首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii   总被引:22,自引:0,他引:22  
A new nitrogenase from Azotobacter vinelandii has been isolated and characterized. It consists of two proteins, one of which is almost identical with the Fe protein (component 2) of the conventional enzyme. The second protein (Av1'), however, has now been isolated and shown to differ completely from conventional component 1, i.e., the MoFe protein. This new protein consists of two polypeptides with a total molecular weight of around 200,000. In place of Mo and Fe it contains V and Fe with a V:Fe ratio of 1:13 +/- 3. The ESR spectrum of Av1' also differs from conventional component 1 in that lacks the g = 3.6 resonance that arises from the FeMo cofactor but contains an axial signal with gav less than 2 as well as inflections in the g = 4-6 region possibly arising from an S = 3/2 state. This new enzyme can reduce dinitrogen, protons, and acetylene but is only able to utilize 10-15% of its electrons for the reduction of acetylene.  相似文献   

2.
The mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was investigated with respect to minimal assembly of the purified enzyme and of the enzyme in the mitochondrial inner membrane. Studies of the hydrodynamic properties of the purified enzyme in the presence of 0.3% Triton X-100 allowed determination of the Stokes radius, sedimentation constant, partial specific volume, frictional ratio, and molecular weight. Under these conditions transhydrogenase existed as an inactive monomer, suggesting that monomerization may be accompanied by inactivation. Radiation inactivation was used to determine the functional molecular size of purified detergent-dispersed transhydrogenase and transhydrogenase in beef heart submitochondrial particles. Under these conditions the catalytic activity of both the purified and the membrane-bound enzyme was found to be catalyzed by a dimeric form of the enzyme. These results suggest for the first time that the minimal functional assembly of detergent-dispersed as well as membrane-bound transhydrogenase is a dimer, which is not functionally associated with, for example, complex I or ATPase. In addition, the results are consistent with the possibility that the two subunits of transhydrogenase are catalytically active in an alternating fashion according to a previously proposed half-of-the-sites reactivity model.  相似文献   

3.
The alkaline nuclease (pH optimum 9.0) has been purified about 500-fold in 25% yield from the extract of rat liver mitochondria. The enzyme cleaves yeast RNA, poly(U), poly(U), poly(C) and denatured DNA to yield oligonucleotides with 5'-phosphoryl and 3'-hydroxyl ends. The enzyme has a molecular weight of about 60 000, a sedimentation coefficient of 4 S and an isoelectric point of 9.0. The behaviors of RNAase activity of the nuclease are identical with those of DNAase activity in column chromatography as well as in catalytic nature. The affinities of RNAase activity for substrate, Mg2+, spermidine and polyvinyl sulfate are lower than those of DNAase activity. The alkaline nuclease activity measured in the homogenate of regenerating rat liver is not significantly changed.  相似文献   

4.
1. Nicotinamide nucleotide transhydrogenase from Pseudomonas aeruginosa was purified to apparent homogeneity with an improved method employing affinity chromatography on N6-(6aminohexyl)-adenosine 2', 5'-bisphosphate-Sepharose 4B. 2. Polyacrylamide gel electrophoresis of the purified transhydrogenase carried out in the presence of sodium dodecyl sulphate, indicated a minimal molecular weight of 55000 +/- 2000. 3. The kinetic and regulatory properties of the purified transhydrogenase resembled those of the crude enzyme, i.e., NADPH, adenosine 2'-monophosphate and Ca2+ were activators whereas NADP+ was inhibitory. 4. Nicotinamide nucleotide-specific release of binding of the transhydrogenase to N6-(6-aminohexyl)-adenosine-2',5'-bisphosphate-Sepharose and N6-(-aminohexyl)-adenosine-5'-monophosphate-Sepharose suggests the presence of at least two separate binding sites for nicotinamide nucleotides, one that is specific for NADP(H) and one that binds both NAD(H) and NADP(H). 5. Binding of transhydrogenase to N6-)6-aminohexyl)-adenosine-2',5'-bisphosphate-Sepharose and activation of the enzyme by adenosine-2',5'-bisphophate showed a marked pH dependence. In contrast, inhibition of the Ca2+-activated enzyme by adenosine 2',5'-bisphosphate was virtually constant at various pH values. This descrepancy was interpreted to indicate the existence of separate nucleotide-binding effector and active sites.  相似文献   

