytokines are scarce, especially when compared to the levels of monokines IL-1 beta and TNF-alpha. For this reason, it has been speculated that monocyte/macrophages may act independently of T cells in rheumatoid disease and that the role of T cells may be more or less irrelevant to core disease mechanisms. The question of T-cell influence requires re-evaluation in light of the characterization of IL-17, a T-cell derived cytokine that is abundant in rheumatoid synovium and synovial fluid. IL-17 has a number of pro-inflammatory effects, both directly and through amplification of the effects of IL-1 beta and TNF-alpha. IL-17 is able to induce expression of pro-inflammatory cytokines and stimulate release of eicosanoids by monocytes and synoviocytes. Furthermore, IL-17 has been implicated in the pathogenesis of inflammatory bone and joint damage through induction of matrix metalloproteinases and osteoclasts, as well as inhibition of proteoglycan synthesis. In animal models of arthritis, intra-articular injection of IL-17 results in joint inflammation and damage. The recognition of IL-17 as a pro-inflammatory T cell derived cytokine, and its abundance within rheumatoid joints, provides the strongest candidate mechanism to date through which T cells can capture and localize macrophage effector functions in rheumatoid arthritis. As such, IL-17 warrants consideration for its potential as a therapeutic target in rheumatoid arthritis.  相似文献   

7.
Macrophage inflammatory protein (MIP)-3alpha is a chemokine involved in the migration of T cells and immature dendritic cells. To study the contribution of proinflammatory cytokines and chemokines to the recruitment of these cells in rheumatoid arthritis (RA) synovium, we looked at the effects of the monocyte-derived cytokines IL-1beta and TNF-alpha and the T cell-derived cytokine IL-17 on MIP-3alpha production by RA synoviocytes. Addition of IL-1beta, IL-17, and TNF-alpha induced MIP-3alpha production in a dose-dependent manner. At optimal concentrations, IL-1beta (100 pg/ml) was much more potent than IL-17 (100 ng/ml) and TNF-alpha (100 ng/ml). When combined at lower concentrations, a synergistic effect was observed. Conversely, the anti-inflammatory cytokines IL-4 and IL-13 inhibited MIP-3alpha production by activated synoviocytes, but IL-10 had no effect. Synovium explants produced higher levels of MIP-3alpha in RA than osteoarthritis synovium. MIP-3alpha-producing cells were located in the lining layer and perivascular infiltrates in close association with CD1a immature dendritic cells. Addition of exogenous IL-17 or IL-1beta to synovium explants increased MIP-3alpha production. Conversely, specific soluble receptors for IL-1beta, IL-17, and TNF-alpha inhibited MIP-3alpha production to various degrees, but 95% inhibition was obtained only when the three receptors were combined. Similar optimal inhibition was also obtained with IL-4, but IL-13 and IL-10 were less active. These findings indicate that interactions between monocyte and Th1 cell-derived cytokines contribute to the recruitment of T cells and dendritic cells by enhancing the production of MIP-3alpha by synoviocytes. The inhibitory effect observed with cytokine-specific inhibitors and Th2 cytokines may have therapeutic applications.  相似文献   

8.
To study the causes of synovitis in rheumatoid arthritis (RA), we have analyzed the effect of several cytokines known to be secreted in RA joints, on synovial cell proliferation and prostaglandin E2 (PGE2) production. Recombinant interleukin-1-beta (IL-1-beta) and tumor necrosis factor-alpha (TNF-alpha) stimulated moderately the DNA synthesis and markedly the production of PGE2. Interferon-gamma (IFN-gamma) was often mitogenic but never induced PGE2 secretion. The association of IL-1-beta and TNF-alpha showed an additive effect on both parameters, whereas addition of IFN-gamma to either monokine reduced the proliferation and increased PGE2 release. Incubation with a crude T cell supernatant or a mixture of cytokines including IL-1-beta, TNF-alpha and IFN-gamma enhanced synovial cell growth and PGE2 production as compared to the effect elicited by each single cytokine. In contrast, interleukin-2 (IL-2) down regulated the synovial cell activation induced by the combined action of the three other cytokines. Taken together, our findings indicate that synovial cell proliferation is weakly stimulated, reaching a two-fold increase over background levels, whatever cytokines are used. Furthermore, proliferation can vary independently of PGE2 production. Nevertheless, the monokines IL-1-beta and TNF-alpha both exert agonistic effects on synovial cell activation, thus contributing to cartilage damage in RA, whereas IFN-gamma, IL-6 or IL-2 may rather play a regulatory role.  相似文献   

