首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
KH-type splicing regulatory protein (KSRP) is a single-strand RNA binding protein which regulates mRNA stability either by binding to AU-rich elements (AREs) of mRNA 3′UTR or by facilitating miRNA biogenesis to target mRNA. Unlike its well-characterized function at the molecular level in maintaining RNA homeostasis, the role of KSRP in cancer progression remains largely unknown. Here we investigate the role of KSRP in non-small cell lung cancer (NSCLC). We first examined KSRP expression by immunohistochemistry in a cohort containing 196 NSCLC patients and observed a strong positive correlation between KSRP expression and survival of NSCLC patients. Multivariate analysis further identified KSRP as an independent prognostic factor. Manipulating KSRP expression significantly affected in vitro cell mobility and in vivo metastatic ability of NSCLC cells. Microarray analysis identified an ARE-containing gene, EGR3, as a downstream effector of KSRP in NSCLC. Interestingly, we found that KSRP decreased EGR3 mRNA stability in an ARE-independent manner. By screening KSRP-regulated miRNAs in NSCLC cells, we further found that miR-23a directly binds to EGR3 3′UTR, reducing EGR3 expression and thereby inhibiting NSCLC cell mobility. Our findings implicate a targetable KSRP/miR-23a/EGR3 signaling axis in advanced tumor phenotypes.  相似文献   

3.
4.
5.
mRNA stability is a major determinant of inflammatory gene expression. Rapid degradation of interleukin-8 (IL-8) mRNA is imposed by a bipartite AU-rich element (ARE) in the 3′ untranslated region (R. Winzen et al., Mol. Cell. Biol. 24:4835-4847, 2004). Small interfering RNA-mediated knockdown of the ARE-binding protein KSRP resulted in stabilization of IL-8 mRNA or of a β-globin reporter mRNA containing the IL-8 ARE. Rapid deadenylation was impaired, indicating a crucial role for KSRP in this step of mRNA degradation. The two IL-8 ARE domains both contribute to interaction with KSRP, corresponding to the importance of both domains for rapid degradation. Exposure to the inflammatory cytokine IL-1 has been shown to stabilize IL-8 mRNA through p38 mitogen-activated protein (MAP) kinase and MK2. IL-1 treatment impaired the interaction of KSRP with the IL-8 ARE in a manner dependent on p38 MAP kinase but apparently independent of MK2. Instead, evidence that TTP, a target of MK2, can also destabilize the IL-8 ARE reporter mRNA is presented. In a comprehensive approach to identify mRNAs controlled by KSRP, two criteria were evaluated by microarray analysis of (i) association of mRNAs with KSRP in pulldown assays and (ii) increased amounts in KSRP knockdown cells. According to both criteria, a group of 100 mRNAs is controlled by KSRP, many of which are unstable and encode proteins involved in inflammation. These results indicate that KSRP functions as a limiting factor in inflammatory gene expression.  相似文献   

6.
The majority of melanomas carry an oncogenic BRAF mutation (BRAFV600E), which results in constitutive kinase activity driving melanoma proliferation. While inhibitors of BRAFV600E (BRAFi) effectively lead to rapid tumor shrinkage, most patients treated with BRAFi develop acquired resistance. Identification of factors as regulators of melanoma growth and as potential sources of resistance is thus crucial for the design of improved therapies to treat advanced melanoma with more durable responses. Here, we show that KH-type splicing regulatory protein (KSRP) is critical for proliferation of melanoma cells without and with acquired resistance to vemurafenib. Silencing KSRP reduces cell proliferation and augments the growth suppressive effects of vemurafenib. We identify killin (KLLN), a p53-regulated DNA replication inhibitor, as a downstream effector of growth inhibition by KSRP silencing and demonstrate that KSRP promotes decay of KLLN mRNA through an RNA-protein interaction. Using heterologous mRNA reporters, we show that a U-rich element within the 3′ untranslated region of KLLN is responsible for KSRP-dependent mRNA decay. These findings implicate that KSRP is an important regulator of melanoma cell growth in part through controlling KLLN mRNA stability.  相似文献   

7.
8.
9.
Inherently unstable mRNAs contain AU-rich elements (AREs) in their 3' untranslated regions that act as mRNA stability determinants by interacting with ARE binding proteins (ARE-BPs). The mechanisms underlying the function of ARE and ARE-BP interactions in promoting mRNA decay are not fully understood. Here, we demonstrate that KSRP, a KH domain-containing ARE-BP, is an essential factor for ARE-directed mRNA decay. Some of the KH motifs (KHs) of KSRP directly mediate RNA binding, mRNA decay, and interactions with the exosome and poly(A) ribonuclease (PARN). The ability of KHs to promote mRNA decay correlates with their ability to bind the ARE and associate with RNA-degrading enzymes. Thus, KHs promote rapid mRNA decay by recruiting degradation machinery to ARE-containing mRNAs.  相似文献   