5.
Evidence suggesting that Bacillus polymyxa has an active ferredoxin-NADP(+) reductase (EC 1.6.99.4) was obtained when NADPH was found to provide reducing power for the nitrogenase of this organism; direct evidence was provided when it was shown that B. polymyxa extracts could substitute for the native ferredoxin-NADP(+) reductase in the photochemical reduction of NADP(+) by blue-green algal particles. The ferredoxin-NADP(+) reductase was purified about 80-fold by a combination of high-speed centrifugation, ammonium sulfate fractionation, and chromatography on Sephadex G-100 and diethylaminoethyl-cellulose. The molecular weight was estimated by gel filtration to be 60,000. A small amount of the enzyme was further purified by polyacrylamide gel electrophoresis and shown to be a flavoprotein. The reductase was specific for NADPH in the ferredoxin-dependent reduction of cytochrome c and methyl viologen diaphorase reactions; furthermore, NADP(+) was the acceptor of preference when the electron donor was photoreduced ferredoxin. The reductase also has an irreversible NADPH-NAD(+) transhydrogenase (reduced-NADP:NAD oxidoreductase, EC 1.6.1.1) activity, the rate of which was proportional to the concentration of NAD (K(m) = 5.0 x 10(-3)M). The reductase catalyzed electron transfer from NADPH not only to B. polymyxa ferredoxin but also to the ferredoxins of Clostridium pasteurianum, Azotobacter vinelandii, and spinach chloroplasts, although less effectively. Rubredoxin from Clostridium acidi-urici and azotoflavin from A. vinelandii also accept electrons from the B. polymyxa reductase. The pH optima for the various reactions catalyzed by the B. polymyxa ferredoxin-NADP reductase are similar to those of the chloroplast reductase. NAD and acetyl-coenzyme A, which obligatorily activate NADPH- and NADH-ferredoxin reductases, respectively, in Clostridium kluyveri, have no effect on B. polymyxa reductase.  相似文献   

6.
Oviductal secretions include an ATPase (EC 3.6.1.3) that is transferred from the outer surface of the secretory cells to the surface of the ovulated oocyte. The enzyme has been purified and is a highly labile, very high molecular weight lipoprotein complex (greater than 4-10(6)). It consists of 47% protein and 53% lipid. Lipid composition is limited to phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. The basic protein subunit has a molecular weight of 170 000. The enzyme exhibits many of the characteristics of ectoenzyme ATPase. The enzyme is Mg2+ or Ca2+ dependent; the Mg2+-ATPase has pH optima at 6.0 and 7.8 and the Ca2+-ATPase at 9.0. Substrate specificity is limited to ATP with lesser activity towards GTP, CTP, UPT and ADP. Km for ATP is 0.88 mM and the enzyme is inhibited at substrate concentrations greater than 3 mM ATP.  相似文献   

7.
A second extracellular protease from myxobacter strain AL-1 has been purified to homogeneity and named protease II; the enzyme crystallizes as fine needles. The extracellular, cell wall lytic protease reported previously from the same organism is now designated protease I. Protease II exhibits a pH optimum of 8.5 to 9.0 and is stable from pH 3.0 to 9.0. The enzyme is heat stable at 50 C for 18 hr. Results of sedimentation equilibrium studies yielded a molecular weight of 17,000, and amino acid analysis revealed 157 residues with a minimal molecular weight of 16,660. Cleavage of peptide bonds in the oxidized B-chain of insulin, cytochrome c (horse heart). lysozyme, and vasopressin is restricted to the amino side of lysine. Dilysine and trilysine were not hydrolyzed. Products from digestions of polylysine were lysine and dilysine.  相似文献   

8.
Pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa was purified 150-fold by affinity chromatography on immobilized 2′-AMP. The binding of the enzyme is pH dependent. Elution was achieved with 2′-AMP, NADP+, or NADPH but not with 5′-AMP, NAD+, or NADH. The enzyme preparations appeared to be homogeneous in gel chromatography and ultracentrifugation, but only if these procedures were carried out in the presence of 2′-AMP or NADP+. With 2′-AMP a sedimentation coefficient of 34 S, a molecular weight of 1.6–1.7 million, and a Stokes' radius of 11.7 nm were determined. In the presence of NADP+ the sedimentation coefficient was 42 S and the molecular weight was 6.4 million. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed one kind of subunit with a molecular weight of 54,000. This was consistent with results from amino acid analyses and paper chromatography of peptides. Eight molar urea inactivated the enzyme but did not dissociate it into subunits. Full activity was restored after dialysis against urea-free buffer by mercaptoethanol and flavin-adenine dinucleotide.  相似文献   