9.
The purpose of this study was to analyze the expression of the two proinflammatory cytokines IL-20 and IL-24 and their shared receptors in rheumatoid arthritis and spondyloarthropathy. IL-20 was increased in plasma of rheumatoid arthritis patients compared with osteoarthritis patients and IL-24 was increased in synovial fluid and plasma of rheumatoid arthritis and spondyloarthropathy patients compared with osteoarthritis patients. IL-20 and IL-24 mRNA was only present at low levels in the synovium. In the synovial membrane, IL-20 protein was present in mononuclear cells and neutrophil granulocytes whereas IL-24 protein was observed in endothelial cells and mononuclear cells. IL-20 receptor type 1 and IL-22 receptor were expressed by granulocytes in the synovial fluid. In synovial fluid mononuclear cell cultures, stimulation with recombinant human IL-20 or recombinant human IL-24 induced monocyte chemoattractant protein 1 (CCL2/MCP-1) secretion, but not tumour necrosis factor alpha mRNA synthesis or IL-6 secretion. Both IL-20 and IL-24 showed correlations to CCL2/MCP-1 in plasma from rheumatoid arthritis and spondyloarthropathy patients. This study associates IL-20 and IL-24 to the synovium of rheumatoid arthritis and spondyloarthropathy and results indicate that the two cytokines contribute to disease pathogenesis through recruitment of neutrophil granulocytes and induction of CCL2/MCP-1.  相似文献   

10.

Introduction

Fibronectin fragments have been found in the articular cartilage and synovial fluid of patients with osteoarthritis and rheumatoid arthritis. These matrix fragments can stimulate production of multiple mediators of matrix destruction, including various cytokines and metalloproteinases. The purpose of this study was to discover novel mediators of cartilage destruction using fibronectin fragments as a stimulus.

Methods

Human articular cartilage was obtained from tissue donors and from osteoarthritic cartilage removed at the time of knee replacement surgery. Enzymatically isolated chondrocytes in serum-free cultures were stimulated overnight with the 110 kDa α5β1 integrin-binding fibronectin fragment or with IL-1, IL-6, or IL-7. Cytokines and matrix metalloproteinases released into the media were detected using antibody arrays and quantified by ELISA. IL-7 receptor expression was evaluated by flow cytometry, immunocytochemical staining, and PCR.

Results

IL-7 was found to be produced by chondrocytes treated with fibronectin fragments. Compared with cells isolated from normal young adult human articular cartilage, increased IL-7 production was noted in cells isolated from older adult tissue donors and from osteoarthritic cartilage. Chondrocyte IL-7 production was also stimulated by combined treatment with the catabolic cytokines IL-1 and IL-6. Chondrocytes were found to express IL-7 receptors and to respond to IL-7 stimulation with increased production of matrix metalloproteinase-13 and with proteoglycan release from cartilage explants.

Conclusion

These novel findings indicate that IL-7 may contribute to cartilage destruction in joint diseases, including osteoarthritis.  相似文献   

