共查询到20条相似文献,搜索用时 6 毫秒
1.
Alving CR 《Journal of liposome research》2006,16(3):157-166
Naturally occurring antibodies to phospholipids and cholesterol are widespread; they occur commonly during the course of acute infections; they are not causally related to the anti-phospholipid syndrome; they have been associated with other clinical entities only as an epiphenomenon; and they have not been implicated as causing any clinical syndrome or disease. There are theoretical and experimental reasons to believe that normal cells and tissues are protected from binding of antibodies to bilayer lipids by steric hindrance due to adjacent larger molecules, such as large or charged adjacent glycolipids or proteins on the cell surface. There are also reasons to believe that certain natural antibodies to lipids can even serve useful normal functions. Antibodies to liposomal lipids induced by liposomes containing lipid A appear to have characteristics that are similar or identical to naturally occurring antibodies to lipids, and it is therefore believed that such antibodies would not cause adverse clinical effects. Numerous Phase I and II human clinical trials of experimental vaccines containing liposomes and lipid A have shown a high level of safety. 相似文献
2.
3.
4.
Johansen-Berg H 《Current biology : CB》2003,13(20):R802-R804
Brain changes after stroke suggest that undamaged areas may 'take over' the function of damaged regions. Recent studies using magnetic stimulation to disrupt the healthy human brain shed new light on the potential for dynamic compensation across the motor system. 相似文献
5.
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression. 相似文献
6.
Our understanding of the basic mechanisms regulating the entry of leukocytes into inflamed tissues has increased dramatically over the past few years. It is anticipated that increased understanding of this process will promote the design and discovery of agents capable of selectively modulating the recruitment of leukocyte subsets to foci of inflammation. Work is currently underway to develop a novel class of drugs influencing leukocyte adhesive interactions that have therapeutic potential in a wide variety of human chronic inflammatory diseases. 相似文献
7.
8.
9.
10.
11.
RB Singh S Gupta P Dherange F De Meester A Wilczynska SE Alam D Pella DW Wilson 《Canadian journal of physiology and pharmacology》2012,90(9):1171-1183
Recent research indicates an association between brain dysfunction and the pathogenesis of metabolic syndrome. To investigate this, we created a Medline search (up to December 2011) of articles in PubMed. The results indicated that refined carbohydrates, saturated and total fat, high levels of ω-6 fatty acids, and low levels of ω-3 fatty acids and other long chain polyunsaturated fatty acids (PUFA), all in conjunction with sedentary behaviour and mental stress can predispose to inflammation. Increased sympathetic activity, with increased secretion of catecholamine, cortisol, and serotonin can cause oxidative stress, which may damage the arcuate nucleus as well as the hypothalamus and macrophages, and the liver may release pro-inflammatory cytokines. These, in conjunction with an underlying deficiency in long chain PUFA, may damage the arcuate nucleus as well as neuropeptide-Y and pro-opiomelanocortin neurons and insulin receptors in the brain, especially during fetal life, infancy, and childhood, resulting in their dysfunction. Of the fatty acids in the brain, 30%-50% are long chain PUFA, which are incorporated in the cell membrane phospholipids. Hence, ω-3 fatty acids, which are also known to enhance parasympathetic activity and increase the secretion of anti-inflammatory cytokines interleukin (IL)-4 and IL-10 as well as acetylcholine in the hippocampus, may be protective. Therefore, treatment with ω-3 fatty acids may be applied for the prevention of metabolic syndrome. 相似文献
12.
《Trends in molecular medicine》2023,29(4):315-328
Bilirubin has several physiological functions, both beneficial and harmful. In addition to reactive oxygen species-scavenging activities, bilirubin has potent immunosuppressive effects associated with long-term pathophysiological sequelae. It has been recently recognized as a hormone with endocrine actions and interconnected effects on various cellular signaling pathways. Current studies show that bilirubin also decreases adiposity and prevents metabolic and cardiovascular diseases. All in all, the physiological importance of bilirubin is only now coming to light, and strategies for increasing plasma bilirubin levels to combat chronic diseases are starting to be considered. This review discusses the beneficial effects of increasing plasma bilirubin, incorporates emerging areas of bilirubin biology, and provides key concepts to advance the field. 相似文献
13.