9.
Uptake hydrogenase (EC 1.12) from Azotobacter vinelandii has been purified 250-fold from membrane preparations. Purification involved selective solubilization of the enzyme from the membranes, followed by successive chromatography on DEAE-cellulose, Sephadex G-100, and hydroxylapatite. Freshly isolated hydrogenase showed a specific activity of 110 mumol of H2 uptake (min X mg of protein)-1. The purified hydrogenase still contained two minor contaminants that ran near the front on sodium dodecyl sulfate-polyacrylamide gels. The enzyme appears to be a monomer of molecular weight near 60,000 +/- 3,000. The pI of the protein is 5.8 +/- 0.2. With methylene blue or ferricyanide as the electron acceptor (dyes such as methyl or benzyl viologen with negative midpoint potentials did not function), the enzyme had pH optima at pH 9.0 or 6.0, respectively, It has a temperature optimum at 65 to 70 degrees C, and the measured half-life for irreversible inactivation at 22 degrees C by 20% O2 was 20 min. The enzyme oxidizes H2 in the presence of an electron acceptor and also catalyzes the evolution of H2 from reduced methyl viologen; at the optimal pH of 3.5, 3.4 mumol of H2 was evolved (min X mg of protein)-1. The uptake hydrogenase catalyzes a slow deuterium-water exchange in the absence of an electron acceptor, and the highest rate was observed at pH 6.0. The Km values varied widely for different electron acceptors, whereas the Km for H2 remained virtually constant near 1 to 2 microM, independent of the electron acceptors.  相似文献   

10.
The enzyme ribulosdiphosphate carboxylase was isilated from the leaves of Elymus (Psathyrosachys) junceus. The enzyme was found homogenous during disc-electrophoresis in polyacrylamide gel and analytical ultracentrifugation. The sedimentation coefficient for the enzyme is 17,4S. The enzyme molecular weight as determined by the sedimentation equilibrium technique is equal to 540000. The enzyme molecule consists of 2 types of subunits, i.e. the larger subunit has m.w. of 55000, the smaller one--12900. The number of large subunits is 8, that of small ones--8. The specific activity of the homogenous enzyme makes up to 2,45 mkmoles of CO2 per min per mg of protin (pH 8,0, 30 degrees). The purified enzyme was stable in Mg2+- and dithiothreitol-containing buffers for 3--4 weeks at 4 degrees and for 5--6 months at --20 degrees. The amino acid composition of the enzyme molecule is similar to that of the enzyme from spinach leaves.  相似文献   

11.
DNA kinase has been purified to homogeneity from calf thymus. The purified enzyme, with a specific activity of 16.7 units/mg protein at 25 degrees C, exhibited a sharp pH/activity curve with a pH optimum at 5.5 and low activity at alkaline pH. The molecular weight of the enzyme was estimated by dodecylsulfate/polyacrylamide gel electrophoresis to be 5.4 X 10(4). The enzyme has a sedimentation coefficient of 4.0 S. An apparent molecular weight of 5.6 X 10(4) and a Stokes' radius of 3.3 nm were estimated by gel-filtration on Sephadex G-100. The enzyme phosphorylates neither yeast RNA nor poly(A) instead of DNA. Compared with rat liver DNA kinase, calf thymus DNA kinase is relatively resistant to the inhibition by sulfate (Ki = 7 mM) and pyrophosphate (Ki = 5 mM). The enzyme activity is markedly stimulated by polyamines at the sub-optimal concentration of Mg2+ but not by monovalent cations.  相似文献   

12.
13.
Proton binding to tobacco mosaic virus protein at 20 °C has been found to exhibit a reproducible hysteresis which results from the metastability of high molecular weight helical, virus-like rods. In a titration from pH 4 or 5 to 7, the time for depolymerization of such rods, as measured by ultracentrifugation, decreases from days to minutes over a range of about a tenth of a pH unit, near pH 6·6 at 20 °C. Relative to the extent of proton binding in the depolymerized state at 4 °C, the magnitude of the hysteresis near pH 6·2 corresponds to more than 50% of the protons bound per subunit in the equilibrium polymerized state.  相似文献   