11.
IL-1 can participate in the perpetuation of arthritis through direct stimulation of synoviocytes and augmentation of matrix degradation. Hence, local production of the IL-1R antagonist protein (IRAP) might be an important negative feedback signal that regulates synovitis. We assessed synovial IRAP production in synovia from 30 individuals, by using a specific mAb and the immunoperoxidase staining method. IRAP was detected in 11 of 12 rheumatoid arthritis (RA) synovial tissues (ST) and was located primarily in the sublining, particularly in perivascular regions enriched for macrophages. Some staining was observed in the intimal lining of the synovium, although this was significantly less than in the sublining (p less than 0.05). Nine of 12 osteoarthritis (OA) tissues were positive for IRAP. In contrast to RA, the staining was observed primarily in the synovial lining in OA, with only minimal sublining IRAP being detected. Synovia from four patients without arthritis were negative (three autopsy specimens and one post-traumatic sample). Of the other two patients with miscellaneous diagnoses, one sample was negative (tenosynovitis) and one was positive (seronegative inflammatory arthritis) (sublining). Studies of serial sections and double-immunostaining experiments indicated that macrophages are the major cells containing immunoreactive IRAP. IRAP gene expression in vivo was determined by performing in situ hybridization on ST from 17 arthritis patients. RNA sense IRAP probes did not hybridize to any tissues. Anti-sense IRAP probes bound to two of nine RA tissues, two of six OA tissues, one of one seronegative inflammatory arthropathy tissue, and none of one flexor tenosynovitis tissue. As with immunoreactive protein, IRAP mRNA was primarily localized to cells in the synovial lining in OA but was more prominent in perivascular lymphoid aggregates in RA and seronegative inflammatory arthropathy. Northern blot analysis was performed on RNA isolated from nine ST. The appropriately sized IRAP band was identified in six of nine samples (five of six RA and one of three OA). Supernatants from cultured RA and OA ST cells contained immunoreactive and biologically active IRAP. Hence, IRAP gene expression and protein production occur in RA and OA synovium, albeit in different distributions.  相似文献   

12.
Synovial tissue macrophage as a source of the chemotactic cytokine IL-8   总被引:30,自引:0,他引:30  
Cells of the synovial microenvironment may recruit neutrophils (PMN) and lymphocytes into synovial fluid, as well as lymphocytes into the synovial tissues, of arthritic patients. We have investigated the production of the chemotactic cytokine IL-8 by using sera, synovial fluid, synovial tissue, and macrophages and fibroblasts isolated from synovial tissues from 75 arthritic patients. IL-8 levels were higher in synovial fluid from rheumatoid (RA) patients (mean +/- SE, 14.37 +/- 5.8 ng/ml), compared with synovial fluid from osteoarthritis patients (0.135 +/- 17 ng/ml) (p less than 0.05) or from patients with other arthritides (5.52 +/- 5.11 ng/ml). IL-8 from RA sera was 8.44 +/- 2.33 ng/ml, compared with nondetectable levels found in normal sera. IL-8 levels from RA sera and synovial fluid were strongly positively correlated (r = 0.96, p less than 0.05). Moreover, RA synovial fluid chemotactic activity for PMN in these fluids was inhibited 40 +/- 5% upon incubation with neutralizing polyclonal antibody to IL-8. Synovial tissue fibroblasts released only small amounts of constitutive IL-8 but could be induced to produce IL-8 by stimulation with either IL-1 beta, TNF-alpha, or LPS. In contrast, unlike normal PBMC or alveolar macrophages, macrophages isolated from RA synovial tissue constitutively expressed both IL-8 mRNA and antigenic IL-8. RA synovial macrophage IL-8 expression was not augmented by incubation with either LPS, TNF-alpha, or IL-1 beta. Immunohistochemical analysis of synovial tissue showed that a greater percentage of RA macrophages than osteoarthritis macrophages reacted with anti-IL-8. Whereas macrophages were the predominant cell for immunolocalization of IL-8, less than 5% of synovial tissue fibroblasts were positive for immunolocalized IL-8. These results suggest that macrophage-derived IL-8 may play an important role in the recruitment of PMN in synovial inflammation associated with RA.  相似文献   

13.
Calcineurin is a calcium-activated phosphatase to mediate lymphocyte activation and neuron signaling, but its role in inflammatory arthritis remains largely unknown. In this study, we demonstrate that calcineurin was highly expressed in the lining layer, infiltrating leukocytes, and endothelial cells of rheumatoid synovium. The basal expression levels of calcineurin were higher in the cultured synoviocytes of rheumatoid arthritis patients than those of osteoarthritis patients. The calcineurin activity in the synoviocytes was increased by the stimulation with proinflammatory cytokines such as IL-1beta and TNF-alpha. Moreover, rheumatoid arthritis synoviocytes had an enlarged intracellular Ca(2+) store and showed a higher degree of [Ca(2+)](i) release for calcineurin activity than osteoarthritis synoviocytes when stimulated with either TNF-alpha or phorbol myristate acetate. IL-10, an anti-inflammatory cytokine, failed to increase the Ca(2+) and calcineurin activity. The targeted inhibition of calcineurin by the overexpression of calcineurin-binding protein 1, a natural calcineurin antagonist, inhibited the production of IL-6 and matrix metalloproteinase-2 by rheumatoid synoviocytes in a similar manner to the calcineurin inhibitor, cyclosporin A. Moreover, the abundant calcineurin expression was found in the invading pannus in the joints of mice with collagen-induced arthritis. In these mice, calcineurin activity in the cultured synovial and lymph node cells correlated well with the severity of arthritis, but which was suppressed by cyclosporin A treatment. Taken together, our data suggest that the abnormal activation of Ca(2+) and calcineurin in the synoviocytes may contribute to the pathogenesis of chronic arthritis and thus provide a potential target for controlling inflammatory arthritis.  相似文献   