In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed elaborates on these layers by relating the personality traits central to learning to the different quadrants of brain preference, as described by Neethling's brain profile, as the inner layer of the onion. This layer is encircled by the learning styles that describe different information-processing preferences for each brain quadrant. For the middle layer, the different stages of Kolb's learning cycle are classified into the four brain quadrants associated with the different brain processing strategies within the information processing circle. Each of the stages of Kolb's learning cycle is also associated with a specific cognitive learning strategy. These two inner circles are enclosed by the circle representing the role of the environment and instruction on learning. It relates environmental factors that affect learning and distinguishes between face-to-face and technology-assisted learning. This model informs on the design of instructional interventions for physiology to encourage whole brain learning. 相似文献
14.
Parkinson's disease, the second most common neurodegenerative disorder, affects millions of people globally. There is no cure, and its prevalence will double by 2030. In recent years, numerous causative genes and risk factors for Parkinson's disease have been identified and more than half appear to function at the synapse. Subtle synaptic defects are thought to precede blunt neuronal death, but the mechanisms that are dysfunctional at synapses are only now being unraveled. Here, we review recent work and propose a model where different Parkinson proteins interact in a cell compartment‐specific manner at the synapse where these proteins regulate endocytosis and autophagy. While this field is only recently emerging, the work suggests that the loss of synaptic homeostasis may contribute to neurodegeneration and is a key player in Parkinson's disease. 相似文献
15.
Sustained activity has been recorded in the prefrontal cortex during working memory tasks. First, we compare the anatomical distribution of this activity in humans and monkeys. Then, we show that it reflects many factors, maintenance of the items presented, preparation for the response, transformation of the items during the delay, task rules and task goals. Finally, we point out that sustained activity has also been recorded in other areas, such as the parietal cortex. We suggest that the key to prefrontal cortex lies not in the maintenance of sensory information but in the prospective use of that information for behaviour. 相似文献
16.
Wormstone IM Wride MA 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1568):1190-1192
Millions are rendered blind or exhibit visual impairment due to pathologies of the lens of the eye. Lens research therefore addresses the direct need to gain insights into the cellular and molecular basis of disease, but, moreover, serves as a valuable experimental system to answer fundamental biological questions. This themed issue showcases the scientific knowledge of the processes involved in the development, structure, ultrastructure, physiology and pathology of the lens and how this information has the potential to significantly further knowledge in various fields of research. The issue is divided into three main areas. Firstly, the lens is discussed as a developmental model for embryonic induction, as an elegant system for studying the role of growth factors in development, and for analysis of the molecular control and cellular basis of cellular differentiation. The genetic basis of disorders of lens development, including paediatric cataract (lens opacity), are also discussed in this section. Secondly, adult lens structure and ultrastructure are covered, as well as the lens as a model for homeostasis and solute exchange. Finally, the papers in the latter part of the special issue review lens pathology, including the lens as a model for normal and pathological ageing, vitreoretinal influences on lens function and cataract and the lens as a model for fibrotic disease. Overall, the articles highlight the lens as a continuing, very important and attractive model system for biologists working in many different research areas. 相似文献
17.
18.
Human infection with the protozoan parasite Trypanosoma cruzi leads to Chagas disease, which affects approximately 17 million people in Latin America. A significant percentage of the infected population will develop clinical symptoms or present changes in laboratory and/or image evaluation. The existence of a large spectrum of clinical manifestations--with patients ranging from asymptomatic to severe cardiac involvement--emphasizes the need to use standardized and well-defined clinical criteria among different research groups. In this article, we carry out a systematic review of the immunology in human Chagas disease, discussing recent findings in the context of a clinical perspective. 相似文献
19.
20.
Popular academic ideas linking physiological adaptations to social behaviors are spreading disconcertingly into wider societal contexts. In this article, we note our skepticism with one particularly popular—in our view, problematic—supposed causal correlation between neocortex size and social group size. The resulting Dunbar's Number, as it has come to be called, has been statistically tested against observed group size in different primate species. Although there may be reason to doubt the Dunbar's Number hypothesis among nonhuman primate species, we restrict ourselves here to the application of such an explanatory hypothesis to human, culture-manipulating populations. Human information process management, we argue, cannot be understood as a simple product of brain physiology. Cross-cultural comparison of not only group size but also relationship-reckoning systems like kinship terminologies suggests that although neocortices are undoubtedly crucial to human behavior, they cannot be given such primacy in explaining complex group composition, formation, or management. 相似文献