10.
Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders.  相似文献   

11.
12.
The beta-catenin pathway plays a critical role in the pathogenesis of certain types of cancers. To gain insight into mechanisms by which altered receptor tyrosine kinases regulate cytoplasmic beta-catenin accumulation, the effect of an oncogenic receptor originated from Nantes (RON) variant on beta-catenin accumulation and the role of beta-catenin in RON-mediated tumorigenic activities were studied. In NIH3T3 cells harboring oncogenic variant RONDelta160, increased beta-catenin accumulation with tyrosine phosphorylation and nuclear translocation was observed. Overexpression of RONDelta160 also resulted in increased expression of beta-catenin target genes c-myc and cyclin D1. By analyzing cellular proteins that regulate beta-catenin stabilities, it was found that RONDelta160 activates the protein disheveled (DVL) and inactivates glycogen synthase kinase-3beta by Ser-9 residue phosphorylation. These effects were channeled by RONDelta160-activated PI 3-kinase-AKT pathways that are sensitive to specific inhibitors, such as wortmannin, but not to other chemical inhibitors. Silencing RONDelta160 expression by specific small interfering RNA blocked not only beta-catenin expression but also c-myc and cyclin D1 expression, suggesting that RON expression is required for the activation of the beta-catenin signaling pathway. Moreover, it was found that knockdown of the beta-catenin gene expression by small interfering RNA techniques reduces significantly the RONDelta160-mediated NIH3T3 cell proliferation, focus-forming activities and anchorage-independent growth. Thus, the oncogenic RON variant regulates beta-catenin stabilities through activation of DVL and inactivation of glycogen synthase kinase-3beta. The activated beta-catenin cascade is one of the pathways involved in tumorigenic activities mediated by the oncogenic RON variant.  相似文献   

13.
14.
15.
We purified the KH-type splicing regulatory protein (KSRP) as a protein interacting with the 3'-untranslated region (3'-UTR) of the human inducible nitric oxide (iNOS) mRNA. Immunodepletion of KSRP enhanced iNOS 3'-UTR RNA stability in in vitro-degradation assays. In DLD-1 cells overexpressing KSRP cytokine-induced iNOS expression was markedly reduced. In accordance, downregulation of KSRP expression increases iNOS expression by stabilizing iNOS mRNA. Co-immunoprecipitations showed interaction of KSRP with the exosome and tristetraprolin (TTP). To analyze the role of KSRP binding to the 3'-UTR we studied iNOS expression in DLD-1 cells overexpressing a non-binding mutant of KSRP. In these cells, iNOS expression was increased. Mapping of the binding site revealed KSRP interacting with the most 3'-located AU-rich element (ARE) of the human iNOS mRNA. This sequence is also the target for HuR, an iNOS mRNA stabilizing protein. We were able to demonstrate that KSRP and HuR compete for this binding site, and that intracellular binding to the iNOS mRNA was reduced for KSRP and enhanced for HuR after cytokine treatment. Finally, a complex interplay of KSRP with TTP and HuR seems to be essential for iNOS mRNA stabilization after cytokine stimulation.  相似文献   

16.
Death-associated protein kinase (DAPK) is a multidomain enzyme that plays a central role in autophagic and apoptotic signaling, although the protein-protein interactions regulating DAPK functions are not well defined. Peptide aptamer libraries were used to identify the tumor suppressor protein tuberin (TSC2) as a novel DAPK death domain-binding protein, and we evaluated whether DAPK is a positive or negative effector of the TSC2-regulated mammalian target of rapamycin (mTORC1) signaling pathway. Binding studies using death domain miniproteins in vitro and deletion analysis in vivo determined that the death domain of DAPK is the major site for the interaction with TSC2. Recombinant DAPK phosphorylates TSC2 in vitro, and DAPK kinase activity is stimulated by growth factor signaling. Transfection of DAPK promotes phosphorylation of TSC2 in vivo, whereas short interfering RNA-mediated attenuation of DAPK reduces growth factor-stimulated phosphorylation of TSC2. DAPK-dependent phosphorylation leads to TSC1-TSC2 complex dissociation, and consequently manipulation of DAPK by transfection or short interfering RNA demonstrated that DAPK is a positive regulator of mTORC1 in response to growth factor activation. Epistatic studies suggest that DAPK functions downstream from the RAS-MEK-ERK and phosphatidylinositol 3-kinase-AKT growth factor signaling pathways. DAPK(+/-) mouse embryo fibroblasts have attenuated mTORC1 signaling compared with DAPK+/+ counterparts, and overexpression of DAPK in DAPK(+/-) MEFs stimulates mTORC1 activity. These data uncover a novel interaction between DAPK and TSC2 proteins that has revealed a positive link between growth factor stimulation of DAPK and mTORC1 signaling that may ultimately affect autophagy, cell survival, or apoptosis.  相似文献   

17.
18.
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with cancers in immunocompromised populations. EBV establishes a latent infection and immortalizes and transforms B lymphocytes. Several latent proteins have profound effects on cellular growth, including activation of NF-kappaB, phosphatidylinositol 3'-OH kinase (PI3K) signaling, and notch signaling. Activation of PI3K can affect the activity of beta-catenin, the target of the wnt signaling pathway. Deregulation of beta-catenin is associated with a number of malignancies. To determine if beta-catenin is regulated by EBV infection, EBV-infected cells were examined for beta-catenin levels and localization. beta-Catenin was increased in EBV-positive tumor cell lines compared to EBV-negative lines, in EBV-infected Burkitt's lymphoma cell lines, and in EBV-transformed lymphoblastoid cell lines (LCL). In contrast to wnt signaling, EBV consistently induced the accumulation of beta-catenin in the cytoplasm but not the nucleus. The beta-catenin regulating kinase, glycogen synthase kinase 3beta (GSK3beta), was shown to be phosphorylated and inactivated in EBV-infected lymphocytes. Inactivated GSK3beta was localized to the nucleus of EBV-infected LCL. Neither the cytoplasmic accumulation of beta-catenin nor the nuclear inactivation of GSK3beta was affected by the inhibition of PI3K signaling. These data indicate that latent infection with EBV has unique effects on beta-catenin signaling that are distinct from activation of wnt and independent of its effects on PI3K.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号