14.
Cartilage destruction in osteoarthritis (OA) is thought to be mediated by two main enzyme families; the matrix metalloproteinases (MMPs) are responsible for cartilage collagen breakdown, whereas enzymes from the 'a disintegrin and metalloproteinase domain with thrombospondin motifs' (ADAMTS) family mediate cartilage aggrecan loss. Tissue inhibitors of metalloproteinases (TIMPs) regulate the activity of these enzymes. Although cartilage destruction in OA might be driven by the chondrocyte, low-grade synovitis is reported in patients with all grades of this disease.  相似文献   

15.
16.
Fibroblast migration, proliferation, extracellular matrix protein synthesis and degradation, all of which play important roles in inflammation, are themselves induced by various growth factors and cytokines. Less is known about the interaction of these substances on lung fibroblast function in pulmonary fibrosis. The goal of this study was to investigate the effects of PDGF alone and in combination with IL-1beta and TNF-alpha on the production of human lung fibroblast matrix metalloproteinases, proliferation, and the chemotactic response. The assay for MMPs activity against FITC labeled type I and IV collagen was based on the specificity of the enzyme cleavage of collagen. Caseinolytis and gelatinolytic activities of secreted proteinases were analyzed by zymography. Fibronectin in conditioned media was measured using human lung fibronectin enzyme immunoassay. Cell proliferation was measured by 3H-Thymidine incorporation assay. Cell culture supernatants were tested for PGE2 content by ELISA. Chemotactic activity was measured using the modified Boyden chamber. Matrix metalloproteinase assay indicated that IL-1beta, TNF-alpha and PDGF induced intestitial collagenase (MMP-1) production. MMP assay also indicated that IL-1beta and TNF-alpha had inhibitory effects on MMP-2,9(gelatinaseA,B) production. Casein zymography confirmed that IL-1beta stimulated stromlysin (matrix metalloproteinase 3; MMP-3) and gelatin zymography demonstrated that TNF-alpha induced MMP-9 production in human lung fibroblast, whereas PDGF alone did not. PDGF in combination with IL-1beta and TNF-alpha induced MMP-3 and MMP-9 activity, as demonstrated by zymography. PDGF stimulated lung fibroblast proliferation in a concentration-dependent manner, whereas IL-1beta and TNF-alpha alone had no effect. In contrast, the proliferation of human lung fibroblasts by PDGF was inhibited in the presence of IL-1beta and TNF-alpha, and this inhibition was not a consequence of any elevation of PGE2. PDGF stimulated fibroblast chemotaxis in a concentration-dependent manner, and this stimulation was augmented by combining PDGF with IL-1beta and TNF-alpha. These findings suggested that PDGF differentially regulated MMPs production in combination with cytokines, and further that MMP assay and zymography had differential sensitivity for detecting MMPs. The presence of cytokines with PDGF appears to modulate the proliferation and chemotaxis of human lung fibroblasts.  相似文献   