14.
Extracellular pullulanase was purified and crystallized from the culture fluid of Aerobacter aerogenes. Pullulanase was purified by means of ammonium sulfate fraction, DEAE-cellulose column chromatography and Sephadex column chromatography. Crystalline pullulanase was formed when saturated ammonium sulfate solution was added to the purified enzyme solution. The crystalline enzyme appeared as colorless fine rods. On ultracentrifugation analysis, the enzyme showed a single sharp and symmetrical Schlieren peak. The sedimentation coefficient, s20,w was 4.39S. Polyacrylamide gel electrophoresis at pH 8.4 gave a main band with two sub-bands and the molecular weight of the main enzyme was estimated to be 66,000 from Polyacrylamide gel electrophoresis and to be 58,000 from sedimentation equilibrium. The optimum pH and temperature for the enzyme action were pH 6.5 and 50°C, respectively.  相似文献   

15.
1. Lysozyme from eggs of the Dipterous Ceratitis capitata (Wiedeman) has been purified by ion-exchange chromatography and gel filtration and its physicochemical properties have been investigated. This is the first insect lysozyme characterized so far and it exhibits some properties different to those described for other animal lysozymes. 2. Lysozyme from the insect eggs has a molecular weight of about 23200 and a sedimentation coefficient of 2.4 S. Molecular weight determination by sodium dedecylsulphate gel electrophoresis indicates that the molecule consists of a single polypeptide chain. 3. This lysozyme preparation shows notable stability at acidic pH values and lability at alkline pH values. It shows a single optimum pH at about 6.5.4. Chitinase/muramidase specific activity ratio is around 350 times higher for the insect lysozyme than for the hen egg-white enzyme. 5. The amino-acid composition shows the presence of one tryptophan residue per molecule of enzyme. This fact differentiates the lysozyme from insect eggs from other animal and plant lysozymes. From the amino acid composition, the absorption coefficient and the partial specific volume are calculated. 6. Glycine is the N-terminal residue.  相似文献   

16.
The molecular size of pig liver carboxylesterase has been investigated under a variety of conditions of pH and ionic strength. From equilibrium and velocity sedimentation at pH 4.0 and pH 7.5, and from chromatography on Sephadex G-200,we conclude that the monomeric molecular weight is similar to 65,000 daltons and that the enzyme associates to form trimers. Association equilibrium constants for the monomer-trimer system were estimated to be 0.02 1-2 g-2 at pH 4 (concentration-dependent molecular weight data) and 2 times 10-5 1-2g-2 at pH 7.5 (frontal gel chromatographic results). These studies were aided by comparisons of the properties of the pig liver enzyme with those of chicken liver carboxylesterase, which is shown to exhibit the velocity and equilibrium sedimentation characteristics of a homogeneous protein with molecular weight similar to 65,000. Studies of pig and chicken liver carboxylesterases in 6 M guanidinium chloride, 0.1 M in beta-mercaptoethanol, support the proposition that the monomeric species of these enzymes have molecular weights of similar to 65,000. On polyacrylamide gel electrophoresis in SDS, there is no evidence for a major species of molecular weight less than similar to 65,000 for the pig enzyme, but ca. 50 percent of the chicken esterase is dissociated into two species of molecular weight similar to 30,000.  相似文献   

17.
Acid phosphatase from yeast Saccharomyces cerevisiae was purified, and its physicochemical and kinetic properties were investigated. The sedimentation coefficient has been determined to be s0(20,w) = 13.6 S. The diffusion constant has been found to be 3.9 X 10(-7) cm2s-1, and the calculated partial specific volume was v = 0.663 cm3/g. From these data, a molecular weight of 252,000 was calculated. Electrophoresis on gel slabs, with a linear concentration gradient of polyacrylamide (4-30%), showed size heterogeneity of the native enzyme preparation and indicated an apparent molecular weight in the range of 170,000 to 360,000. In the presence of sodium dodecyl sulfate, the molecular weight was in the range of 82,000 to 165,000, indicating dimeric structure of the native enzyme, which was confirmed by cross-linking experiments. Isoelectric focusing demonstrated charge heterogeneity of enzyme preparation. From CD spectrum it was calculated that the enzyme contains about 29% of alpha-helical structure. Excitation at 278 nm gave an emission fluorescence spectrum with a maximum at 340 nm. Amino acid analysis revealed a high content of aspartic acid, serine, and threonine. Glycine is found as the NH2-terminal amino acid. Initial velocity dependence on substrate concentration, as well as on pH, and thermostability studies indicated the presence of at least two enzyme forms in the preparation.  相似文献   