17.
A hallmark of rheumatoid- and osteoarthritis (OA) is proinflammatory cytokine-induced degeneration of cartilage collagen and aggrecan by matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS). Effects of the Chinese herb, Tripterygium wilfordii Hook F (TWHF), on cartilage and its anti-arthritic mechanisms are poorly understood. This study investigated the impact of a purified derivative of TWHF, PG490 (triptolide), on cytokine-stimulated expression of the major cartilage damaging proteases, MMP-3, MMP-13, and ADAMTS4. PG490 inhibited cytokine-induced MMP-3, MMP-13 gene expression in primary human OA chondrocytes, bovine chondrocytes, SW1353 cells, and human synovial fibroblasts. Triptolide was effective at low doses and blocked the induction of MMP-13 by IL-1 in human and bovine cartilage explants. TWHF extract and PG490 also suppressed IL-1-, IL-17-, and TNF-alpha-induced expression of ADAMTS-4 in bovine chondrocytes. Thus, PG490 could protect cartilage from MMP- and aggrecanase-driven breakdown. The immunosuppressive, cartilage protective, and anti-inflammatory properties could make PG490 potentially a new therapeutic agent for arthritis.  相似文献   

18.
Rheumatoid arthritis (RA) is characterized by massive synovial proliferation, angiogenesis, subintimal infiltration of inflammatory cells and the production of cytokines such as TNF-alpha and IL-6. Allograft inflammatory factor-1 (AIF-1) has been identified in chronic rejection of rat cardiac allografts as well as tissue inflammation in various autoimmune diseases. AIF-1 is thought to play an important role in chronic immune inflammatory processes, especially those involving macrophages. In the current work, we examined the expression of AIF-1 in synovial tissues and measured AIF-1 in synovial fluid (SF) derived from patients with either RA or osteoarthritis (OA). We also examined the proliferation of synovial cells and induction of IL-6 following AIF-1 stimulation. Immunohistochemical staining showed that AIF-1 was strongly expressed in infiltrating mononuclear cells and synovial fibroblasts in RA compared with OA. Western blot analysis and semiquantitative RT-PCR analysis demonstrated that synovial expression of AIF-1 in RA was significantly greater than the expression in OA. AIF-1 induced the proliferation of cultured synovial cells in a dose-dependent manner and increased the IL-6 production of synovial fibroblasts and PBMC. The levels of AIF-1 protein were higher in synovial fluid from patients with RA compared with patients with OA (p < 0.05). Furthermore, the concentration of AIF-1 significantly correlated with the IL-6 concentration (r = 0.618, p < 0.01). These findings suggest that AIF-1 is closely associated with the pathogenesis of RA and is a novel member of the cytokine network involved in the immunological processes underlying RA.  相似文献   

19.
Decorin is a small leucine-rich proteoglycan that plays a role in control of cell proliferation, cell migration, collagen fibrillogenesis and modulation of the activity of TGF-beta. In the present study, we investigated the effects of decorin on the production of metalloproteinases (MMP-1, -2, -3, -9 and -13), tissue inhibitors of metalloproteinases (TIMP-1, -2) and cytokines (TGF-beta, IL-1beta, IL-4 and TNF-alpha). Decorin was overexpressed in cultured human gingival fibroblasts using adenovirus-mediated gene transfer. Decorin infection resulted in decreased protein levels of MMP-1 and MMP-3 whereas MMP-2 and TIMP-2 secretion was increased. MMP-9, MMP-13 and TIMP-1 were not affected by decorin infection. Cytokine measurements by ELISA showed that decorin overexpression reduced TGF-beta and IL-1beta. In contrast, IL-4 and TNF-alpha levels were markedly increased in decorin-infected cells. These results suggest that decorin could modulate the expression of certain metalloproteinases and their inhibitors, as well as the production of cytokines. Altogether, our data suggest that decorin might play a pivotal role in tissue remodeling by acting on the balance between extracellular matrix synthesis and degradation.  相似文献   

20.
Mast cell (MC) activation in the rheumatoid lesion provides numerous mediators that contribute to inflammatory and degradative processes, especially at sites of cartilage erosion. MC activation in rheumatoid synovial tissue has often been associated with tumour necrosis factor (TNF)-α and interleukin (IL)-1β production by adjacent cell types. By contrast, our in situ and in vitro studies have shown that the production of IL-15 was independent of MC activation, and was not related to TNF-α and IL-1β expression. Primary cultures of dissociated rheumatoid synovial cells produced all three proinflammatory cytokines, with production of IL-1β exceeding that of TNF-α, which in turn exceeded that of IL-15. In vitro cultures of synovial macrophages, synovial fibroblasts and articular chondrocytes all produced detectable amounts of free IL-15, macrophages being the most effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号