18.
Heterogeneity of glyceraldehyde-3-phosphate dehydrogenase from human brain   总被引:2,自引:0,他引:2  
In an attempt to characterize enzymes from human brain capable of dehydrogenating short chain aliphatic aldehydes, four groups of enzymes which catalyze inorganic phosphate-dependent reversible dehydrogenation of glyceraldehyde 3-phosphate as well as short chain aldehydes have been purified and characterized. Three enzyme groups are visualized as multiple bands on isoelectric focusing: E6.6 (pI 6.65, 6.75, 6.85); E6.8 (pI 6.8, 6.9); E8.5 (pI 8.5, 8.6); one enzyme, E9.0, is seen as a single band pI 9.0. The subcellular localization of E6.8, E8.5 and E9.0 appears to be mitochondrial. The mitochondrial enzymes differ slightly in molecular weight: E6.8 is 142,000 with subunits of 36,000 and 38,000; E8.5 is 120,000 with a subunit weight of 29,500; E9.0 is 133,000 with a subunit of 33,000. The E8.5 and E9.0 enzymes also appear to contain Zr as part of their molecular structure. E6.6 (subcellular localization uncertain) is a dimer with a molecular weight of 98,000 and two subunits of 58,000 and 61,000. The specific activity with glyceraldehyde-3-phosphate is: E6.6, 8.6 IU/mg; E6.8, 13 IU/mg; E8.5, 158 IU/mg; E9.0, 620 IU/mg. With glyceraldehyde 3-phosphate and 1,3-diphosphoglyceric acid and Km values of all the enzymes are similar (10-40 microM), except for E6.8 whose Km for glyceraldehyde 3-phosphate is very sensitive to pH and is extremely low at pH 7.0 (2 microM), while being considerably higher than that for the other enzymes at pH 9.0 (170 microM). The molecular properties, Km values as well as high specific activity with glyceraldehyde 3-phosphate identify E6.8, E8.5 and E9.0 as glyceraldehyde-3-phosphate dehydrogenases (EC 1.2.1.12). The catalytic properties of E6.6 are similar to those of E6.8, E8.5 and E9.0, but its molecular properties are different, precluding definite identification.  相似文献   

19.
Azotobacter vinelandii cell extracts reduced NAD and oxidized d-galactose to galactonate that subsequently was converted to 2-keto-3-deoxy-galactonate. Further metabolism of 2-keto-3-deoxy-galactonate required the presence of ATP and resulted in the formation of pyruvate and glyceraldehyde 3-P. Radiorespirometry indicated a preferential release of CO(2) at the first carbon position of the d-galactose molecule. This suggested that Azotobacter vinelandii metabolizes d-galactose via the DeLey-Doudoroff pathway. The first enzyme of this pathway, d-galactose dehydrogenase, was partially characterized. It has a molecular weight of about 74,000 Da and an isoelectric point of 6.15. The pH optimum of the galactose dehydrogenase was about 9. The apparent K(m)s for NAD and d-galactose were 0.125 and 0.56 mM, respectively. Besides d-galactose, the active fraction of this galactose dehydrogenase also oxidized l-arabinose effectively. The electron acceptor for d-galactose or l-arabinose oxidation, NAD, could not be replaced by NADP. These substrate specificities were different from those reported in Pseudomonas saccharophila, Pseudomonas fluorescens, and Rhizobium meliloti.  相似文献   

20.
Subunit structure of submitochondrial particle membrane transhydrogenase   总被引:1,自引:0,他引:1  
The subunit structure of membrane-bound mitochondrial transhydrogenase was investigated. Chemical modification of bovine heart submitochondrial particles with the cleavable bifunctional cross-linking reagent, dithiobis(succinimidyl propionate), resulted in the formation of three dimeric "cross-link isomers" of the enzyme, identified by immunoautoradiography, that are characteristic of cross-linked purified transhydrogenase. A limited amount of cross-linking of transhydrogenase monomer to Mr = 25,000 polypeptide was also observed. At high concentration of the cross-linker, a small amount of a higher molecular weight species was formed with both purified and membrane enzyme. Reductive cleavage of the dimeric and higher molecular weight species resulted in the regeneration of transhydrogenase monomer and several other proteolytically derived fragments. It is concluded that transhydrogenase exists in the native membrane primarily as a dimeric species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号